Skip to main content

Drosophila STAR Proteins

What Can Be Learned from Flies?

  • Chapter
Post-Transcriptional Regulation by STAR Proteins

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 693))

Abstract

Signal transduction and activation of RNA (STAR) family of RNA binding proteins are highly conserved through evolution indicating their core role during development, as well as in adult life. This chapter focuses on two Drosophila STAR proteins: Held Out Wing (HOW), the ortholog of mammalian Quaking (QKI) and Kep1, one of the four orthologs of mammalian Sam 68. I will emphasize the orthologs similarities in splicing pattern, functions and mode of actions of the two proteins relying on recent and earlier findings in the field. I will start with general description of the STAR proteins in Drosophila with an emphasis on their specific expression patterns.

Post-Transcriptional Regulation by STAR Proteins: Control of RNA Metabolism in Development and Disease, edited by Talila Volk and Karen Artzt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gamberi C, Johnstone O, Lasko P. Drosophila RNA binding proteins. Int Rev Cytol 2006; 248:43–139.

    Article  CAS  PubMed  Google Scholar 

  2. Di Fruscio M et al. Kep1 interacts genetically with dredd/caspase-8 and kep1 mutants alter the balance of dredd isoforms. Proc Natl Acad Sci USA 2003; 100:1814–1819.

    Article  PubMed  Google Scholar 

  3. Ohno G, Hagiwara M, Kuroyanagi H. STAR family RNA-binding protein ASD-2 regulates developmental switching of mutually exclusive alternative splicing in vivo. Genes Dev 2008; 22:360–374.

    Article  CAS  PubMed  Google Scholar 

  4. Nabel-Rosen H, Volohonsky G, Reuveny A et al. Two isoforms of the Drosophila RNA binding protein, how, act in opposing directions to regulate tendon cell differentiation. Dev Cell 2002; 2:183–193.

    Article  CAS  PubMed  Google Scholar 

  5. Nabel-Rosen H, Dorevitch N, Reuveny A et al. The balance between two isoforms of the Drosophila RNA-binding protein how controls tendon cell differentiation. Mol Cell 1999; 4:573–584.

    Article  CAS  PubMed  Google Scholar 

  6. Galarneau A, Richard S. Target RNA motif and target mRNAs of the Quaking STAR protein. Nat Struct Mol Biol 2005; 12:691–698.

    Article  CAS  PubMed  Google Scholar 

  7. Ryder SP, Frater LA, Abramovitz DL et al. RNA target specificity of the STAR/GSG domain post-transcriptional regulatory protein GLD-1. Nat Struct Mol Biol 2004; 11:20–28.

    Article  CAS  PubMed  Google Scholar 

  8. Israeli D, Nir R, Volk T. Dissection of the target specificity of the RNA-binding protein HOW reveals dpp mRNA as a novel HOW target. Development 2007; 134:2107–2114.

    Article  CAS  PubMed  Google Scholar 

  9. Zaffran S, Astier M, Gratecos D et al. The held out wings (how) Drosophila gene encodes a putative RNA-binding protein involved in the control of muscular and cardiac activity. Development 1997; 124:2087–2098.

    CAS  PubMed  Google Scholar 

  10. Lo PC, Frasch M. A novel KH-domain protein mediates cell adhesion processes in Drosophila. Dev Biol 1997; 190:241–256.

    Article  CAS  PubMed  Google Scholar 

  11. Baehrecke EH. who encodes a KH RNA binding protein that functions in muscle development. Development 1997; 124:1323–1332.

    CAS  PubMed  Google Scholar 

  12. Volk T. Singling out Drosophila tendon cells: a dialogue between two distinct cell types. Trends Genet 1999; 15:448–453.

    Article  CAS  PubMed  Google Scholar 

  13. Frommer G, Vorbruggen G, Pasca G et al. Epidermal egr-like zinc finger protein of Drosophila participates in myotube guidance. EMBO J 1996; 15:1642–1649.

    CAS  PubMed  Google Scholar 

  14. Volohonsky G, Edenfeld G, Klambt C et al. Muscle-dependent maturation of tendon cells is induced by post-transcriptional regulation of stripeA. Development 2007; 134:347–356.

    Article  CAS  PubMed  Google Scholar 

  15. Yarnitzky T, Min L, Volk T. The Drosophila neuregulin homolog Vein mediates inductive interactions between myotubes and their epidermal attachment cells. Genes Dev 1997; 11:2691–2700.

    Article  CAS  PubMed  Google Scholar 

  16. Volk T, Israeli D, Nir R et al. Tissue development and RNA control: “HOW” is it coordinated? Trends Genet 2008; 24:94–101.

    Article  CAS  PubMed  Google Scholar 

  17. Cox RD et al. Contrasting effects of ENU induced embryonic lethal mutations of the quaking gene. Genomics 1999; 57:333–341.

    Article  CAS  PubMed  Google Scholar 

  18. Chen Y, Tian D, Ku L et al. The selective RNA-binding protein quaking I (QKI) is necessary and sufficient for promoting oligodendroglia differentiation. J Biol Chem 2007; 282:23553–23560.

    Article  CAS  PubMed  Google Scholar 

  19. Hardy RJ. Molecular defects in the dysmyelinating mutant quaking. J Neurosci Res 1998; 51:417–422.

    Article  CAS  PubMed  Google Scholar 

  20. Furlong EE, Andersen EC, Null B et al. Patterns of gene expression during Drosophila mesoderm development. Science 2001; 293:1629–1633.

    Article  CAS  PubMed  Google Scholar 

  21. Nabel-Rosen H, Toledano-Katchalski H, Volohonsky G et al. Cell divisions in the drosophila embryonic mesoderm are repressed via post-transcriptional regulation of string/cdc25 by HOW. Curr Biol 2005; 15:295–302.

    Article  CAS  PubMed  Google Scholar 

  22. Toledano-Katchalski H, Nir R, Volohonsky G et al. Post-transcriptional repression of the Drosophila midkine and pleiotrophin homolog miple by HOW is essential for correct mesoderm spreading. Development 2007; 134:3473–3481.

    Article  CAS  PubMed  Google Scholar 

  23. Englund C, Birve A, Falileeva L et al. Miple1 and miple2 encode a family of MK/PTN homologues in Drosophila melanogaster. Dev Genes Evol 2006; 216:10–18.

    Article  CAS  PubMed  Google Scholar 

  24. Reuveny A, Elhanany H, Volk T. Enhanced sensitivity of midline glial cells to apoptosis is achieved by HOW(L)-dependent repression of Diap1. Mech Dev 2009; 126:30–41.

    Article  CAS  PubMed  Google Scholar 

  25. Stork T et al. Organization and function of the blood-brain barrier in Drosophila. J Neurosci 2008; 28:587–597.

    Article  CAS  PubMed  Google Scholar 

  26. Edenfeld G et al. The splicing factor crooked neck associates with the RNA-binding protein HOW to control glial cell maturation in Drosophila. Neuron 2006; 52:969–980.

    Article  CAS  PubMed  Google Scholar 

  27. Bhat MA et al. Axon-glia interactions and the domain organization of myelinated axons requires neurexin IV/Caspr/Paranodin. Neuron 2001; 30:369–383.

    Article  CAS  PubMed  Google Scholar 

  28. Stork T et al. Drosophila Neurexin IV stabilizes neuron-glia interactions at the CNS midline by binding to Wrapper. Development 2009; 136:1251–1261.

    Article  CAS  PubMed  Google Scholar 

  29. Wu JI, Reed RB, Grabowski PJ et al. Function of quaking in myelination: regulation of alternative splicing. Proc Natl Acad Sci USA 2002; 99:4233–4238.

    Article  CAS  PubMed  Google Scholar 

  30. Medioni C, Astier M, Zmojdzian M et al. Genetic control of cell morphogenesis during Drosophila melanogaster cardiac tube formation. J Cell Biol 2008; 182:249–261.

    Article  CAS  PubMed  Google Scholar 

  31. Grosshans J, Wieschaus E. A genetic link between morphogenesis and cell division during formation of the ventral furrow in Drosophila. Cell 2000; 101:523–531.

    Article  CAS  PubMed  Google Scholar 

  32. Edgar BA, Lehman DA, O’Farrell PH. Transcriptional regulation of string (cdc25): a link between developmental programming and the cell cycle. Development 1994; 120:3131–3143.

    CAS  PubMed  Google Scholar 

  33. Lehner CF. Pulling the string: cell cycle regulation during Drosophila development. Semin Cell Biol 1991; 2:223–231.

    CAS  PubMed  Google Scholar 

  34. Xu D et al. Genetic control of programmed cell death (apoptosis) in Drosophila. Fly (Austin) 2009; 3:78–90.

    CAS  Google Scholar 

  35. Steller H. Regulation of apoptosis in Drosophila. Cell Death Differ 2008; 15:1132–1138.

    Article  CAS  PubMed  Google Scholar 

  36. Dotto GP, Silke J. More than cell death: caspases and caspase inhibitors on the move. Dev Cell 2004; 7:2–3.

    Article  CAS  PubMed  Google Scholar 

  37. Pilotte J, Larocque D, Richard S. Nuclear translocation controlled by alternatively spliced isoforms inactivates the QUAKING apoptotic inducer. Genes Dev 2001; 15:845–858.

    Article  CAS  PubMed  Google Scholar 

  38. Taylor SJ, Resnick RJ, Shalloway D. Sam68 exerts separable effects on cell cycle progression and apoptosis. BMC Cell Biol 5, 5 (2004).

    Article  PubMed  Google Scholar 

  39. Polotskaia A et al. Regulation of arginine methylation in endothelial cells: role in premature senescence and apoptosis. Cell Cycle 2007; 6:2524–2530.

    Article  CAS  PubMed  Google Scholar 

  40. Granderath S, Klambt C. Glia development in the embryonic CNS of Drosophila. Curr Opin Neurobiol 1999; 9:531–536.

    Article  CAS  PubMed  Google Scholar 

  41. Jacobs JR. The midline glia of Drosophila: a molecular genetic model for the developmental functions of glia. Prog Neurobiol 2000; 62:475–508.

    Article  CAS  PubMed  Google Scholar 

  42. Monk AC, Siddall NA, Volk T et al. HOW is required for stem cell maintenance in the Drosophila testis and for the onset of transit-amplifying divisions. Cell Stem Cell 2010; 6:348–360.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Volk, T. (2010). Drosophila STAR Proteins. In: Volk, T., Artzt, K. (eds) Post-Transcriptional Regulation by STAR Proteins. Advances in Experimental Medicine and Biology, vol 693. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7005-3_7

Download citation

Publish with us

Policies and ethics