Skip to main content

Adipose Tissue Development, Structure and Function

  • Chapter
  • First Online:
Metabolic Basis of Obesity

Abstract

One of the earliest reports of adipose tissue was made by the Swiss naturalist Conrad Gessner in 1551 (as translated by Cannon and Nedergaard [1]). However, the notion that adipose tissue was composed of living lipid-laden cells was hotly debated [2]. The past decades have seen a remarkable increase in our understanding of adipose biology and obesity (Fig.1). This trend is undoubtedly driven by the global epidemic of obesity and associated diseases. Adipose tissue is designed to function as the main long-term fuel-handling organ, and actively controls energy homeostasis. Adipose tissue stores excess fuel in the form of triglycerides and relinquishes these reserves during periods of nutritional deprivation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cannon, B., & Nedergaard, J. (2008). Developmental biology: Neither fat nor flesh. Nature, 454(7207), 947–948.

    Article  PubMed  CAS  Google Scholar 

  2. Beale, L. (1871). The nucleus of adipose tissue. Nature, 4, 367–367.

    Article  Google Scholar 

  3. Cao, H., Gerhold, K., Mayers, J. R., Wiest, M. M., Watkins, S. M., & Hotamisligil, G. S. (2008). Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134(6), 933–944.

    Article  PubMed  CAS  Google Scholar 

  4. Kissebah, A. H., & Krakower, G. R (1994). Regional adiposity and morbidity. Physiological Review 74(4), 761–811.

    CAS  Google Scholar 

  5. Weisberg, S. P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R. L., & Ferrante, A. W., Jr. (2003). Obesity is associated with macrophage accumulation in adipose tissue. Journal of Clinical Investigation, 112(12), 1796–1808.

    PubMed  CAS  Google Scholar 

  6. Xu, H., Barnes, G. T., Yang, Q., et al. (2003). Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. Journal of Clinical Investigation, 112(12), 1821–1830.

    PubMed  CAS  Google Scholar 

  7. Virtue, S., & Vidal-Puig, A. (2008). It’s not how fat you are, it’s what you do with it that counts. PLoS Biology, 6(9), e237.

    Article  PubMed  CAS  Google Scholar 

  8. Castellot, J. J., Jr., Karnovsky, M. J., & Spiegelman, B. M. (1982). Differentiation-dependent stimulation of neovascularization and endothelial cell chemotaxis by 3T3 adipocytes. Proceedings of the National Academy of Sciences of the United States of America 79(18), 5597–5601.

    Article  PubMed  Google Scholar 

  9. Rajashekhar, G., Traktuev, D. O., Roell, W. C., et al. (2008). IFATS collection: Adipose stromal cell differentiation is reduced by endothelial cell contact and paracrine communication: role of canonical Wnt signaling. Stem Cells 26(10), 2674–2681.

    Article  PubMed  Google Scholar 

  10. Cinti, S., Mitchell G., Barbatelli, Get al.., (2005). Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. Journal of Lipid Research46(11), 2347–2355.

    Article  PubMed  CAS  Google Scholar 

  11. Lumeng, C. N., Bodzin, J. L., & Saltiel, A. R. (2007). Obesity induces a phenotypic switch in adipose tissue macrophage polarization. Journal of Clinical Investigation 117(1), 175–184.

    Article  PubMed  CAS  Google Scholar 

  12. Heilbronn, L. K., & Campbell, L. V. (2008). Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity. Current Pharmaceutical Design 14(12), 1225–1230.

    Article  PubMed  CAS  Google Scholar 

  13. Boschmann, M., Engeli, S., Adams, F., et al. (2005). Adipose tissue metabolism and CD11b expression on monocytes in obese hypertensives. Hypertension 46(1), 130–136.

    PubMed  CAS  Google Scholar 

  14. Curat, C. A., Miranville, A., Sengenes, C., et al. (2004). From blood monocytes to adipose tissue-resident macrophages: Induction of diapedesis by human mature adipocytes. Diabetes 53(5), 1285–1292.

    Article  PubMed  CAS  Google Scholar 

  15. Bouloumie, A., Casteilla, L., & Lafontan, M. (2008). Adipose tissue lymphocytes and macrophages in obesity and insulin resistance: Makers or markers, and which comes first? Arteriosclerosis, Thrombosis, and Vascular Biology 28(7), 1211–1213.

    Article  PubMed  CAS  Google Scholar 

  16. Xu, Y., Malladi, P., Wagner, D. R., & Longaker, M. T. (2005). Adipose-derived mesenchymal cells as a potential cell source for skeletal regeneration. Current Opinion in Molecular Therapy 7(4), 300–305.

    Google Scholar 

  17. Kang, S. K., Putnam, L. A., Ylostalo, J., et al. (2004). Neurogenesis of Rhesus adipose stromal cells. Journal of Cell Science 117(Pt 18), 4289–4299.

    Article  PubMed  CAS  Google Scholar 

  18. Moon, M. H., Kim, S. Y., Kim, Y. J., et al. (2006). Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cellular Physiology and Biochemistry, 17(5–6), 279–290.

    Article  PubMed  CAS  Google Scholar 

  19. Charriere, G. M., Cousin, B., Arnaud, Eet al.., (2006). Macrophage characteristics of stem cells revealed by transcriptome profiling. Experimental Cell Research312(17):3205–3214.

    Article  PubMed  CAS  Google Scholar 

  20. Matsubara, Y., Saito, E., Suzuki, H., Watanabe, N., Murata, M., & Ikeda Y (2009). Generation of megakaryocytes and platelets from human subcutaneous adipose tissues. Biochemical and Biophysical Research Communications 378(4), 716–720.

    Article  PubMed  CAS  Google Scholar 

  21. Charriere, G., Cousin, B., Arnaud E, et al. (2003). Preadipocyte conversion to macrophage. Evidence of plasticity. Journal of Biological Chemistry 278(11), 9850–9855.

    Article  PubMed  CAS  Google Scholar 

  22. Kim, C. S., Kawada, T., Yoo, H., Kwon, B. S., & Yu, R. (2003). Macrophage inflammatory protein-related protein-2, a novel CC chemokine, can regulate preadipocyte migration and adipocyte differentiation. FEBS Letters, 548(1–3), 125–130.

    Article  PubMed  CAS  Google Scholar 

  23. Lanotte, M., Metcalf, D., & Dexter, T. M. (1982). Production of monocyte/macrophage colony-stimulating factor by preadipocyte cell lines derived from murine marrow stroma. Journal of Cell Physiology, 112(1), 123–127.

    Article  CAS  Google Scholar 

  24. Molgat, A. S., Gagnon, A., & Sorisky, A. (2009). Preadipocyte apoptosis is prevented by macrophage-conditioned medium in a PDGF-dependent manner. American Journal of Physiology. Cell Physiology 296(4), C757–C765.

    Article  PubMed  CAS  Google Scholar 

  25. Hemmrich, K., von Heimburg, D., Rendchen, R., Di Bartolo, C., Milella, E., & Pallua, N. (2005). Implantation of preadipocyte-loaded hyaluronic acid-based scaffolds into nude mice to evaluate potential for soft tissue engineering. Biomaterials 26(34), 7025–7037.

    Article  PubMed  CAS  Google Scholar 

  26. Hong, L., Peptan, A.I, Colpan, A., & Daw, J. L. (2006). Adipose tissue engineering by human adipose-derived stromal cells. Cells, Tissues, Organs 183(3), 133–140.

    Article  PubMed  CAS  Google Scholar 

  27. Farooqi, S.I, & O’Rahilly, S. (2007). Genetic factors in human obesity. Obesity Reviews 8­(Suppl 1), 37–40.

    Article  PubMed  Google Scholar 

  28. Lee, Y. S. (2009). The role of genes in the current obesity epidemic. Annals of the Academy of Medicine, Singapore 38(1), 45–43.

    PubMed  Google Scholar 

  29. Stoger R. (2008). Epigenetics and obesity. Pharmacogenomics 9(12), 1851–1860.

    Article  PubMed  CAS  Google Scholar 

  30. Cottrell, E. C., & Ozanne, S. E. (2008). Early life programming of obesity and metabolic disease. Physiology and Behavior 94(1), 17–28.

    Article  PubMed  CAS  Google Scholar 

  31. Vickers, M. H., Krechowec, S. O., & Breier, B. H. (2007). Is later obesity programmed in utero? Current Drug Targets 8(8), 923–934.

    Article  PubMed  CAS  Google Scholar 

  32. Avram, M. M., Avram, A. S., & James, W. D. (2007). Subcutaneous fat in normal and diseased states 3. Adipogenesis: From stem cell to fat cell. Journal of the American Academy of Dermatology, 56(3), 472–492.

    Article  PubMed  Google Scholar 

  33. Farmer, S. R.(2006). Transcriptional control of adipocyte formation. Cell Metabolism,­­­ ­­4(4), 263–273.

    Article  PubMed  CAS  Google Scholar 

  34. Gesta, S., Tseng, Y. H., & Kahn, C. R. (2007). Developmental origin of fat: Tracking obesity to its source. Cell 131(2), 242–256.

    Article  PubMed  CAS  Google Scholar 

  35. Lefterova, M. I., & Lazar, M. A. (2009). New developments in adipogenesis. Trends in Endocrinology and Metabolism, 20(3), 107–114.

    Article  PubMed  CAS  Google Scholar 

  36. Rosen, E. D., & MacDougald, O. A. (2006). Adipocyte differentiation from the inside out. Nature Reviews. Molecular Cell Biology 7(12), 885–896.

    Article  PubMed  CAS  Google Scholar 

  37. Tontonoz, P., & Spiegelman, B. M. (2008). Fat and beyond: The diverse biology of PPARgamma. Annual Review of Biochemistry, 77, 289–312.

    Article  PubMed  CAS  Google Scholar 

  38. Darlington, G. J., Ross, S. E., & MacDougald, O. A. (1998). The role of C/EBP genes in adipocyte differentiation. Journal of Biological Chemistry, 273(46), 30057–30060.

    Article  PubMed  CAS  Google Scholar 

  39. Spalding, K. L., Arner, E., Westermark, P. O., et al. (2008). Dynamics of fat cell turnover in humans. Nature, 453(7196), 783–787.

    Article  PubMed  CAS  Google Scholar 

  40. Christodoulides, C., Lagathu, C., Sethi, J. K., & Vidal-Puig, A. (2009). Adipogenesis and WNT signalling. Trends in Endocrinology and Metabolism, 20(1), 16–24.

    Article  PubMed  CAS  Google Scholar 

  41. Prestwich, T. C., & Macdougald, O. A. (2007). Wnt/beta-catenin signaling in adipogenesis and metabolism. Current Opinion in Cell Biology, 19(6), 612–617.

    Article  PubMed  CAS  Google Scholar 

  42. Lagathu, C., Christodoulides, C., Virtue, S., et al. (2009). Dact1, a nutritionally regulated preadipocyte gene, controls adipogenesis by coordinating the Wnt/beta-catenin signaling network. Diabetes, 58(3), 609–619.

    Article  PubMed  CAS  Google Scholar 

  43. Anagnostou, S. H., & Shepherd, P. R. (2008). Glucose induces an autocrine activation of the Wnt/beta-catenin pathway in macrophage cell lines. Biochemistry Journal 416(2), 211–218.

    Article  CAS  Google Scholar 

  44. Kim, J. Y., van de Wall, E., Laplante, M., et al. (2007). Obesity-associated improvements in metabolic profile through expansion of adipose tissue. Journal of Clinical Investigatin, 117(9), 2621–2637.

    Article  CAS  Google Scholar 

  45. Medina-Gomez, G., Gray, S. L., Yetukuri, Let al.., (2007). PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism. PLoS Genetics, 3(4), e64.

    Article  PubMed  CAS  Google Scholar 

  46. Permana, P. A., Nair, S., Lee, Y. H., Luczy-Bachman, G., Vozarova De Courten, B., & Tataranni, P. A. (2004). Subcutaneous abdominal preadipocyte differentiation in vitro inversely correlates with central obesity. American Journal of Physiology. Endocrinology and Metabolism 286(6), E958–E962.

    Article  PubMed  CAS  Google Scholar 

  47. Tchoukalova, Y., Koutsari, C., & Jensen, M. (2007). Committed subcutaneous preadipocytes are reduced in human obesity. Diabetologia, 50(1), 151–157.

    Article  PubMed  CAS  Google Scholar 

  48. Yang, X., Jansson, P. A., Nagaev, I., et al. (2004). Evidence of impaired adipogenesis in ­insulin resistance. Biochemical and Biophysical Research Communication, 317(4), 1045–1051.

    Article  CAS  Google Scholar 

  49. Cawthorn, W. P., Heyd, F., Hegyi, K., & Sethi, J. K. (2007). Tumour necrosis factor-alpha inhibits adipogenesis via a beta-catenin/TCF4(TCF7L2)-dependent pathway. Cell Death and Differentiation, 14(7), 1361–1373.

    Article  PubMed  CAS  Google Scholar 

  50. Isakson, P., Hammarstedt, A., Gustafson, B., & Smith, U. (2009). Impaired preadipocyte differentiation in human abdominal obesity: role of Wnt, tumor necrosis factor-alpha, and inflammation. Diabetes, 58(7), 1550–1557.

    Article  PubMed  CAS  Google Scholar 

  51. Cawthorn, W. P., & Sethi, J. K. (2008). TNF-alpha and adipocyte biology. FEBS Lett 582(1), 117–131.

    Article  PubMed  CAS  Google Scholar 

  52. Rodeheffer, M. S., Birsoy, K., & Friedman, J. M. (2008). Identification of white adipocyte progenitor cells in vivo. Cell 135(2), 240–249.

    Article  PubMed  CAS  Google Scholar 

  53. Cinti, S., Cigolini, M, Bosello, O., & Bjorntorp, P. (1984). A morphological study of the adipocyte precursor. Journal of Submicroscopic Cytology and Pathology, 16(2), 243–251.

    CAS  Google Scholar 

  54. Rupnick, M. A., Panigrahy, D., Zhang, C. Y., et al. (2002). Adipose tissue mass can be regulated through the vasculature. Proceedings of the National Academy of Sciences of the United States of America, 99(16), 10730–10735.

    Article  PubMed  CAS  Google Scholar 

  55. Tang, W., Zeve, D., Suh, J. M., et al. (2008). White fat progenitor cells reside in the adipose vasculature. Science 322(5901), 583–586.

    Article  PubMed  CAS  Google Scholar 

  56. Kawaguchi, N., Toriyama, K., Nicodemou-Lena, E., Inou, K., Torii, S., & Kitagawa, Y. (1998). De novo adipogenesis in mice at the site of injection of basement membrane and basic fibroblast growth factor. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 1062–1066.

    Article  PubMed  CAS  Google Scholar 

  57. Tchkonia, T., Lenburg, M., Thomou, T., et al. (2007). Identification of depot-specific human fat cell progenitors through distinct expression profiles and developmental gene patterns. American Journal of Physiology. Endocrinology and Metabolism 292(1), E298–E307.

    Article  PubMed  CAS  Google Scholar 

  58. Kolonin, M. G., Saha, P. K., Chan, L., Pasqualini, R., & Arap, W. (2004). Reversal of obesity by targeted ablation of adipose tissue. Nature Medicine, 10(6), 625–632.

    Article  PubMed  CAS  Google Scholar 

  59. Cannon, B., & Nedergaard, J. (2004). Brown adipose tissue: function and physiological significance. Physiological Review, 84(1), 277–359.

    Article  CAS  Google Scholar 

  60. Rothwell, N. J., & Stock, M. J. (1979). A role for brown adipose tissue in diet-induced thermogenesis. Nature, 281(5726), 31–35.

    Article  PubMed  CAS  Google Scholar 

  61. Tseng, Y. H., Kriauciunas, K. M., Kokkotou, E., & Kahn, C. R. (2004). Differential roles of insulin receptor substrates in brown adipocyte differentiation. Molecular and Cell Biology, 24(5), 1918–1929.

    Article  CAS  Google Scholar 

  62. Longo, K. A., Wright, W. S., Kang, S., et al. (2004). Wnt10b inhibits development of white and brown adipose tissues. Journal of Biological Chemistry, 279(34), 35503–35509.

    Article  PubMed  CAS  Google Scholar 

  63. Fu, L., John, L. M., Adams, S. H., et al. (2004). Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology 145(6), 2594–2603.

    Article  PubMed  CAS  Google Scholar 

  64. Tomlinson, E., Fu, L., John, L., et al. (2002). Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology 143(5), 1741–1747.

    Article  PubMed  CAS  Google Scholar 

  65. Tseng, Y. H., Kokkotou, E., Schulz, T. Jet al.., (2008). New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454(7207), 1000–1004.

    Article  PubMed  CAS  Google Scholar 

  66. Kajimura, S., Seale, P., Tomaru, T., et al. (2008). Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes Development, 22(10), 1397–1409.

    Article  PubMed  CAS  Google Scholar 

  67. Seale, P., Bjork, B., Yang, W., et al. (2008). PRDM16 controls a brown fat/skeletal muscle switch. Nature 454(7207), 961–967.

    Article  PubMed  CAS  Google Scholar 

  68. Seale, P., Kajimura, S., Yang, W., et al. (2007). Transcriptional control of brown fat determination by PRDM16. Cell Metabolism, 6(1), 38–54.

    Article  PubMed  CAS  Google Scholar 

  69. Seale, P., Kajimura, S., Spiegelman, B. M. (2009). Transcriptional control of brown adipocyte development and physiological function – of mice and men. Genes Development, 23(7), 788–797.

    Article  PubMed  CAS  Google Scholar 

  70. Karamanlidis, G., Karamitri, A., Docherty, K., Hazlerigg, D. G., & Lomax, M. A. (2007).­ C/EBPbeta reprograms white 3T3-L1 preadipocytes to a Brown adipocyte pattern of gene expression. Journal of Biological Chemistry, 282(34), 24660–24669.

    Article  PubMed  CAS  Google Scholar 

  71. Fruhbeck, G., Sesma, P., & Burrell, M. A. (2009). PRDM16: the interconvertible adipo-myocyte switch. Trends in Cellular Biology, 19(4), 141–146.

    Article  CAS  Google Scholar 

  72. Almind, K., Manieri, M., Sivitz, W. I., Cinti, S., & Kahn, C. R. (2007). Ectopic brown adipose tissue in muscle provides a mechanism for differences in risk of metabolic syndrome in mice. Proceedings of the National Academy of Sciences of the United States of America, 104(7), 2366–2371.

    Article  PubMed  CAS  Google Scholar 

  73. van Marken Lichtenbelt, W. D., Vanhommerig, J. W., Smulders, N. M., et al. (2009). Cold-activated brown adipose tissue in healthy men. New England Journal of Medicine 360(15), 1500–1508.

    Article  PubMed  CAS  Google Scholar 

  74. Cohade, C., Osman, M., Pannu, H. K., & Wahl, R. L. (2003). Uptake in supraclavicular area fat (“USA-Fat”): description on 18F-FDG PET/CT. Journal of Nuclear Medicine, 44(2), 170–176.

    PubMed  CAS  Google Scholar 

  75. Hany, T. F., Gharehpapagh, E., Kamel, E. M., Buck, A., Himms-Hagen, J., & von Schulthess, G. K. (2002). Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. European Journal of Nuclear Medicine and Molecular Imaging, 29(10), 1393–1398.

    Article  PubMed  Google Scholar 

  76. Nedergaard, J., Bengtsson, T., & Cannon, B. (2007). Unexpected evidence for active brown adipose tissue in adult humans. American Journal of Physiology. Endocrinology and Metabolism, 293(2), E444–E452.

    Article  PubMed  CAS  Google Scholar 

  77. Cypess, A. M., Lehman, S., Williams, G., et al. (2009). Identification and importance of brown adipose tissue in adult humans. New England Journal of Medicine, 360(15), 1509–1517.

    Article  PubMed  CAS  Google Scholar 

  78. Virtanen, K. A., Lidell, M. E., Orava, J., et al. (2009). Functional brown adipose tissue in healthy adults. New England Journal of Medicine, 360(15), 1518–1525.

    Article  PubMed  CAS  Google Scholar 

  79. Heaton, J. M. (1972). The distribution of brown adipose tissue in the human. Journal of Anatomy, 112(Pt 1), 35–39.

    PubMed  CAS  Google Scholar 

  80. Marchand, P. J., & Walker, L. (1996). Life in the cold: An introduction to winter ecology ­(3rd ed.). Hanover, NH: University Press of New England.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaswinder K. Sethi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sethi, J.K., Vidal-Puig, A.J. (2011). Adipose Tissue Development, Structure and Function. In: Ahima, R. (eds) Metabolic Basis of Obesity. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1607-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1607-5_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1606-8

  • Online ISBN: 978-1-4419-1607-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics