Skip to main content

Photonic Network Architectures I: Circuit Switching

  • Chapter
  • First Online:
Photonic Network-on-Chip Design

Part of the book series: Integrated Circuits and Systems ((ICIR,volume 68))

Abstract

A photonic network design encompasses a wide range of details that must be considered carefully. Design details include material system, layout of components, and network arbitration mechanisms. Each detail involves several metrics including performance requirements, power constraints, scalability, and cost. Designing a photonic network which is both feasible and cost-effective is a multi-dimensional design-space problem in which all the parts are tightly coupled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Chan and K. Bergman, “Photonic interconnection network architectures using wavelength-selective spatial routing for chip-scale communications,” Optical Communications and Networking, IEEE/OSA Journal of, vol. 4, no. 3, pp. 189–201, Mar. 2012.

    Google Scholar 

  2. G. Hendry, E. Robinson, V. Gleyzer, J. Chan, L. P. Carloni, N. Bliss, and K. Bergman, “Circuit-switched memory access in photonic interconnection networks for high-performance embedded computing,” in International Conference for High Performance Computing, Networking, Storage, and Analysis (Supercomputing), Nov. 2010.

    Google Scholar 

  3. A. Shacham, K. Bergman, and L. Carloni, “On the design of a photonic network-on-chip,” in First International Symposium on Networks-on-Chip, 2007.

    Google Scholar 

  4. H. Wang, B. G. Lee, A. Shacham, and K. Bergman., “On the design of a \(4\times 4\) nonblocking nanophotonic switch for photonic networks on chip,” in Proceedings of Frontiers in Nanophotonics and Plasmonics, 2007.

    Google Scholar 

  5. J. Chan, A. Biberman, B. G. Lee, and K. Bergman, “Insertion loss analysis in a photonic interconnection network for on-chip and off-chip communications,” in IEEE Lasers and Electro-Optics Society (LEOS), Nov. 2008.

    Google Scholar 

  6. A. Shacham, K. Bergman, and L. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” Computers, IEEE Transactions on, vol. 57, no. 9, pp. 1246–1260, Sep 2008.

    Google Scholar 

  7. S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts, Y. Hoskote, N. Borkar, and S. Borkar, “An 80-tile sub-100-W teraflops processor in 65-nm CMOS,” Solid-State Circuits, IEEE Journal of, vol. 43, no. 1, pp. 29–41, Jan.

    Google Scholar 

  8. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photonics, vol. 1, pp. 65–71, Jan. 2007.

    Google Scholar 

  9. W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, “Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides,” Opt. Lett., vol. 32, no. 19, pp. 2801–2803, 2007.

    Google Scholar 

  10. B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technology Letters, vol. 20, no. 10, pp. 767–769, May 2008.

    Google Scholar 

  11. J. Chan, G. Hendry, A. Biberman, and K. Bergman, “Architectural exploration of chip-scale photonic interconnection network designs using physical-layer analysis,” Lightwave Technology, Journal of, vol. 28, no. 9, pp. 1305–1315, May 2010.

    Google Scholar 

  12. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical \(4\times 4\) hitless silicon router for optical networks-on-chip (NoC),” Opt. Express, vol. 16, no. 20, pp. 15 915–15 922, Sep. 2008.

    Google Scholar 

  13. M. Uenuma and T. Motooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett., vol. 34, no. 5, pp. 599–601, Mar. 2009.

    Google Scholar 

  14. T. Gensty, W. Elsäßer, and C. Mann, “Intensity noise properties of quantum cascade lasers,” Opt. Express, vol. 13, no. 6, pp. 2032–2039, 2005.

    Google Scholar 

  15. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” OSA Optics Express, vol. 15, no. 2, pp. 430–436, 2007.

    Google Scholar 

  16. K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, “Deposited silicon high-speed integrated electro-optic modulator,” Opt. Express, vol. 17, no. 7, pp. 5118–5124, Mar. 2009.

    Google Scholar 

  17. P. Lathi, Modern Digital and Analog Communication Systems, 3rd ed. Oxford University Press, 1998.

    Google Scholar 

  18. G. Hendry et al., “Analysis of photonic networks for a chip-multiprocessor using scientific applications,” in The 3rd ACM/IEEE International Symposium on Networks-on-Chip, May 2009.

    Google Scholar 

  19. H. Wang et al., “ORION: A power-performance simulator for interconnection networks,” in 35th International Symposium on Microarchitecture, 2002.

    Google Scholar 

  20. A. Biberman, J. Chan, and K. Bergman, “On-chip optical interconnection network performance evaluation using power penalty metrics from silicon photonic modulators,” in Interconnect Technology Conference (IITC), 2010 International, Jun. 2010, pp. 1–3.

    Google Scholar 

  21. P. Kumar, Y. Pan, J. Kim, G. Memik, and A. Choudhary, “Exploring concentration and channel slicing in on-chip network router,” in NOCS ’09: Proceedings of the 2009 3rd ACM/IEEE International Symposium on Networks-on-Chip, 2009, pp. 276–285.

    Google Scholar 

  22. Cactus Computational Toolkit, [Online]:http://www.cactuscode.org/.

  23. Z. Lin, S. Ethier, T. S. Hahm, and W. M. Tang, “Size scaling of turbulent transport in magnetically confined plasmas,” Physical Review Letters, vol. 88, no. 19, p. 195004, Apr. 2002.

    Google Scholar 

  24. A. Canning, L. Wang, A. Williamson, and A. Zunger, “Parallel empirical pseudopotential electronic structure calculations for million atom systems,” Journal of Computational Physics, vol. 160, no. 1, pp. 29–41, 2000.

    Google Scholar 

  25. J. Borrill, J. Carter, L. Oliker, and D. Skinner, “Integrated performance monitoring of a cosmology application on leading HEC platforms,” in Proceedings of the 2005 International Conference on Parallel Processing, 2005, pp. 119–128.

    Google Scholar 

  26. N. Travinin, H. Hoffmann, R. Bond, H. Chan, J. Kepner, and E. Wong, “pMapper: Automatic mapping of parallel Matlab programs,” in \({\mathit{DOD}}\_{\mathit{UGC}}\) ’05: Proceedings of the 2005 Users Group Conference on 2005 Users Group Conference, 2005, p. 254.

    Google Scholar 

  27. H. Kim, E. Rutledge, S. Sacco, S. Mohindra, M. Marzilli, J. Kepner, R. Haney, J. Daly, and N. Bliss, “Pvtol: Providing productivity, performance and portability to DoD signal processing applications on multicore processors,” in HPCMP-UGC ’08: Proceedings of the 2008 DoD HPCMP Users Group Conference, 2008, pp. 327–333.

    Google Scholar 

  28. V. Strassen, “Gaussian elimination is not optimal.” Numerische Mathematik, vol. 14, no. 3, pp. 354–356, 1969.

    Google Scholar 

  29. J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex fourier series,” Mathematics of Computation, vol. 19, pp. 297–301, 1965.

    Google Scholar 

  30. A. Biberman, K. Preston, G. Hendry, J. Chan, N. Sherwood-Droz, J. Levy, M. Lipson, K. Bergman, “Photonic network-on-chip architecture using multi-layer deposited silicon materials for high-performance chip multiprocessors.” Journal of Emerging Technologies in, Computing Systems, 2011.

    Google Scholar 

  31. D.-X. Xu, A. Delâge, R. McKinnon, M. Vachon, R. Ma, J. Lapointe, A. Densmore, P. Cheben, S. Janz, and J. H. Schmid, “Archimedean spiral cavity ring resonators in silicon as ultra-compact optical comb filters,” Opt. Express, vol. 18, no. 3, pp. 1937–1945, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keren Bergman .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bergman, K., Carloni, L.P., Biberman, A., Chan, J., Hendry, G. (2014). Photonic Network Architectures I: Circuit Switching. In: Photonic Network-on-Chip Design. Integrated Circuits and Systems, vol 68. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9335-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9335-9_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9334-2

  • Online ISBN: 978-1-4419-9335-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics