Skip to main content

Cyclooxygenase-2 Signaling in Squamous Cell Carcinomas

  • Chapter
  • First Online:
Signaling Pathways in Squamous Cancer

Abstract

Cyclooxygenase-2 (COX-2) is the inducible isoform of the enzymes that initiate prostaglandin synthesis from arachidonic acid. While COX-2 is generally not expressed in most unperturbed adult tissues, it can be induced by multiple stimuli, including growth factors, cytokines, ultraviolet (UV) irradiation, tumor promoters and other stressors. Induction most often involves transcriptional activation of the COX-2 gene via transcription factor binding to cis-acting elements in its promoter. COX-2 is overexpressed in many epithelial cancers including most human and mouse squamous cell carcinomas (SCCs). Mouse skin carcinogenesis models have been extensively used to study the molecular events involved in SCC development. Inhibition of COX-2 activity with pharmacological agents, as well as genetic manipulation of COX-2 expression levels with transgenic and knockout mice, have demonstrated that up-regulated COX-2 expression/activity during tumor promotion is critically important for the development of mouse skin tumors and SCCs using both chemical and UV carcinogenesis protocols. PGE2, a major product of COX-2 in epithelial tissues, signals through four G protein-coupled receptors, EP1-EP4, which show differential affinities for PGE2 and couple to different G proteins and downstream signaling pathways. EP1, EP2, and/or EP4 have been shown to be involved in UV and chemical induction of mouse skin tumors, keratinocyte proliferation, epidermal hyperplasia, inflammation and angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An KP, Athar M, Tang X et al. (2002) Cyclooxygenase-2 expression in murine and human nonmelanoma skin cancers: implications for therapeutic approaches. Photochem Photobiol 76:73–80

    Article  CAS  PubMed  Google Scholar 

  • Ansari KM, Sung YM, He G et al. (2007) Prostaglandin receptor EP2 is responsible for ­cyclooxygenase-2 induction by prostaglandin E2 in mouse skin. Carcinogenesis 28:2063–2068

    Article  CAS  PubMed  Google Scholar 

  • Ansari KM, Rundhaug JE, Fischer SM (2008) Multiple signaling pathways are responsible for prostaglandin E2-induced murine keratinocyte proliferation. Mol Cancer Res 6:1003–1016

    Article  CAS  PubMed  Google Scholar 

  • Anto RJ, Mukhopadhyay A, Shishodia S et al. (2002) Cigarette smoke condensate acivates nuclear transcription factor-κB through phosphorylation and degradation of IκBα: correlation with induction of cyclooxygenase-2. Carcinogenesis 23:1511–1518

    Article  CAS  PubMed  Google Scholar 

  • Athar M, An KP, Morel KD et al. (2001) Ultraviolet B (UVB)-induced COX-2 expression in murine skin: an immunohistochemical study. Biochem Biophys Res Commun 280:1042–1047

    Article  CAS  PubMed  Google Scholar 

  • Bachelor MA, Bowden GT (2004) UVA-mediated activation of signaling pathways involved in skin tumor promotion and progression. Semin Cancer Biol 14:131–138

    Article  CAS  PubMed  Google Scholar 

  • Bachelor MA, Silvers AL, Bowden GT (2002) The role of p38 in UVA-induced cyclooxygenase-2 expression in the human keratinocyte cell line, HaCaT. Oncogene 21:7092–7099

    Article  CAS  PubMed  Google Scholar 

  • Bol DK, Rowley RB, Ho C-P et al. (2002) Cyclooxygenase-2 overexpression in the skin of transgenic mice results in suppression of tumor development. Cancer Res 62:2516–2521

    CAS  PubMed  Google Scholar 

  • Boukamp P (2005) Non-melanoma skin cancer: what drives tumor development and progression? Carcinogenesis 26:1657–1667

    Article  CAS  PubMed  Google Scholar 

  • Bowden GT (2004) Prevention of non-melanoma skin cancer by targeting ultraviolet-B-light signalling. Nat Rev Cancer 4:23–35

    Article  CAS  PubMed  Google Scholar 

  • Breyer RM, Bagdassarian CK, Myers SA et al. (2001) Prostanoid receptors: subtypes and signaling. Ann Rev Pharmacol Toxicol 41:661–690

    Article  CAS  Google Scholar 

  • Brouxhon S, Konger RL, VanBuskirk J et al. (2007a) Deletion of prostagandin E2 EP2 receptor protects against ultraviolet-induced carcinogenesis, but increases tumor aggressiveness. J Invest Dermatol 127:439–446

    Article  CAS  PubMed  Google Scholar 

  • Brouxhon S, Kyrkanides S, O’Banion MK et al. (2007b) Sequential down-regulation of E-cadherin with squamous cell carcinoma progression: loss of E-cadherin via a prostaglandin E2-EP2-dependent posttranslational mechanism. Cancer Res 67:7654–7664

    Article  CAS  PubMed  Google Scholar 

  • Buckman SY, Gresham A, Hale P et al. (1998) COX-2 expression is induced by UVB exposure in human skin: implications for the development of skin cancer. Carcinogenesis 19:723–729

    Article  CAS  PubMed  Google Scholar 

  • Butler GJ, Neale R, Green AC et al. (2005) Nonsteroidal anti-inflammatory drugs and the risk of actinic keratoses and squamous cell cancers of the skin. J Am Acad Dermatol 53:966–972

    Article  PubMed  Google Scholar 

  • Chan G, Boyle JO, Yang EK et al. (1999) Cyclooxygenase-2 expression is up-regulated in squamous cell carcinoma of the head and neck. Cancer Res 59:991–994

    CAS  PubMed  Google Scholar 

  • Chen W, Tang Q, Gonzales MS et al. (2001) Role of p38 MAP kinases and ERK in mediating ultraviolet-B induced cyclooxygenase-2 gene expression in human keratinocytes. Oncogene 20:3921–3926

    Article  CAS  PubMed  Google Scholar 

  • Chun K-S, Langenbach R (2007) A proposed COX-2 and PGE2 receptor interaction in UV-exposed mouse skin. Mol Carcinog 46:699–704

    Article  CAS  PubMed  Google Scholar 

  • Chun K-S, Keum Y-S, Han SS et al. (2003) Curcumin inhibits phorbol ester-induced expression of cyclooxygenase-2 in mouse skin through suppression of extracellular signal-regulated kinase activity and NF-κB activation. Carcinogenesis 24:1515–1524

    Article  CAS  PubMed  Google Scholar 

  • Chun K-S, Akunda JK, Langenbach R (2007) Cyclooxygenase-2 inhibits UVB-induced apoptosis in mouse skin by activating the prostaglandin E2 receptors, EP2 and EP4. Cancer Res 67:2015–2021

    Article  CAS  PubMed  Google Scholar 

  • DiGiovanni J (1994) Multistage skin carcinogenesis in mice. In: Waalkes MP, Ward JM (eds) Carcinogenesis. Raven Press, New York

    Google Scholar 

  • Donnini S, Finetti F, Solito R et al. (2007) EP2 prostanoid receptor promotes squamous cell carcinoma growth through epidermal growth factor receptor transactivation and iNOS and ERK1/2 pathways. FASEB J 21:2418–2430

    Article  CAS  PubMed  Google Scholar 

  • Ferrandina G, Lauriola L, Distefano MG et al. (2002a) Increased cyclooxygenase-2 expression is associated with chemotherapy resistance and poor survival in cervical cancer patients. J Clin Oncol 20:973–981

    Article  CAS  PubMed  Google Scholar 

  • Ferrandina G, Lauriola L, Zannoni GF et al. (2002b) Expression of cyclooxygenase-2 (COX-2) in tumour and stroma compartments in cervical cancer: clinical implications. Br J Cancer 87:1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Ferrandina G, Ranelletti FO, Legge F et al. (2003) Celecoxib modulates the expression of ­cyclooxygenase-2, Ki67, apoptosis-related marker, and microvessel density in human cervical cancer: a pilot study. Clin Cancer Res 9:4324–4331

    CAS  PubMed  Google Scholar 

  • Fischer SM, Lo H-H, Gordon GB et al. (1999) Chemopreventive activity of celecoxib, a specific cyclooxygenase-2 inhibitor, and indomethacin against ultraviolet light-induced skin carcinogenesis. Mol Carcinog 25:231–240

    Article  CAS  PubMed  Google Scholar 

  • Fischer SM, Conti CJ, Viner J et al. (2003) Celecoxib and difluoromethylornithine in combination have strong therapeutic activity against UV-induced skin tumors in mice. Carcinogenesis 24:945–952

    Article  CAS  PubMed  Google Scholar 

  • Fischer SM, Pavone A, Mikulec C et al. (2007) Cyclooxygenase-2 expression is critical for chronic UV-induced murine skin carcinogenesis. Mol Carcinog 46:363–371

    Article  CAS  PubMed  Google Scholar 

  • Fritsche E, Schäfer C, Calles C et al. (2007) Lightening up the UV response by identification of the arylhydrocarbon receptor as a cytoplasmic target for ultraviolet B radiation. Proc Natl Acad Sci USA 104:8851–8856

    Article  CAS  PubMed  Google Scholar 

  • Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1875

    Article  CAS  PubMed  Google Scholar 

  • Gallagher CH, Canfield PJ, Greenoak GE et al. (1984) Characterization and histogenesis of tumors in the hairless mouse produced by low-dosage incremental ultraviolet radiation.J Invest Dermatol 83:169–174

    Article  CAS  PubMed  Google Scholar 

  • Gallo O, Masini E, Bianchi B et al. (2002) Prognostic significance of cyclooyxgenase-2 pathway and angiogenesis in head and neck squamous cell carcinoma. Human Pathol 33:708–714

    Article  CAS  Google Scholar 

  • Grösch S, Maier TJ, Schiffmann S et al. (2006) Cyclooxygenase-2 (COX-2)-independent anticarcinogenic effects of selective COX-2 inhibitors. J Natl Cancer Inst 98:736–747

    Article  PubMed  Google Scholar 

  • Hata AN, Breyer RM (2004) Pharmacology and signaling of prostaglandin receptors: multiple roles in inflammation and immune modulation. Pharmacol Ther 103:147–166

    Article  CAS  PubMed  Google Scholar 

  • Heeren P, Plukker J, van Dullemen H et al. (2005) Prognostic role of cyclooxygenase-2 expression in esophageal carcinoma. Cancer Lett 225:283–289

    Article  CAS  PubMed  Google Scholar 

  • Higashi Y, Kanekura T, Kanzaki T (2000) Enhanced expression of cyclooxygenase (COX)-2 in human skin epidermal cancer cells: evidence for growth suppression by inhibiting COX-2 expression. Int J Cancer 86:667–671

    Article  CAS  PubMed  Google Scholar 

  • Higuchi T, Iwama T, Yoshinaga K et al. (2003) A randomized, double-blind, placebo-controlled trial of the effects of rofecoxib, a selective cyclooxygenase-2 inhibitor, on rectal polyps in familial adenomatous polyposis patients. Clin Cancer Res 9:4756–4760

    CAS  PubMed  Google Scholar 

  • Jalili A, Pinc A, Pieczkowski F et al. (2008) Combination of an EGFR blocker and a COX-2 inhibitor for the treatment of advanced cutaneous squamous cell carcinoma. J Dtsch Dermatol Ges 6:1066–1069

    Article  PubMed  Google Scholar 

  • Kabashima K, Nagamachi M, Honda T et al. (2007) Prostaglandin E2 is required for ultraviolet B-induced skin inflammation via EP2 and EP4 receptors. Lab Invest 87:49–55

    Article  CAS  PubMed  Google Scholar 

  • Karmali RA, Wustrow T, Thaler HT et al. (1984) Prostaglandins in carcinomas of the head and neck. Cancer Lett 22:333–336

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Fischer SM (1998) Transcriptional regulation of cyclooxygenase-2 in mouse skin carcinoma cells. Regulatory role of CCAAT/enhancer-binding proteins in the differential expression of cyclooxygenase-2 in normal and neoplastic tissues. J Biol Chem 273:27686–27694

    Article  CAS  PubMed  Google Scholar 

  • Kim YB, Kim GE, Cho NH et al. (2002) Overexpression of cyclooxygenase-2 is associated with a poor prognosis in patients with squamous cell carcinoma of the uterine cervix treated with radiation and concurrent chemotherapy. Cancer 95:531–539

    Article  CAS  PubMed  Google Scholar 

  • Kis B, Snipes JA, Gaspar T et al. (2006) Cloning of cyclooxygenase-1b (putative COX-3) in mouse. Inflam Res 55:274–278

    Article  CAS  Google Scholar 

  • Kligman LH, Kligman AM (1981) Histogenesis and progression of ultraviolet light-induced tumors in hairless mice. J Natl Cancer Inst 67:1289–1297

    CAS  PubMed  Google Scholar 

  • Konger RL, Malaviya R, Pentland AP (1998) Growth regulation of primary human keratinocytes by prostaglandin E receptor EP2 and EP3 subtypes. Biochim Biophys Acta 1401:221–234

    Article  CAS  PubMed  Google Scholar 

  • Konger RL, Billings SD, Thompson AB et al (2005a) Immunolocalization of low-affinity prostaglandin E2 receptors, EP1 and EP2, in adult human epidermis. J Invest Dermatol 124:965–970

    Article  CAS  PubMed  Google Scholar 

  • Konger RL, Brouxhon S, Partillo S et al. (2005b) The EP3 receptor stimulates ceramide and ­diacylglycerol release and inhibits growth of primary keratinocytes. Exp Dermatol 14:914–922

    Article  CAS  PubMed  Google Scholar 

  • Lee JL, Kim A, Kopelovich L et al. (2005) Differential expression of E prostanoid receptors in murine and human non-melanoma skin cancer. J Invest Dermatol 125:818–825

    Article  CAS  PubMed  Google Scholar 

  • Lee KW, Kundu JK, Kim SO et al. (2006) Cocoa polyphenols inhibit phorbol ester-induced superoxide anion formation in cultured HL-60 cells and expression of cyclooxygenase-2 and activation of NF-κB and MAPKs in mouse skin in vivo. J Nutr 136:1150–1155

    CAS  PubMed  Google Scholar 

  • Limburg PJ, Wei W, Ahnen DJ et al. (2005) Randomized, placebo-controlled, esophageal squamous cell cancer chemoprevention trial of selenomethionine and celecoxib. Gastroenterology 129:863–873

    Article  CAS  PubMed  Google Scholar 

  • Lu Y-P, Lou Y-R, Yen P et al. (1999) Time course for early adaptive responses to ultraviolet B light in the epidermis of SKH-1 mice. Cancer Res 59:4591–4602

    CAS  PubMed  Google Scholar 

  • Mahns A, Wolber R, Stäb F et al. (2004) Contribution of UVB and UVA to UV-dependent stimulation of cyclooxygenase-2 expression in artificial epidermis. Photochem Photobiol Sci 3:257–262

    Article  CAS  PubMed  Google Scholar 

  • Maldve RE, Fischer SM (1996) Multifactor regulation of prostaglandin H synthase-2 in murine keratinocytes. Mol Carcinog 17:207–216

    Article  CAS  PubMed  Google Scholar 

  • Maldve RE, Kim Y, Muga SJ et al. (2000) Prostaglandin E2 regulation of cyclooxygenase expression in keratinocytes is mediated via cyclic nucleotide-linked prostaglandin receptors. J Lipid Res 41:873–881

    CAS  PubMed  Google Scholar 

  • Mazhar D, Ang R, Waxman J (2006) COX inhibitors and breast cancer. Br J Cancer 94:346–350

    Article  CAS  PubMed  Google Scholar 

  • Müller-Decker K, Scholz K, Marks F et al. (1995) Differential expression of prostaglandin H synthase isozymes during multistage carcinogenesis in mouse epidermis. Mol Carcinog 12:31–41

    Article  PubMed  Google Scholar 

  • Müller-Decker K, Kopp-Schneider A, Marks F et al. (1998) Localization of prostaglandin H synthase isoenzymes in murine epidermal tumors: Suppression of skin tumor promotion by inhibition of prostaglandin H synthase-2. Mol Carcinog 23:36–44

    Article  PubMed  Google Scholar 

  • Müller-Decker K, Neufang G, Berger I et al. (2002) Transgenic cyclooxygenase-2 overexpression sensitizes mouse skin for carcinogenesis. Proc Natl Acad Sci USA 99:12483–12488

    Article  PubMed  Google Scholar 

  • Mulshine JL, Atkinson JC, Greer RO et al. (2004) Randomized, double-blind, placebo-controlled phase IIB trial of the cyclooxygenase inhibitor ketorolac as an oral rinse in oropharyngeal leukoplakia. Clin Cancer Res 10:1563–1573

    Google Scholar 

  • Narumiya S, Sugimoto Y, Ushikubi F (1999) Prostanoid receptors: structures, properties, and functions. Physiol Rev 79:1193–1226

    CAS  PubMed  Google Scholar 

  • Niederberger E, Manderscheid C, Geisslinger G (2006) Different COX-independent effects of the COX-2 inhibitors etoricoxib and lumiracoxib. Biochem Biophys Res Commun 342:940–948

    Article  CAS  PubMed  Google Scholar 

  • Pahl HL (1999) Activators and target genes of Rel/NF-κB transcriptions factors. Oncogene 18:6853–6866

    Article  CAS  PubMed  Google Scholar 

  • Pentland AP, Scott G, VanBuskirk J et al. (2004) Cyclooxygenase-1 deletion enhances apoptosis but does not protect against ultraviolet light-induced tumors. Cancer Res 64:5587–5591

    Article  CAS  PubMed  Google Scholar 

  • Pyo H, Kim YB, Cho NH et al. (2005) Coexpression of cyclooxygenase-2 and thymidine phosphorylase as a prognostic indicator in patients with FIGO stage IIB squamous cell carcinoma of uterine cervix treated with radiotherapy and concurrent chemotherapy. Int J Radiat Oncol Biol Phys 62:725–732

    Article  CAS  PubMed  Google Scholar 

  • Ranelletti FO, Almadori G, Rocca B et al. (2001) Prognostic significance of cyclooxygenase-2 in laryngeal squamous cell carcinoma. Int J Cancer 95:343–349

    Article  CAS  PubMed  Google Scholar 

  • Regan JW (2003) EP2 and EP4 prostanoid receptor signaling. Life Sci 74:143–153

    Article  CAS  PubMed  Google Scholar 

  • Rundhaug JE, Pavone A, Kim E et al. (2007) The effect of cyclooxygenase-2 overexpression on skin carcinogenesis is context dependent. Mol Carcinog 46:981–992

    Article  CAS  PubMed  Google Scholar 

  • Santhi WS, Sebastian P, Varghese BT et al. (2006) NF-κB and COX-2 during oral tumorigenesis and in assessment of minimal residual disease in surgical margins. Exp Mol Pathol 81:123–130

    Article  CAS  PubMed  Google Scholar 

  • Sawhney M, Rohatgi N, Kaur J et al. (2007) Expression of NF-κB parallels COX-2 expression in oral precancer and cancer: association with smokeless tobacco. Int J Cancer 120:2545–2556

    Article  CAS  PubMed  Google Scholar 

  • Shishodia S, Aggarwal BB (2004) Cyclooxygenase (COX)-2 inhibitor celecoxib abrogates activation of cigarette smoke-induced nuclear factor (NF)-κB by suppressing activation of IκBα kinase in human non-small lung carcinoma: correlation with suppression of cyclin D1, COX-2, and matrix metalloproteinase-9. Cancer Res 64:5004–5012

    Article  CAS  PubMed  Google Scholar 

  • Shoji Y, Takahashi M, Takasuka N et al. (2005) Prostaglandin E receptor EP3 deficiency modifies tumor outcome in mouse two-stage skin carcinogenesis. Carcinogenesis 26:2116–2122

    Article  CAS  PubMed  Google Scholar 

  • Smith WL, DeWitt DL, Garavito RM (2000) Cyclooxygenases: structural, cellular, and molecular biology. Ann Rev Biochem 69:145–182

    Article  CAS  PubMed  Google Scholar 

  • Subbaramaiah K, Dannenberg AJ (2003) Cyclooxygenase 2: a molecular target for cancer prevention and treatment. Trends Pharmacol Sci 24:96–102

    Article  CAS  PubMed  Google Scholar 

  • Sung YM, He G, Fischer SM (2005) Lack of expression of the EP2 but not EP3 receptor for prostaglandin E2 results in suppression of skin tumor development. Cancer Res 65:9304–9311

    Article  CAS  PubMed  Google Scholar 

  • Sung YM, He G, Hwang DH et al. (2006) Overexpression of the prostaglandin E2 receptor EP2 results in enhanced skin tumor development. Oncogene 25:5507–5516

    Article  CAS  PubMed  Google Scholar 

  • Tang Q, Chen W, Gonzales MS et al. (2001) Role of cyclic AMP responsive element in the UVB induction of cyclooxygenase-2 transcription in human keratinocytes. Oncogene 20:5164–5172

    Article  CAS  PubMed  Google Scholar 

  • Thompson EJ, Gupta A, Vielhauer GA et al. (2001) The growth of malignant keratinocytes depends on signaling though the PGE2 receptor EP1. Neoplasia 3:402–410

    Article  CAS  PubMed  Google Scholar 

  • Tiano HF, Loftin CD, Akunda J et al. (2002) Deficiency of either cyclooxygenase (COX)-1 or COX-2 alters epidermal differentiation and reduces mouse skin tumorigenesis. Cancer Res 62:3395–3401

    CAS  PubMed  Google Scholar 

  • Tober KL, Wilgus TA, Kusewitt DF et al. (2006) Importance of the EP1 receptor in cutaneous UVB-induced inflammation and tumor development. J Invest Dermatol 126:205–211

    Article  CAS  PubMed  Google Scholar 

  • Trifan OC, Hla T (2003) Cyclooxygenase-2 modulates cellular growth and promotes tum­origenesis. J Cell Mol Med 7:207–222

    Article  CAS  PubMed  Google Scholar 

  • Tripp CS, Blomme EAG, Chinn KS et al. (2003) Epidermal COX-2 induction following ultraviolet irradiation: suggested mechanism for the role of COX-2 inhibition in photoprotection. J Invest Dermatol 121:853–861

    Article  CAS  PubMed  Google Scholar 

  • Verma AK, Ashendel CL, Boutwell RK (1980) Inhibition by prostaglandin synthesis inhibitors of the induction of epidermal ornithine decarboxylase activity, the accumulation of prostaglandins, and tumor promotion caused by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res 40:308–315

    CAS  PubMed  Google Scholar 

  • Wilgus TA, Koki AT, Zweifel BS et al. (2003a) Inhibition of cutaneous ultraviolet B-mediated inflammation and tumor formation with topical celecoxib treatment. Mol Carcinog 38:49–58

    Article  CAS  PubMed  Google Scholar 

  • Wilgus TA, Koki AT, Zweifel BS et al. (2003b) Chemotherapeutic efficacy of topical celecoxib in a murine model of ultraviolet light B-induced skin cancer. Mol Carcinog 38:33–39

    Article  CAS  PubMed  Google Scholar 

  • Wirth LJ, Haddad RI, Lindeman NI et al. (2005) Phase I study of gefitinib plus celecoxib in recurrent or metastatic squamous cell carcinoma of the head and neck. J Clin Oncol 23:6876–6981

    Article  Google Scholar 

  • Wirth LJ, Krane JF, Li Y et al. (2008) A pilot surrogate endpoint biomarker study of celecoxib in oral premalignant lesions. Cancer Prev Res 1:339–348

    Article  Google Scholar 

  • Yamamoto K, Arakawa T, Ueda N et al. (1995) Transcriptional roles of nuclear factor κB and nuclear factor-interleukin-6 in the tumor necrosis factor α-dependent induction of ­cyclooxygenase-2 in MC3T3-E1 cells. J Biol Chem 270:31315–31320

    Article  CAS  PubMed  Google Scholar 

  • Yona D, Arber N (2006) Coxibs and cancer prevention. J Cardiovasc Pharmacol 47:S76–S81

    Article  CAS  PubMed  Google Scholar 

  • Yu H-P, Xu S-Q, Liu L et al. (2003) Cyclooxygenase-2 expression in squamous dysplasia and squamous cell carcinoma of the esophagus. Cancer Lett 198:193–201

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Jiang L, Sun Q et al. (2007) Prostaglandin E2 enhances mitogen-activated protein kinase/Erk pathway in human cholangiocarcinoma cells: involvement of EP1 receptor, calcium and EGF receptors signaling. Mol Cell Biochem 305:19–26

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann KC, Sarbia M, Weber A-A et al. (1999) Cyclooxygenase-2 expression in human esophageal carcinoma. Cancer Res 59:198–204

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We apologize to all those researchers whose important work might not have been acknowledged due to editorial constraints. This work was supported by the following grants from NIH: CA100140, ES07784 and CA16672.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan M. Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rundhaug, J.E., Fischer, S.M. (2011). Cyclooxygenase-2 Signaling in Squamous Cell Carcinomas. In: Glick, A., Waes, C. (eds) Signaling Pathways in Squamous Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7203-3_6

Download citation

Publish with us

Policies and ethics