Skip to main content

A Variation Tolerant Combinational Circuit Design Approach Using Parallel Gates

  • Chapter
  • First Online:
Analysis and Design of Resilient VLSI Circuits

Abstract

A process variation tolerant design approach for combinational circuits is presented in this chapter, which exploits the fact that random variations can cause a significant mismatch in two identical devices placed next to each other on the die. In this approach, a large gate is implemented using an appropriate number ( > 1) of smaller gates, whose inputs and outputs are connected to each other in parallel. This parallel connection of smaller gates to form a larger gate is referred to as a parallel gate. Since the L and V T variations are largely random and have independent variations in smaller gates, the variation tolerance of the parallel gate is improved. The parallel gates are implemented as single layout cells. By careful diffusion sharing in the layout of the parallel gates, it is possible to reduce the input and output capacitance of the gates, thereby improving the nominal circuit delay as well. An algorithm is also developed to selectively replace critical gates in a circuit by their parallel counterparts, to improve the variation tolerance of the circuit. Monte-Carlo simulations demonstrate that this process variation tolerant design approach achieves significant improvements in circuit level variation tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Chang and S. S. Sapatnekar, “Statistical timing analysis under spatial correlations,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 9, pp. 1467–1482, Sept. 2005.

    Google Scholar 

  2. C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, and S. Narayan, “First-order incremental block-based statistical timing analysis,” in Proc. of the Design Automation Conf., 2004, pp. 331–336.

    Google Scholar 

  3. A. Agarwal, D. Blaauw, and V. Zolotov, “Statistical timing analysis for intra-die process variations with spatial correlations,” in Proc. of the Intl. Conf. on Computer-Aided Design, Nov. 2003, pp. 900–907.

    Google Scholar 

  4. A. Agarwal, D. Blaauw, V. Zolotov, and S. Vrudhula, “Statistical timing analysis using bounds,” in Proc. of the Conf. on Design Automation and Test in Europe, March.

    Google Scholar 

  5. O. Neiroukh and X. Song, “Improving the process-variation tolerance of digital circuits using gate sizing and statistical techniques,” in Proc. of the Conf. on Design Automation and Test in Europe, 2005, pp. 294–299.

    Google Scholar 

  6. J. Tschanz, K. Bowman, and V. De, “Variation-tolerant circuits: Circuit solutions and techniques,” in Proc. of the Design Automation Conf., June 2005, pp. 762–763.

    Google Scholar 

  7. G. Nabaa and F. N. Najm, “Minimization of delay sensitivity to process induced voltage threshold variations,” in Proc. of the IEEE-NEWCAS Conf., June 2005, pp. 171–174.

    Google Scholar 

  8. S. Bhunia, S. Mukhopadhyay, and K. Roy, “Process variations and process-tolerant design,” in Proc. of the Intl. Conf. on VLSI Design, Jan. 2007, pp. 699–704.

    Google Scholar 

  9. A. Gattiker, M. Bhushan, and M. B. Ketchen, “Data analysis techniques for CMOS technology characterization and product impact assessment,” in Proc. of the Intl. Test Conf., 2006, pp. 1–10.

    Google Scholar 

  10. K. Agarwal, F. Liu, C. McDowell, S. Nassif, K. Nowka, M. Palmer, D. Acharyya, and J. Plusquellic, “A test structure for characterizing local device mismatches,” in Proc. of the Symposium on VLSI Circuits, 2006, pp. 67–68.

    Google Scholar 

  11. K. Agarwal and S. Nassif, “Characterizing process variation in nanometer CMOS,” in Proc. of the Design Automation Conf., June 2007, pp. 396–399.

    Google Scholar 

  12. W. Zhao, Y. Cao, F. Liu, K. Agarwal, D. Acharyya, S. Nassif, and K. Nowka, “Rigorous extraction of process variations for 65nm CMOS design,” in Proc. of the European Solid State Device Research Conf., Sept. 2007.

    Google Scholar 

  13. R. Garg, N. Jayakumar, and S. P. Khatri, “On the improvement of statistical timing analysis,” in Proc. of the Intl. Conf. on Computer Design, Oct. 2006, pp. 37–42.

    Google Scholar 

  14. J. Tschanz, J. Kao, S. Narendra, R. Nair, D. Antoniadis, A. Chandrakasan, and Vivek De, “Adaptive body bias for reducing impacts of die-to-die and within-die parameter variations on microprocessor frequency and leakage,” in Proc. of the Intl. Solid State Circuits Conf., Feb. 2002, pp. 422 – 478.

    Google Scholar 

  15. J.W. Tschanz, S. Narendra, R. Nair, and V. De, “Effectiveness of adaptive supply voltage and body bias for reducing impact of. parameter variations in low power and high performance microprocessors,” IEEE Journal of Solid-State Circuits, vol. 38, no. 5, pp. 826–829, May 2003.

    Article  Google Scholar 

  16. B. C. Paul, A. Agarwal, and K. Roy, “Low-power design techniques for scaled technologies,” Integration, the VLSI Journal, vol. 39, no. 2, pp. 64 – 89, 2006.

    Article  Google Scholar 

  17. A. H. El-Maleh, B. M. Al-Hashimi, and A. Melouki, “Transistor-level based defect tolerance for reliable nanoelectronics,” in Proc. of the Intl. Conf. on Computer Systems and Applications, April 2008, pp. 53–60.

    Google Scholar 

  18. H. El-Razouk and Z. Abid, “A new transistor-redundant voter for defect-tolerant digital circuits,” Proc. of the Canadian Conf. on Electrical and Computer Engineering, pp. 1078–1081, May 2006.

    Google Scholar 

  19. M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, “Matching properties of MOS transistors,” IEEE Journal of Solid-State Circuits, vol. 24, no. 5, pp. 1433–1439, Oct 1989.

    Article  Google Scholar 

  20. M. Orshansky, S. R. Nassif, and D. Boning, Design for manufacturability and statistical design: A constructive approach, US Springer, 2008.

    Google Scholar 

  21. K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B. L. Ji, S. R. Nassif, E. J. Nowak, D. J. Pearson, and N. J. Rohrer, “High-performance CMOS variability in the 65-nm regime and beyond,” IBM Journal of Research and Development, vol. 50, pp. 433–449, July/Sept. 2006.

    Google Scholar 

  22. M. R. Guthaus, N. Venkateswarant, C. Visweswariaht, and V. Zolotov, “Gate sizing using incremental parameterized statistical timing analysis,” in Proc. of the Intl. Conf. on Computer-Aided Design, 2005, pp. 1029–1036.

    Google Scholar 

  23. S. Raj, S. B. K. Vrudhula, and J. Wang, “A methodology to improve timing yield in the presence of process variations,” in Proc. of the Design Automation Conf., 2004, pp. 448–453.

    Google Scholar 

  24. A. Agarwal, K. Chopra, and D. Blaauw, “Statistical timing based optimization using gate sizing,” in Proc. of the Conf. on Design Automation and Test in Europe, 2005, pp. 400–405.

    Google Scholar 

  25. X. Bai, C. Visweswariah, and P. N. Strenski, “Uncertainty-aware circuit optimization,” in Proc. of the Design Automation Conf., 2002, pp. 58–63.

    Google Scholar 

  26. S. H. Choi, B. C. Paul, and K. Roy, “Novel sizing algorithm for yield improvement under process variation in nanometer technology,” in Proc. of the Design Automation Conf., 2004, pp. 454–459.

    Google Scholar 

  27. L. Nagel, “Spice: A computer program to simulate computer circuits,” in University of California, Berkeley UCB/ERL Memo M520, May 1995.

    Google Scholar 

  28. Nanoscale integration and modeling (NIMO) group (2007), ASU Predictive Technology Model [On-line], Available: http://www.eas.asu.edu/~ptm.

  29. Cadence Design Systems, Inc., San Jose, CA, Envisia Silicon Ensemble Place-and-route Reference Manuals, Nov. 1999.

    Google Scholar 

  30. E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “SIS: A system for sequential circuit synthesis,” Tech. Rep. UCB/ERL M92/41, Electronics Research Laboratory, Univ. of California, Berkeley, May 1992.

    Google Scholar 

  31. M. C. T. Chao, L. Wang, K. Cheng, and S. Kundu, “Static statistical timing analysis for latch-based pipeline designs,” in Proc. of the Intl. Conf. on Computer-Aided Design, 2004, pp. 468–472.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajesh Garg or Sunil P. Khatri .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag US

About this chapter

Cite this chapter

Garg, R., Khatri, S.P. (2010). A Variation Tolerant Combinational Circuit Design Approach Using Parallel Gates. In: Analysis and Design of Resilient VLSI Circuits. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0931-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0931-2_9

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0930-5

  • Online ISBN: 978-1-4419-0931-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics