Skip to main content

Human Tumor Antigens Recognized by T Cells and Their Implications for Cancer Immunotherapy

  • Chapter
  • First Online:
Innate Immune Regulation and Cancer Immunotherapy

Abstract

Recent clinical trials of immunotherapies indicate that tumor reactive autologous T cells are able to regress even advanced, large tumors in melanoma patients. For example, the adoptive transfer of CD8+ cytotoxic T lymphocytes (CTL) specifically targeted for identified tumor antigens following lymphodepletive treatment, such as fludarabine/cyclophosphamide administration and total body irradiation, led to objective tumor responses in more than 70% of patients with melanoma (Dudley et al. 2008). Immunological analyses on these tumor tissues demonstrated that administered T cells may eliminate tumor cells through direct killing and cytokine secretion. Therefore, CD8+ CTLs that recognize MHC class I positive cancer cells are important for in vivo tumor rejection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atanackovic D, Altorki NK, Cao Y, Ritter E, Ferrara CA, Ritter G et al (2008) Booster vaccination of cancer patients with MAGE-A3 protein reveals long-term immunological memory or tolerance depending on priming. Proc Natl Acad Sci USA 105:1650–1655

    Article  PubMed  CAS  Google Scholar 

  • Brinkmann U, Vasmatzis G, Lee B, Pastan I (1999) Novel genes in the PAGE and GAGE family of tumor antigens found by homology walking in the dbEST database. Cancer Res 59:1445–1448

    PubMed  CAS  Google Scholar 

  • Chamoun Z, Mann RK, Nellen D, von Kessler DP, Bellotto M, Beachy PA et al (2001) Skinny hedgehog, an acyltransferase required for palmitoylation and activity of the hedgehog signal. Science 293:2080–2084

    Article  PubMed  CAS  Google Scholar 

  • Cox AL, Skipper J, Chen Y, Henderson RA, Darrow TL, Shabanowitz J et al (1994) Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. Science 264:716–719

    Article  PubMed  CAS  Google Scholar 

  • Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U et al (2008) Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 26:5233–5239

    Article  PubMed  CAS  Google Scholar 

  • Goto Y, Matsuzaki Y, Kurihara S, Shimizu A, Okada T, Yamamoto K et al (2006) A new melanoma antigen fatty acid-binding protein 7, involved in proliferation and invasion, is a potential target for immunotherapy and molecular target therapy. Cancer Res 66:4443–4449

    Article  PubMed  CAS  Google Scholar 

  • Hayashi E, Matsuzaki Y, Hasegawa G, Yaguchi T, Kurihara S, Fujita T et al (2007) Identification of a novel cancer-testis antigen CRT2 frequently expressed in various cancers using representational differential analysis. Clin Cancer Res 13:6267–6274

    Article  PubMed  CAS  Google Scholar 

  • Hunder NN, Wallen H, Cao J, Hendricks DW, Reilly JZ, Rodmyre R et al (2008) Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N Engl J Med 358:2698–2703

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa T, Fujita T, Suzuki Y, Okabe S, Yuasa Y, Iwai T et al (2003) Tumor-specific immunological recognition of frameshift-mutated peptides in colon cancer with microsatellite instability. Cancer Res 63:5564–5572

    PubMed  CAS  Google Scholar 

  • Iwata T, Fujita T, Hirao N, Matsuzaki Y, Okada T, Mochimaru H et al (2005) Frequent immune responses to a cancer/testis antigen, CAGE, in patients with microsatellite instability-positive endometrial cancer. Clin Cancer Res 11:3949–3957

    Article  PubMed  CAS  Google Scholar 

  • Jager E, Nagata Y, Gnjatic S, Wada H, Stockert E, Karbach J et al (2000) Monitoring CD8 T cell responses to NY-ESO-1: correlation of humoral and cellular immune responses. Proc Natl Acad Sci USA 97:4760–4765

    Article  PubMed  CAS  Google Scholar 

  • Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS et al (2009) Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114:535–546

    Article  PubMed  CAS  Google Scholar 

  • Kawakami Y, Rosenberg SA (1996) T-cell recognition of self peptides as tumor rejection antigens. Immunol Res 15:179–190

    Article  PubMed  CAS  Google Scholar 

  • Kawakami Y, Eliyahu S, Delgado CH, Robbins PF, Rivoltini L, Topalian SL et al (1994a) Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc Natl Acad Sci USA 91:3515–3519

    Article  PubMed  CAS  Google Scholar 

  • Kawakami Y, Eliyahu S, Sakaguchi K, Robbins PF, Rivoltini L, Yannelli JR et al (1994b) Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. J Exp Med 180:347–352

    Article  PubMed  CAS  Google Scholar 

  • Kawakami Y, Eliyahu S, Jennings C, Sakaguchi K, Kang X, Southwood S et al (1995) Recognition of multiple epitopes in the human melanoma antigen gp100 by tumor-infiltrating T lymphocytes associated with in vivo tumor regression. J Immunol 154:3961–3968

    PubMed  CAS  Google Scholar 

  • Kawakami Y, Wang X, Shofuda T, Sumimoto H, Tupesis J, Fitzgerald E et al (2001) Isolation of a new melanoma antigen, MART-2, containing a mutated epitope recognized by autologous tumor-infiltrating T lymphocytes. J Immunol 166:2871–2877

    PubMed  CAS  Google Scholar 

  • Kawakami Y, Fujita T, Matsuzaki Y, Sakurai T, Tsukamoto M, Toda M et al (2004) Identification of human tumor antigens and its implications for diagnosis and treatment of cancer. Cancer Sci 95:784–791

    Article  PubMed  CAS  Google Scholar 

  • Kawakami Y, Sumimoto H, Fujita T, Matsuzaki Y (2005) Immunological detection of altered signaling molecules involved in melanoma development. Cancer Metastasis Rev 24:357–366

    Article  PubMed  CAS  Google Scholar 

  • Kiniwa Y, Fujita T, Akada M, Ito K, Shofuda T, Suzuki Y et al (2001) Tumor antigens isolated from a patient with vitiligo and T-cell-infiltrated melanoma. Cancer Res 61:7900–7907

    PubMed  CAS  Google Scholar 

  • Lee PP, Yee C, Savage PA, Fong L, Brockstedt D, Weber JS et al (1999) Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med 5:677–685

    Article  PubMed  CAS  Google Scholar 

  • Matsushita M, Yamazaki R, Ikeda H, Mori T, Sumimoto H, Fujita T et al (2006) Possible involvement of allogeneic antigens recognised by donor-derived CD4 cytotoxic T cells in selective GVL effects after stem cell transplantation of patients with haematological malignancy. Br J Haematol 132:56–65

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki Y, Hashimoto S, Fujita T, Suzuki T, Sakurai T, Matsushima K et al (2005) Systematic identification of human melanoma antigens using serial analysis of gene expression (SAGE). J Immunother 28:10–19

    Article  PubMed  CAS  Google Scholar 

  • Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM et al (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:126–129

    Article  PubMed  CAS  Google Scholar 

  • Okada T, Akada M, Fujita T, Iwata T, Goto Y, Kido K et al (2006) A novel cancer testis antigen that is frequently expressed in pancreatic, lung, and endometrial cancers. Clin Cancer Res 12:191–197

    Article  PubMed  CAS  Google Scholar 

  • Parkhurst MR, Salgaller ML, Southwood S, Robbins PF, Sette A, Rosenberg SA et al (1996) Improved induction of melanoma-reactive CTL with peptides from the melanoma antigen gp100 modified at HLA-A*0201-binding residues. J Immunol 157:2539–2548

    PubMed  CAS  Google Scholar 

  • Robbins PF, El-Gamil M, Li YF, Kawakami Y, Loftus D, Appella E et al (1996) A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J Exp Med 183:1185–1192

    Article  PubMed  CAS  Google Scholar 

  • Romero P, Cerottini JC, Waanders GA (1998) Novel methods to monitor antigen-specific cytotoxic T-cell responses in cancer immunotherapy. Mol Med Today 4:305–312

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL et al (1998) Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 4:321–327

    Article  PubMed  CAS  Google Scholar 

  • Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P (1997) Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science 275:1790–1792

    Article  PubMed  CAS  Google Scholar 

  • Sharkey MS, Lizee G, Gonzales MI, Patel S, Topalian SL (2004) CD4(+) T-cell recognition of mutated B-RAF in melanoma patients harboring the V599E mutation. Cancer Res 64:1595–1599

    Article  PubMed  CAS  Google Scholar 

  • Somasundaram R, Swoboda R, Caputo L, Otvos L, Weber B, Volpe P et al (2006) Human leukocyte antigen-A2-restricted CTL responses to mutated BRAF peptides in melanoma patients. Cancer Res 66:3287–3293

    Article  PubMed  CAS  Google Scholar 

  • Sumimoto H, Miyagishi M, Miyoshi H, Yamagata S, Shimizu A, Taira K et al (2004) Inhibition of growth and invasive ability of melanoma by inactivation of mutated BRAF with lentivirus-mediated RNA interference. Oncogene 23:6031–6039

    Article  PubMed  CAS  Google Scholar 

  • Toda M, Iizuka Y, Kawase T, Uyemura K, Kawakami Y (2002) Immuno-viral therapy of brain tumors by combination of viral therapy with cancer vaccination using a replication-conditional HSV. Cancer Gene Ther 9:356–364

    Article  PubMed  CAS  Google Scholar 

  • Udagawa M, Kudo-Saito C, Hasegawa G, Yano K, Yamamoto A, Yaguchi M et al (2006) Enhancement of immunologic tumor regression by intratumoral administration of dendritic cells in combination with cryoablative tumor pretreatment and Bacillus Calmette-Guerin cell wall skeleton stimulation. Clin Cancer Res 12:7465–7475

    Article  PubMed  CAS  Google Scholar 

  • Ueda R, Iizuka Y, Yoshida K, Kawase T, Kawakami Y, Toda M (2004) Identification of a human glioma antigen, SOX6, recognized by patients’ sera. Oncogene 23:1420–1427

    Article  PubMed  CAS  Google Scholar 

  • Ueda R, Ohkusu-Tsukada K, Fusaki N, Soeda A, Kawase T, Kawakami Y et al (2009) Identification of HLA-A2- and A24-restricted T-cell epitopes derived from SOX6 expressed in glioma stem cells for immunotherapy. Int J Cancer 126(4):919–929

    Google Scholar 

  • van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B et al (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254:1643–1647

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

A part of this work was supported by grants from the Ministry of Education, Science, and Culture, the Ministry of Health and Welfare, and Keio University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Kawakami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ueda, R., Yaguchi, T., Kawakami, Y. (2012). Human Tumor Antigens Recognized by T Cells and Their Implications for Cancer Immunotherapy. In: Wang, R. (eds) Innate Immune Regulation and Cancer Immunotherapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9914-6_19

Download citation

Publish with us

Policies and ethics