Skip to main content

Differentiated Thyroid Cancers of Follicular Cell Origin

  • Chapter
  • First Online:
Endocrine Neoplasia

Part of the book series: Cancer Treatment and Research ((CTAR,volume 153))

  • 1164 Accesses

Abstract

In the early 1800s, thyroid cancer was one of the first thyroid diseases to be described. Although trends for all other cancers are decreasing, the incidence of thyroid carcinoma is increasing and an estimated 37,340 new cases of thyroid cancer are expected to be diagnosed in 2008. Thyroid cancer (TC) is now the sixth most common malignancy diagnosed in women [1]. The increase in TC incidence can be predominantly attributed to the detection and diagnosis of small (<2 cm) papillary thyroid carcinomas [2]. Although approximately 1 in 127 persons will be diagnosed with TC over their lifetime, TC mortality is low with an estimated 1,590 deaths expected in 2008 [1]. Overall, 5-year TC survival rates have remained stable at 93% from1975 to 1977 and 97% from 1996 to 2003 [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ries LAG, Melbert D, Krapcho M et al (eds). SEER Cancer Statistics Review, 1975–2005, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2005/, based on November 2007 SEER data submission, posted to the SEER web site, 2008

  2. Davies L, Welch HG (2006) Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA 295:2164–2167

    Article  CAS  PubMed  Google Scholar 

  3. Hundahl SA, Fleming ID, Fremgen AM, Menck HR (1998) A National Cancer Data Base report on 53, 856 cases of thyroid carcinoma treated in the US, 1985–1995. Cancer 83:2638–2648

    Article  CAS  PubMed  Google Scholar 

  4. Baloch ZW, Cibas ES, Clark DP, Layfield LJ, Ljung BM, Pitman MB et al (2008) The National Cancer Institute thyroid fine-needle aspiration state of the science conference: a summation. Cytojournal 5:6

    Article  PubMed  Google Scholar 

  5. Nikiforov YE (2008) Thyroid carcinoma: molecular pathways and therapeutic targets. Mod Pathol 21(Suppl 2):S37–S43

    Article  CAS  PubMed  Google Scholar 

  6. Motti ML, DeMarco C, Califano D et al (2007) Loss of p27 expression through RAS - > BRAF - > MAP kinase-dependent pathway in human thyroid carcinomas. Cell Cycle 15:2817–2825

    Article  Google Scholar 

  7. Lupi C, Giannini R, Ugolini C et al (2007) Association of BRAF V600E mutation with poor clinicopathological outcomes in 500 consecutive cases of papillary thyroid carcinoma. J Clin Endocrinol Metab 92:4085–4090

    Article  CAS  PubMed  Google Scholar 

  8. Yip L, Nikiforova MN, Carty SE et al (2009) Optimizing surgical treatment of papillary thyroid carcinoma associated with BRAF mutation. Under review

    Google Scholar 

  9. Kebebew E, Weng J, Bauer J et al (2007) The prevalence and prognostic value of BRAF mutation in thyroid cancer. Ann Surg 246:466–471

    Article  PubMed  Google Scholar 

  10. Xing M, Westra WH, Tufano RP et al (2005) BRAF mutation predicts a poorer clinicl prognosis for papillary thyroid cancer. J Clin Endocrinol Metab 90:6373–6379

    Article  CAS  PubMed  Google Scholar 

  11. Elisei R, Ugolini C, Viola D et al (2008) BRAF V600E mutation and outcome of patients with papillary thyroid carcinoma: a 15-year median follow-up study. J Clin Endocrinol Metab 93:3943–3949

    Article  CAS  PubMed  Google Scholar 

  12. Kimura ET, Nikiforova MD, Zhu Z et al (2003) High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 63:1454–1457

    CAS  PubMed  Google Scholar 

  13. Jhiang SM (2000) The RET proto-oncogene in human cancers. Oncogene 19:5590–5597

    Article  CAS  PubMed  Google Scholar 

  14. Cheung CC, Ezzat S, Ramyar L, Freeman JL, Asa SL (2000) Molecular basis of Hurthle cell papillary thyroid carcinoma. J Clin Endocrinol Metab 85:878–882

    Article  CAS  PubMed  Google Scholar 

  15. Nikiforova MN, Lynch RA, Biddinger PW et al (2003) RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab 88:2318–2326

    Article  CAS  PubMed  Google Scholar 

  16. Garcia-Rostan G, Zhao H, Camp RL et al (2003) ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol 21:3226–3235

    Article  CAS  PubMed  Google Scholar 

  17. Basolo F, Pisaturo F, Pollina LE et al (2000) N-ras mutation in poorly differentiated thyroid carcinomas: correlation with bone metastases and inverse correlation to thyroglobulin expression. Thyroid 10:19–23

    Article  CAS  PubMed  Google Scholar 

  18. Zhu Z, Gandhi M, Nikiforova MN, Fischer AH, Nikiforov YE (2003) Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma, an unusually high prevalence of RAS mutations. Am J Clin Pathol 120:71–77

    Article  CAS  PubMed  Google Scholar 

  19. Dwight T, Thoppe SR, Foukakis T et al (2003) Involvement of the PAX8/peroxisome proliferator-activated receptor gamma rearrangement in follicular thyroid tumors. J Clin Endocrinol Metab 88:4440–4445

    Article  CAS  PubMed  Google Scholar 

  20. Cheung L, Messina M, Gill A et al (2003) Detection of the PAX8-PPAR gamma fusion oncogene in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab 88:354–357

    Article  CAS  PubMed  Google Scholar 

  21. Máximo V, Botelho T, Capela J, Soares P, Lima J, Taveira A et al (2005) Somatic and germline mutation in GRIM-19, a dual function gene involved in mitochondrial metabolism and cell death, is linked to mitochondrion-rich (Hürthle cell) tumours of the thyroid. Br J Cancer 92:1892–1898

    Article  PubMed  CAS  Google Scholar 

  22. Fusco A, Viglietto G, Santoro M (2005) Point mutation in GRIM-19: a new genetic lesion in Hurthle cell thyroid carcinomas. Br J Cancer 92:1817–1818

    Article  CAS  PubMed  Google Scholar 

  23. Cohen Y, Rosenbaum E, Clark DP et al (2004) Mutational analysis of BRAF in fine needle aspiration biopsies of the thyroid: a potential application for the preoperative assessment of thyroid nodules. Clin Cancer Res 10:2761–2765

    Article  CAS  PubMed  Google Scholar 

  24. Nikiforov YE, Ohori NP, Kuffner HA, Carty SE, LeBeau SO, Hodak SP et al (2008) Introduction of molecular testing of thyroid fine needle aspiration (FNA) samples into routine clinical practice: one year experience at the University of Pittsburgh Medical Center. American Thyroid Association.

    Google Scholar 

  25. Chevillard S, Ugolin N, Vielh P et al (2004) Gene expression profiling of differentiated thyroid neoplasms: diagnostic and clinical implications. Clin Cancer Res 10:6586–6597

    Article  CAS  PubMed  Google Scholar 

  26. Griffith OL, Melck A, Jones SJ, Wiseman SM (2006) Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. J Clin Oncol 24:5043–5051

    Article  CAS  PubMed  Google Scholar 

  27. Hunt JL, Livolsi VA, Baloch ZW et al (2003) A novel microdissection and genotyping of follicular-derived thyroid tumors to predict aggressiveness. Hum Pathol 34:375–380

    Article  CAS  PubMed  Google Scholar 

  28. Hunt JL, Yim JH, Carty SE (2006) Fractional allelic loss of tumor suppressor genes identifies malignancy and predicts clinical outcome in follicular thyroid tumors. Thyroid 16:643–649

    Article  CAS  PubMed  Google Scholar 

  29. Sherman SI, Wirth LJ, Droz JP et al (2008) Motesanib diphosphate in progressive differentiated thyroid cancer. N Engl J Med 359:31–42

    Article  CAS  PubMed  Google Scholar 

  30. Dawson SJ, Conus NM, Toner GC et al (2008) Sustained clinical responses to tyrosine kinase inhibitor sunitinib in thyroid carcinoma. Anticancer Drugs 19:547–552

    Article  CAS  PubMed  Google Scholar 

  31. Durante C, Puxeddu E, Ferretti E et al (2007) BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism. J Clin Endocrinol Metab 92:2840–2843

    Article  CAS  PubMed  Google Scholar 

  32. Liu D, Hu S, Hou P, Jiang D, Condouris S, Xing M (2007) Suppression of BRAF/MEK/MAP kinase pathway restores expression of iodide-metabolizing genes in thyroid cells expressing the V600E BRAF mutant. Clin Cancer Res 15:1341–1349

    Article  Google Scholar 

  33. Zablotska LB, Bogdanova TI, Ron E et al (2008) A cohort study of thyroid cancer and other thyroid diseases after the Chornobyl accident: dose–response analysis of thyroid follicular adenomas detected during first screening in Ukraine (1998–2000). Am J Epidemiol 167:305–312

    Article  PubMed  Google Scholar 

  34. Schneider AB, Ron E, Lubin J, Stovall M, Gierlowski TC (1993) Dose–response relationships for radiation-induced thyroid cancer and thyroid nodules: evidence for the prolonged effects of radiation on the thyroid. J Clin Endocrinol Metab 77:362–369

    Article  CAS  PubMed  Google Scholar 

  35. Kikuchi S, Perrier ND, Ituarte P, Siperstein AE, Duh QY, Clark OH (2004) Latency period of thyroid neoplasia after radiation exposure. Ann Surg 239:536–543

    Article  PubMed  Google Scholar 

  36. Dal Maso L, Bosetti C, La Vecchia C, Franceschi S (2009) Risk factors for thyroid cancer: an epidemiological review focused on nutritional factors. Cancer Causes Control 20:75–86

    Article  PubMed  Google Scholar 

  37. Malchoff CD, Malchoff DM (2002) The genetics of hereditary nonmedullary thyroid carcinoma. J Clin Endocrinol Metab 87:2455–2459

    Article  CAS  PubMed  Google Scholar 

  38. Stratakis CA, Courcoutsakis NA, Abati A et al (1997) Thyroid gland abnormalities in patients with the syndrome of spotty skin pigmentation, myxomas, endocrine overactivity and schwannomas (Carney Complex). J Clin Endocrinol Metab 82:2037–2043

    Article  CAS  PubMed  Google Scholar 

  39. Bertherat J, Horvath A, Groussin L et al (2009) Mutations in regulatory subunit type 1A of cyclic AMP-dependent protein kinase (PRKAR1A): phenotype analysis in 353 patients and 80 different genotypes. J Clin Endocrinol Metab 94(6):2085–2091

    Article  CAS  PubMed  Google Scholar 

  40. Cybulski C, Górski B, Huzarski T et al (2004) CHEK2 is a multiorgan cancer susceptibility gene. Am J Hum Genet 75:1131–1135

    Article  CAS  PubMed  Google Scholar 

  41. Moore FD Jr (2006) Inherited aspects of papillary thyroid carcinoma. J Surg Oncol 94:719–724

    Article  PubMed  Google Scholar 

  42. van Heerden JA, Hay ID, Goellner JR, Salomao D, Ebersold JR, Bergstralh EJ et al (1992) Follicular thyroid carcinoma with capsular invasion alone: a nonthreatening malignancy. Surgery 112:1130–1136

    PubMed  Google Scholar 

  43. D’Avanzo A, Treseler P, Ituarte PHG, Wong M, Streja L, Greenspan FS et al (2004) Follicular thyroid carcinoma: histology and prognosis. Cancer 100:1123–1129

    Article  PubMed  Google Scholar 

  44. McCarthy RP, Wang M, Jones TD, Strate RW, Cheng L (2006) Molecular evidence for the same clonal origin of multifocal papillary thyroid carcinomas. Clin Cancer Res 112:2414–2418

    Article  Google Scholar 

  45. Shattuck TM, Westra WH, Ladenson PW, Arnold A (2005) Independent clonal origins of distinct tumor foci in multifocal papillary thyroid carcinoma. N Engl J Med 352:2406–2412

    Article  CAS  PubMed  Google Scholar 

  46. Tielens ET, Sherman ST, Hruban RH, Ladenson PW (1994) Follicular variant of papillary thyroid carcinoma: a clinicopathologic study. Cancer 73:424–431

    Article  CAS  PubMed  Google Scholar 

  47. Elsheikh TM, Asa SL, Chan JK, DeLellis RA, Heffess CS, LiVolsi VA et al (2008) Interobserver and intraobserver variation among experts in the diagnosis of thyroid follicular lesions with borderline nuclear features of papillary carcinoma. Am J Clin Pathol 130:736–744

    Article  PubMed  Google Scholar 

  48. Park YJ, Kwak SH, Kim DC et al (2007) Diagnostic value of galectin-3, HBME-1, cytokeratin 19, high molecular weight cytokeratin, cyclin D1 and p27 (kip1) in the differential diagnosis of thyroid nodules. J Korean Med Sci 22:621–628

    Article  PubMed  Google Scholar 

  49. Johnson TL, Lloyd RV, Thompson NW, Beierwaltes WH, Sisson JC (1988) Prognostic implications of the tall cell variant of papillary thyroid carcinoma. Am J Surg Pathol 12:22–27

    Article  CAS  PubMed  Google Scholar 

  50. Ghossein RA, Leboeuf R, Patel KN et al (2007) Tall cell variant of papillary thyroid carcinoma without extrathyroid extension: biologic behavior and clinical implications. Thyroid 17:655–661

    Article  PubMed  Google Scholar 

  51. Haigh PI, Urbach DR (2005) The treatment and prognosis of Hürthle cell follicular thyroid carcinoma compared with its non-Hürthle cell counterpart. Surgery 138:1152–1158

    Article  PubMed  Google Scholar 

  52. Evans HL, Vassilopoulou-Sellin R (1998) Follicular and Hürthle cell carcinomas of the thyroid: a comparative study. Am J Surg Pathol 22:1512–1520

    Article  CAS  PubMed  Google Scholar 

  53. Kushchayeva Y, Duh QY, Kebebew E, Clark OH (2004) Prognostic indications for Hürthle cell cancer. World J Surg 28:1266–1270

    Article  PubMed  Google Scholar 

  54. American Joint Committee on Cancer (2003) AJCC cancer staging manual, 6th edn. Springer, New York

    Google Scholar 

  55. D’Avanzo A, Ituarte PHG, Treseler P et al (2004) Prognostic scoring systems in patients with follicular thyroid cancer: a comparison of different staging systems in predicting the patient outcome. Thyroid 14:453–458

    Article  PubMed  Google Scholar 

  56. Nikiforov YE (2004) Genetic alterations involved in the transition from well-differentiated to poorly differentiated and anaplastic thyroid carcinomas. Endocr Pathol 15:319–327

    Article  CAS  PubMed  Google Scholar 

  57. Wang HM, Huang YW, Huang JS et al (2007) Anaplastic carcinoma of the thyroid arising more often from follicular carcinoma than papillary carcinoma. Ann Surg Oncol 14:3011–3018

    Article  PubMed  Google Scholar 

  58. Quiros RM, Ding HG, Gattuso P, Prinz RA, Xu X (2005) Evidence that one subset of anaplastic thyroid carcinomas are derived from papillary carcinomas due to BRAF and p53 mutations. Cancer 103:2261–2268

    Article  CAS  PubMed  Google Scholar 

  59. Udelsman R, Lakatos E, Ladenson P (1996) Optimal surgery for papillary thyroid carcinoma. World J Surg 20:88–93

    Article  CAS  PubMed  Google Scholar 

  60. American Thyroid Association Guidelines Taskforce (2009) Revised management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid, in press

    Google Scholar 

  61. Banks ND, Kowalski J, Tsai HL et al (2008) A diagnostic predictor model for indeterminate or suspicious thyroid FNA samples. Thyroid 18:933–941

    Article  CAS  PubMed  Google Scholar 

  62. Sippel RS, Elaraj DM, Khanafshar E, Zarnegar R, Kebebew E, Duh QY et al (2008) Tumor size predicts malignant potential in Hürthle cell neoplasms of the thyroid. World J Surg 32:702–707

    Article  PubMed  Google Scholar 

  63. Chen H, Nicol TL, Zeiger MA, Dooley WC, Ladenson PW, Cooper DS et al (1998) Hürthle cell neoplasms of the thyroid: are there factors predictive of malignancy. Ann Surg 227:542–546

    Article  CAS  PubMed  Google Scholar 

  64. McCoy KL, Jabbour N, Ogilvie JB, Ohori NP, Carty SE, Yim JH (2007) The incidence of cancer and rate of false-negative cytology in thyroid nodules greater than or equal to 4 cm in size. Surgery 142:837–844

    Article  PubMed  Google Scholar 

  65. Mercante G, Frasoldati A, Pefroni C et al (2009) Prognostic factors affecting neck lymph node recurrence and distant metastasis in papillary microcarcinoma of the thyroid: results of a study in 445 patients. Thyroid 19(7):707–716

    Article  CAS  PubMed  Google Scholar 

  66. Chow SM, Law SC, Chan JK, Yau S, Lau WH (2003) Papillary microcarcinoma of the thyroid – prognostic significance of lymph node metastasis and multifocality. Cancer 98:31–40

    Article  PubMed  Google Scholar 

  67. Lundgren CI, Hall P, Dickman PW, Zedenius J (2007) Influence of surgical and postoperative treatment on survival in differentiated thyroid cancer. Br J Surg 94:571–577

    Article  CAS  PubMed  Google Scholar 

  68. Jonklaas J, Sarlis NJ, Litofsky D et al (2006) Outcomes of patients with differentiated thyroid carcinoma following initial therapy. Thyroid 16:1229–1242

    Article  PubMed  Google Scholar 

  69. Roti E, Degli Uberti EC, Bondanelli M, Braverman LE (2008) Thyroid papillary microcarcinoma: a descriptive and meta-analysis study. Eur J Endocrinol 159:659–673

    Article  CAS  PubMed  Google Scholar 

  70. Mazzaferri EL, Kloos RT (2001) Clinical review 128: current approaches to primary therapy for papillary and follicular thyroid cancer. J Clin Endocrinol Metab 86:1447–1463

    Article  CAS  PubMed  Google Scholar 

  71. Tsang RW, Brierley SWJ, Panzarella T, Gospodarowicz MK, Sutcliffe SB (1998) The effects of surgery, radioiodine, and external radiation therapy on the clinical outcome of patients with differentiated thyroid carcinoma. Cancer 82:375–388

    Article  CAS  PubMed  Google Scholar 

  72. Hay ID, Bergstralh EJ, Grant CS et al (1999) Impact of primary surgery on outcome in 300 patients with pathologic tumor-node-metastasis stage III papillary thyroid carcinoma treated at one institution from 1940 through 1989. Surgery 126:1173–1181

    Article  CAS  PubMed  Google Scholar 

  73. Bilimoria KY, Bentrem DJ, Linn JG et al (2007) Utilization of total thyroidectomy for papillary thyroid cancer in the United States. Surgery 142:906–913

    Article  PubMed  Google Scholar 

  74. Sosa JA, Bowman HM, Tielsch JM, Powe NR, Gordon TA, Udelsman R (1998) The importance of surgeon experience for clinical and economic outcomes from thyroidectomy. Ann Surg 228:320–330

    Article  CAS  PubMed  Google Scholar 

  75. Moalem J, Suh I, Duh QY (2008) Treatment and prevention of recurrence of multinodular goiter: an evidence-based review of the literature. World J Surg 32:1301–1312

    Article  PubMed  Google Scholar 

  76. Qubain SW, Nakano S, Baba M, Takao S, Aikou T (2002) Distribution of lymph node micrometastasis in pN0 well-differentiated thyroid carcinoma. Surgery 131:249–256

    Article  PubMed  Google Scholar 

  77. Arturi F, Russo D, Giuffrida D, Ippolito A, Perrotti N, Vigneri R et al (1997) Early diagnosis by genetic analysis of differentiated thyroid cancer metastases in small lymph nodes. J Clin Endocrinol Metab 82:1638–1641

    Article  CAS  PubMed  Google Scholar 

  78. Grebe SK, Hay ID (1996) Thyroid cancer nodal meatastases: biologic significance and therapeutic considerations. Surg Oncol Clin N Am 5:43–63

    CAS  PubMed  Google Scholar 

  79. Loh KC, Greenspan FS, Gee L, Miller TR, Yeo PP (1997) Pathological tumor-node-metastasis (pTNM) staging for papillary and follicular thyroid carcinomas: a retrospective analysis of 700 patients. J Clin Endocrinol Metab 82:3553–3562

    Article  CAS  PubMed  Google Scholar 

  80. Zavdfudim V, Feurer ID, Griffin MR, Phay JE (2008) The impact of lymph node involvement on survival in patients with papillary and follicular thyroid carcinoma. Surgery 144:1070–1077

    Article  Google Scholar 

  81. Gemsenjäger E, Perren A, Seifert B, Schüler G, Schweizer I, Heitz PU (2003) Lymph node surgery in papillary thyroid carcinoma. J Am Coll Surg 197:182–190

    Article  PubMed  Google Scholar 

  82. Leboulleux S, Girard E, Rose M et al (2007) Ultrasound criteria of malignancy for cervical lymph nodes in patients followed up for differentiated thyroid cancer. J Clin Endocrinol Metab 92:3590–3594

    Article  CAS  PubMed  Google Scholar 

  83. Kouvaraki MA, Lee JE, Shapiro SE, Sherman SI, Evans DB (2004) Preventable reoperations for persistent and recurrent papillary thyroid carcinoma. Surgery 136:1183–1191

    Article  PubMed  Google Scholar 

  84. Gimm O, Rath FW, Dralle H (1998) Pattern of lymph node metastases in papillary thyroid carcinoma. Br J Surg 85:252–254

    Article  CAS  PubMed  Google Scholar 

  85. White ML, Gauger PG, Doherty GM (2007) Central lymph node dissectionin differentiated thyroid cancer. World J Surg 31:895–904

    Article  PubMed  Google Scholar 

  86. Sywak M, Cornford L, Roach P, Stalberg P, Sidhu S, Delbridge L (2006) Routine ipsilateral level VI lymphadenectomy reduces postoperative thyroglobulin levels in papillary thyrdoi cancer. Surgery 140:1000–1005

    Article  PubMed  Google Scholar 

  87. Mazzaferri EL, Jhiang SM (1994) Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med 97:418–428

    Article  CAS  PubMed  Google Scholar 

  88. Palazzo FF, Gosnell J, Savio R et al (2006) Lympadenectomy for papillary thyroid cancer: changes in practice over four decades. Eur J Surg Oncol 32:340–344

    Article  CAS  PubMed  Google Scholar 

  89. Ito Y, Higashiyama T, Takamura Y et al (2007) Risk factors for recurrence to the lymph node in papillary thyroid carcinoma patients without preoperatively detectable lateral node metastasis: validity of prophylactic modified radical neck dissection. World J Surg 31:2085–2091

    Article  PubMed  Google Scholar 

  90. Grebe SK, Hay ID (1995) Follicular thyroid cancer. Endocrinol Metab Clin North Am 24:761–801

    CAS  PubMed  Google Scholar 

  91. Witte J, Goretzki PE, Dieken J, Simon D, Röher HD (2002) Importance of lymph node metastases in follicular thyroid cancer. World J Surg 26:1017–1022

    Article  PubMed  Google Scholar 

  92. Sawka AM, Brierley JD, Tsang RW et al (2008) An updated systematic review and commentary examining the effectiveness of radioactive iodine remnant ablation in well-differentiated thyroid cancer. Endocrinol Metab Clin North Am 37:457–480

    Article  PubMed  Google Scholar 

  93. Lopez-Penabad L, Chiu AC et al (2003) Prognostic factors in patients with Hürthle cell neoplasms of the thyroid. Cancer 97:1186–1194

    Article  PubMed  Google Scholar 

  94. Pacini F, Ladenson PW, Schlumberger M et al (2006) Radioiodine ablation of thyroid remnants after preparation with recombinant human thyrotropin in differentiated thyroid carcinoma: results of an international, randomized, controlled study. J Clin Endocrinol Metab 91:926–932

    Article  CAS  PubMed  Google Scholar 

  95. Tuttle RM, Brokhin M, Omry G et al (2008) Recombinant human TSH-assisted radioactive iodine remnant ablation achieves short-term clinical recurrence rates similar to those of traditional thyroid hormone withdrawal. J Nucl Med 49:767–770

    Article  Google Scholar 

  96. Taïeb D, Sebag F, Cherenko M et al (2008) Quality of life changes and clinical outcomes in thyroid cancer patients undergoing radioiodine remnant ablation with recombinant human thyrotropin: a randomized controlled study. Clin Endocrinol Sep 17, epub

    Google Scholar 

  97. Nordén MM, Larsson F, Tedelind S et al (2007) Down-regulation of the sodium/iodide symporter explains 131I-induced thyroid stunning. Cancer Res 67:7512–7517

    Article  PubMed  CAS  Google Scholar 

  98. Sisson JC, Avram AM, Lawson SA, Gauger PG, Doherty GM (2006) The so-called stunning of thyroid tissue. J Nucl Med 47:1406–1412

    CAS  PubMed  Google Scholar 

  99. Doi SA, Woodhouse NJ (2000) Ablation of the thyroid remnant and 131I dose in differentiated thyroid cancer. Clin Endocrinol (Oxf) 52:765–773

    Article  CAS  Google Scholar 

  100. Hackshaw A, Harmer C, Mallick U, Haq M, Franklyn JA (2007) 131I activity for remnant ablation in patients with differentiated thyroid cancer: a systematic review. J Clin Endocrinol Metab 92:28–38

    Article  CAS  PubMed  Google Scholar 

  101. Souza Rosario PW, Barroso AL, Rezende LL, Padrao EL, Fagundes TA, Penna GC, Purisch S (2004) Post I-131 therapy scanning in patients with thyroid carcinoma metastases: an unnecessary cost or a relevant contribution? Clin Nucl Med 29:795–798

    Article  PubMed  Google Scholar 

  102. Garsi JP, Schlumberger M, Rubino C, Ricard M, Labbé M, Ceccarelli C et al (2008) Therapeutic administration of 131I for differentiated thyroid cancer: radiation dose to ovaries and outcome of pregnancies. J Nucl Med 49:845–852

    Article  PubMed  Google Scholar 

  103. Rubino C, de Vathaire F, Dottorini ME, Hall P, Schvartz C, Couette JE et al (2003) Second primary malignancies in thyroid cancer patients. Br J Cancer 89:1638–1644

    Article  CAS  PubMed  Google Scholar 

  104. Sandeep TC, Strachan MW, Reynolds RM, Brewster DH, Scélo G, Pukkala E et al (2006) Second primary cancers in thyroid cancer patients: a multinational record linkage study. J Clin Endocrinol Metab 91:1819–1825

    Article  CAS  PubMed  Google Scholar 

  105. Verkooijen RB, Smit JW, Romijn JA, Stokkel MP (2006) The incidence of second primary tumors in thyroid cancer patients is increased, but not related to treatment of thyroid cancer. Eur J Endocrinol 155:801–806

    Article  CAS  PubMed  Google Scholar 

  106. Brabant G (2008) Thyrotropin suppressive therapy in thyroid carcinoma: what are the targets? J Clin Endocrinol Metab 93:1167–1169

    Article  CAS  PubMed  Google Scholar 

  107. McGriff NJ, Csako G, Gourgiotis L, Lori CG, Pucino F, Sarlis NJ (2002) Effects of thyroid hormone suppression therapy on adverse clinical outcomes in thyroid cancer. Ann Med 34:554–564

    Article  CAS  PubMed  Google Scholar 

  108. Cappola AR, Fried LP, Arnold AM et al (2006) Thyroid status, cardiovascular risk, and mortality in older adults. JAMA 295:1033–1041

    Article  CAS  PubMed  Google Scholar 

  109. Toft AD (2001) Clinical practice: subclinical hyperthyroidism. N Engl J Med 34:512–516

    Article  Google Scholar 

  110. Pujol P, Daures JP, Nsakala N, Baldet L, Bringer J, Jaffiol C (1996) Degree of thyrotropin suppression as a prognostic determinant in differentiated thyroid cancer. J Clin Endocrinol Metab 81:4318–4323

    Article  CAS  PubMed  Google Scholar 

  111. Cooper DS, Speckler B, Ho M et al (1998) Thyrotropin suppression and disease progression in patients with differentiated thyroid cancer: results from the National Thyroid Cancer Treatment Cooperative Registry. Thyroid 8:737–744

    Article  CAS  PubMed  Google Scholar 

  112. Mazzaferri EL, Robbins RJ, Spencer CA et al (2003) A consensus report of the role of serum thyroglobulin as a monitoring method for low-risk patients with papillary thyroid carcinoma. J Clin Endocrinol Metab 88:1433–1441

    Article  CAS  PubMed  Google Scholar 

  113. SpencerCA LoPresti JS, Fatemi S, Nicoloff JT (1999) Detection of residual and recurrent differentiated thyroid carcinoma by serum thyroglobulin measurement. Thyroid 9:435–441

    Article  Google Scholar 

  114. Kloos RT, Mazzaferri EL (2005) A single recombinant human thyrotropin-stimulated serum thyroglobulin measurement predicts differentiated thyroid carcinoma metastases three to five years later. J Clin Endocrinol Metab 90:5047–5057

    Article  CAS  PubMed  Google Scholar 

  115. Frasoldati A, Pesenti M, Gallo M, Caroggio A, Salvo D, Valcavi R (2003) Diagnosis of neck recurrences in patients with differentiated thyroid carcinoma. Cancer 97:90–96

    Article  PubMed  Google Scholar 

  116. Johnson NA, Tublin ME (2008) Postoperative surveillance of differentiated thyroid carcinoma: rationale, techniques, and controversies. Radiology 249:429–444

    Article  PubMed  Google Scholar 

  117. Boi F, Baghino G, Atzeni F, Lai ML, Faa G, Mariotti S (2006) The diagnostic value for differentiated thyroid carcinoma metastases of thyroblogulin (Tg) measurement in washout fluid from fine-needle aspiration biopsy of neck lymph nodes is maintained in the presence of circulating anti-Tg antibodies. J Clin Endocrinol Metab 91:1364–1369

    Article  CAS  PubMed  Google Scholar 

  118. The NCCN Clinical Practice Guidelines in Oncology(TM) Thyroid Carcinoma (Version 1.2009). 2009 National Comprehensive Cancer Network, Inc. Available at: NCCN.org. Accessed [10/19/2009]

    Google Scholar 

  119. Cady B (1998) Papillary carcinoma of the thyroid gland: treatment based on risk group definition. Surg Oncol Clin N Am 7:633–644

    CAS  PubMed  Google Scholar 

  120. Biliotti GC, Martini F, Vezzosi V et al (2006) Specific features of differentiated thyroid carcinoma in patients over 70 years of age. J Surg Oncol 93:194–198

    Article  CAS  PubMed  Google Scholar 

  121. Kim TY, Kim WB, Kim ES et al (2005) Serum thyroglobulin levels at the time of 131I remnant ablation just after thyroidectomy are useful for early prediction of clinical recurrence in low-risk patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab 90:1440–1445

    Article  CAS  PubMed  Google Scholar 

  122. Heemstra KA, Liu YY, Stokkel M et al (2007) Serum thyroglobulin concentrations predict disease-free remission and death in differentiated thyroid carcinoma. Clin Endocrinol 66:58–64

    CAS  Google Scholar 

  123. Kloos RT (2008) Approach to the patient with a positive serum thyroglobulin and a negative radioiodine scan after initial therapy for differentiated thyroid cancer. J Clin Endocrinol Metab 93:1519–1525

    Article  CAS  PubMed  Google Scholar 

  124. Elaraj DM, Clark OH (2007) Changing management in patients with papillary thyroid cancer. Curr Treat Options in Oncol 8:305–313

    Article  Google Scholar 

  125. McCoy KL, Yim JH, Tublin ME, Burmeister LA, Ogilvie JB, Carty SE (2007) Same-day ultrasound guidance in reoperation for locally recurrent papillary thyroid cancer. Surgery 142:965–972

    Article  PubMed  Google Scholar 

  126. Links TP, van Tol KM, Jager PL et al (2005) Life expectancy in diffentiated thyroid cancer: a novel approach to survival analysis. Endocr Relat Cancer 12:273–280

    Article  CAS  PubMed  Google Scholar 

  127. Grant CS, Hay ID, Gough IR, Bergstralh EJ, Goellner JR, McConahey WM (1988) Local recurrence in papillary thyroid carcinoma: is extent of surgical resection important? Surgery 104:954–962

    CAS  PubMed  Google Scholar 

  128. Shammas A, Degirmenci B, Mountz JM, McCook BM, Branstetter B, Bencherif B et al (2007) 18F-FDG PET/CT in patients with suspected recurrent or metastatic well-differentiated thyroid cancer. J Nucl Med 48:221–226

    CAS  PubMed  Google Scholar 

  129. Pryma DA, Schöder H, Gönen M, Robbins RJ, Larson SM, Yeung HW (2006) Diagnostic accuracy and prognostic value of 18F-FDG PET in Hürthle cell thyroid cancer patients. J Nucl Med 47:1260–1266

    PubMed  Google Scholar 

  130. Terezakis SA, Lee KS, Ghossein RA et al (2009) Role of external beam radiotherapy in patients with advanced or recurrent nonanaplastic thyroid cancer: Memorial Sloan-Kettering Cancer Center experience. Int J Radiat Oncol Biol Phys 73:795–801

    Google Scholar 

  131. La Quaglia MP, Black T, Holcomb GW III et al (2000) Differentiated thyroid cancer: clinical characteristics, treatment, and outcome in patients under 21 years of age who present with distant metastases. J Pediatr Surg 35:955–959

    Article  PubMed  Google Scholar 

  132. Sampson E, Brierley JD, Le LW, Rotstein L, Tsang RW (2007) Clinical management and outcome of papillary and follicular (differentiated) thyroid cancer presenting with distant metastsis at diagnosis. Cancer 110:1451–1456

    Article  PubMed  Google Scholar 

  133. Robbins RJ, Srivastava S, Shaha A et al (2004) Factors influencing the basal and recombinant human thyrotropin-stimulated serum thyroglobulin in patients with metastatic thyroid carcinoma. J Clin Endocrinol Metab 89:6010–6016

    Article  CAS  PubMed  Google Scholar 

  134. Dralle H, Schwarzrock R, Lang W et al (1985) Comparison of histology and immunohistochemistry with thyroglobulin serum levels and radioiodine uptake in recurrences and metastases of differentiated thyroid carcinomas. Acta Endocrinol 108:504–510

    CAS  PubMed  Google Scholar 

  135. Zanotti-Fregonara P, Hindie E, Faugeron I et al (2008) Update on the diagnosis and therapy of distant metastases of differentiated thyroid carcinoma. Minerva Endocrinol 33:313–327

    CAS  PubMed  Google Scholar 

  136. Zettinig G, Fueger BJ, Passler C, Kaserer K, Pirich C, Dudczak R et al (2002) Long-term follow-up of patients with bone metastases from differentiated thyroid carcinoma – surgery or conventional therapy? Clin Endocrinol 56:377–382

    Article  Google Scholar 

  137. Argiris A, Agarwala SS, Karamouzis MV, Burmeister LA, Carty SE (2008) A phase II trial of doxorubisin and interferon alpha 2b in advanced non-medullary thyroid cancer. Invest New Drugs 26:183–188

    Article  CAS  PubMed  Google Scholar 

  138. Shimaoka K, Schoenfield DA, DeWys WD, Creech RH, DeConti R (1985) A randomized trial of doxorubicin versus doxorubicin plus cisplatin in patients with advanced thyroid carcinoma. Cancer 59:2155–2160

    Article  Google Scholar 

  139. Gupta-Abramson V, Troxel AB, Nellore A et al (2008) Phase II trial of sorafenib in advanced thyroid cancer. J Clin Oncol 26:4714–4719

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally E. Carty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yip, L., Carty, S.E. (2010). Differentiated Thyroid Cancers of Follicular Cell Origin. In: Sturgeon, C. (eds) Endocrine Neoplasia. Cancer Treatment and Research, vol 153. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0857-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0857-5_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0856-8

  • Online ISBN: 978-1-4419-0857-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics