Liver Cancer pp 103-114 | Cite as

Surgically Unresectable and Chemotherapy-Refractory Metastatic Liver Carcinoma: Treatment with Yttrium-90 Microsphere Followed by Assessment with Positron Emission Tomography

  • Ching-Yee Oliver Wong
Part of the Methods of Cancer Diagnosis, Therapy and Prognosis book series (HAYAT, volume 5)

Detection of metastatic cancer to the liver with positron emission tomography (PET) or computed tomography (CT) usually signifies an ominous sign for patients with colorectal cancer (Fernandez et al., 2004; Arulampalam et al., 2001) and other solid cancers (Silvestri et al., 2003; Eubank et al., 2002). Surgically unresectable and chemotherapy refractory metastatic cancer to the liver often represents an end-stage event. For these patients, a wide variety of local and regional therapies have been developed from the experience of treating hepatocellular carcinoma for the purpose of providing local control of liver tumors while sparing essential vascular structures, liver parenchyma, and adjacent organs (Rilling and Drooz, 2002). Yttrium-90 glass and resin micro-spheres have been shown to be chemically durable for in vivo delivery of β-radiation (Drbe and Day, 1993). Recently hepatic intraarterial infusion of Yttrium-90 glass or resin microspheres has been introduced for palliating unresectable hepatocellu-lar carcinoma (Dancey et al., 2000; Ho et al., 1997). Their use in palliation of unresectable liver metastases from solid cancers has been shown to be promising (Wong et al., 2004, 2005). Two commercial products of these microspheres are available in glass matrix (20–30 μm, 3.6 g/ dl, 2,500 Bq/particle, THERA-Sphere®, MDS Nordion, Ottawa, Canada) or resin bound (20–60 μm, 1.6 g/dl, 50 Bq/particle, SIR-Spheres®, Sirtex Medical, New South Wales, Australia) forms (Wong et al., 2006). Both the glass or resin microspheres are introduced via catheterization of the hepatic artery that supplies the majority of the blood. Tumors and the microspheres are trapped in the tumor capillary bed where they exert a local radio-therapeutic effect. Yttrium-90, a pure beta-emitter with a physical half-life of 64.2 h, decays to stable zirconium-90. The average energy of the beta emissions from the Yttrium-90 is 0.9367 MeV, with an average penetration range of 2.5 mm in tissue (Dancey et al., 2000).


Positron Emission Tomography Standard Uptake Value Glass Microsphere Recurrent Colorectal Cancer Resin Microsphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arulampalam, T.H.A., Costa, D.C., Loizidou, M., Visvikis, D., Ell, P.J., and Taylor, I. 2001. Positron emission tomography and colorectal cancer. Br. J. Surg. 88:176–189.PubMedCrossRefGoogle Scholar
  2. Barker, D.W., Zagoria, R.J., Morton, K.A., Kavanagh, P.V., and Shen, P. 2005. Evaluation of liver metastases after radiofrequency ablation: Utility of 18F-FDG PET and PET/CT. Am. J. Roentgenol. 184:1096–1102.Google Scholar
  3. Berger, M.J. 1971. Distribution of absorbed dose around point sources of electrons and beta particles in water and other media. J. Nucl. Med. 12(Suppl 5):5–23. NM/MIRD Pamphlet No. 7.Google Scholar
  4. Campbell, A.M., Bailey, I.H., and Burton, M.A. 1997. Tumour dosimetry in human liver following hepatic Yttrium-90 microsphere therapy. Eur. J. Nucl. Med. 24:293–298.Google Scholar
  5. Dancey, J.E., Shepherd, F.A., Paul, K., Sniderman, K.W., Houle, S., Gabrys, J., Hendler, A.L., and Goin, J.E. 2000. Treatment of nonresectable hepatocellular carcinoma with intrahepatic 90Y-microspheres. J. Nucl. Med. 41:1673–1681.PubMedGoogle Scholar
  6. Drbe, E.M., and Day, D.E. 1993. Chemical durability of Y2O3-Al2O3-SiO2 glasses for the in vivo delivery of beta radiation. J. Biomed. Mat. Res. 27:1301–1308.CrossRefGoogle Scholar
  7. Eubank, W.B., Mankoff, D.A., Vesselle, H.J., Eary, J.F., Schubert, E.K., Dunnwald, L.K., Lindsley, S.K., Gralow, J.R., Austin-Seymour, M.M., Ellis, G.K., and Livingston, R.B. 2002. Detection of locoregional and distant recurrences in breast cancer patients by using FDG PET. Radiographics 22:5–17.PubMedCrossRefGoogle Scholar
  8. Fernandez, F.G., Drebin, J.A., Linehan, D.C., Dehdashti, F., Siegel, B.A., and Strasberg, S.M. 2004. Five-year survival after resection of hepatic metastases from colorectal cancer in patients screened by positron emission tomography with F-18 fluorodeoxyglucose (FDG- PET). Ann. Surg. 240:438–447.PubMedCrossRefGoogle Scholar
  9. Gray, B.N., Anderson, J.E., Burton, M.A., van Hazel, G., Codde, J., Morgan, C., and Klemp, P. 1992. Regression of liver metastases following treatment with Yttrium-90 microspheres. Aust. N. Z. J. Surg. 62:105–110.PubMedGoogle Scholar
  10. Herba, M.J., Illescas, F.F., Thirlwell, M.P., Boos, G.J., Rosenthall, L., Atri, M., and Bret, P.M. 1988. Hepatic malignancies: Improved treatment with intraarterial Yttrium-90. Radiology 169:311–314.PubMedGoogle Scholar
  11. Ho, S., Lau, W.Y., Leung, T.W.T., Chan, M., Johnson, P.J., and Li, A.K.C. 1997. Clinical evaluation of the partition model for estimating radiation doses from Yttrium-90 microspheres in the treatment of hepatic cancer. Eur. J. Nucl. Med. 24:293–298.PubMedGoogle Scholar
  12. Huang, S.C. 2000. Anatomy of SUV. Nucl. Med. Biol. 27:643–646.PubMedCrossRefGoogle Scholar
  13. Huang, S.C., Phelps, M.E., Hoffman, E.J., Sideris, K., Selin, C.J., and Kuhl, D.E. 1980. Noninvasive determination of local cerebral metabolic rate of glucose in man. Am. J. Physiol. 238:E69–E82.PubMedGoogle Scholar
  14. Kennedy, A., Nag, S., Salem, R., Murthy, R., McEwan, A.J., Nutting, C., Benson, A., Espat, J., Bilbao, J.I., Sharma, R.A., Thomas, J.P., and Coldwell, D. 2007. Recommendations for radioembolization of hepatic malignancies using Yttrium-90 microsphere brachytherapy: A consensus panel report from the radioembolization brachytherapy oncology consortium. 1. Int. J. Radiat. Oncol. Biol. Phys. 68:13–23.PubMedGoogle Scholar
  15. Koukourakis, M.I. 2001. Tumour angiogenesis and response to radiotherapy. Anticancer Res. 21:4285–4300.PubMedGoogle Scholar
  16. Meta, J., Seltzer, M., Schiepers, C., Silverman, D.H., Ariannejad, M., Gambhir, S.S., Phelps, M.E., Valk, P., and Czernin, J. 2001. Impact of 18F-FDG PET on managing patients with colorectal cancer: The referring physician's perspective. J. Nucl. Med. 42:586–590.PubMedGoogle Scholar
  17. Ogunbiyi, O.A., Flanagan, F.L., Dehdashti, F., Siegel, B.A., Trask, D.D., Birnbaum, E.H., Fleshman, J.W., Read, T.E., Philpott, G.W., and Kodner, I.J. 1997. Detection of recurrent and metastatic colorectal cancer: Comparison of positron emission tomography and computed tomography. Ann. Surg. Oncol. 4:613–620.PubMedCrossRefGoogle Scholar
  18. Park, K.C., Schwimmer, J., Shepherd, J.E., Phelps, M.E., Czernin, J.R., Schiepers, C., and Gambhir, S.S. 2001. Decision analysis for the cost-effective management of recurrent colorectal cancer. Ann. Surg. 233:310–319.PubMedCrossRefGoogle Scholar
  19. Phelps, M.E., Huang, S.C., Hoffman, E.J., Selin, C.E., and Kuhl, D.E. 1979. Tomographic measurement of regional cerebral glucose metabolic rate in man with (F-18) fluorodeoxyglucose: Validation of method. Ann. Neurol. 6:371–388.PubMedCrossRefGoogle Scholar
  20. Rilling, W.S., and Drooz, A. 2002. Multidisciplinary management of hepatocellular carcinoma. J. Vasc. Interv. Radiol. 13(Suppl 9):S259–S263.PubMedCrossRefGoogle Scholar
  21. Rohren, E.M., Paulson, E.K., Hagge, R., Wong, T.Z., Killius, J., Clavien, P.A., and Nelson, R.C. 2002. The role of F-18 FDG positron emission tomography in preoperative assessment of the liver in patients being considered for curative resection of hepatic metastases from colorectal cancer. Clin. Nucl. Med. 27:550–555.PubMedCrossRefGoogle Scholar
  22. Salem, R., Lewandowski, R.J., Atassi, B., Gordon, S.C., Gates, V.L., Barakat, O., Sergie, Z., Wong, C.Y., and Thurston, K.G. 2005. Treatment of unresectable hepatocellular carcinoma with use of 90Y microspheres (TheraSphere): Safety, tumor response, and survival. J. Vasc. Interv. Radiol. 16:1627–1639.PubMedGoogle Scholar
  23. Selzner, M., and Hany, T.F. 2004. Does the novel PET/CT imaging modality impact on the treatment of patients with metastatic colorectal cancer of the liver? Ann. Surg. 240:1027–1036.PubMedCrossRefGoogle Scholar
  24. Silvestri, G.A., Tanoue, L.T., Margolis, M.L., Barker, J., and Detterbeck, F. 2003. The noninvasive staging of non-small cell lung cancer: The guidelines. Chest 123(Suppl 1):147S–156S.PubMedCrossRefGoogle Scholar
  25. Snyder, W.S., Ford, M.R., Warner, G.G., and Watson, S.B. 1975–1976. Absorbed dose per unit cumulated activity for selected radionuclides and organs. MIRD Pamphlet No. 11:S. New York: Society of Nuclear Medicine.Google Scholar
  26. Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M.H., Patlak, C.S., Pettigrew, K.D., Sakurada, O., and Shinohara, M. 1977. The [C-14] deoxy-glucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28:897–916.PubMedCrossRefGoogle Scholar
  27. Stubbs, R.S., Cannan, R.J., and Mitchell, A.W. 2001. Selective internal radiation therapy with 90-Yttrium microspheres for extensive color-ectal liver metastases. J. Gastrointest. Surg. 5:294–302.PubMedCrossRefGoogle Scholar
  28. Valk, P.E., Abella-Columna, E., Haseman, M.K., Pounds, T.R., Tesar, R.D., Myers, R.W., Greiss, H.B., and Hofer, G.E. 1999. Whole-body PET imaging with F-18 fluorodeoxyglucose in management of recurrent colorectal cancer. Arch. Surg. 134:503–511.PubMedCrossRefGoogle Scholar
  29. Van Hazel, G., Blackwell, A., Anderson, J., Price, D., Moroz, P., Bower, G., Cardaci, G., and Gray, B. 2004. Randomised phase 2 trial of SIR-Spheres plus Fluorouracil/Leucovorin chemotherapy versus Fluorouracil/Leucovorin chemotherapy alone in advanced colorectal cancer. J. Surg. Oncol. 88:78–85.PubMedCrossRefGoogle Scholar
  30. Wong, C.Y., Salem, R., Raman, S., Gates, V.L., and Dworkin, H.J. 2002. Evaluating 12 90Y- glass microsphere treatment response of unresectable colorectal liver metastases by [18F]FDG PET: A comparison with CT or MRI. Eur. J. Nucl. Med. Mol. Imaging 29:815–820.PubMedCrossRefGoogle Scholar
  31. Wong, C.Y., Salem, R., Qing, F., Wong, K.T., Barker, D., Gates, V., Lewandowski, R., Hill, E.A., Dworkin, H.J., and Nagle, C. 2004. Metabolic response after intraarterial 90Y-glass micro-sphere treatment for colorectal liver metastases: Comparison of quantitative and visual analyses by 18F-FDG PET. J. Nucl. Med. 45:1892–1897.PubMedGoogle Scholar
  32. Wong, C.Y., Qing, F., Savin, M., Campbell, J., Gates, V.L., Sherpa, K.M., Lewandowski, R.J.,Nagle, C., and Salem, R. 2005. Reduction of metastatic load to liver after intraarterial hepatic Yttrium-90 radioembolization as evaluated by [18F]fluorodeoxyglucose positron emission tomographic imaging. J. Vasc. Interv. Radiol. 16:1101–1106.PubMedGoogle Scholar
  33. Wong, C.Y., Savin, M., Sherpa, K.M., Qing, F., Campbell, J., Gates, V.L., Lewandowski, R.J., Cheng, V., Thie, J., Fink-Bennett, D., Nagle, C., and Salem, R. 2006. Regional yttrium-90 microsphere treatment of surgically unresectable and chemotherapy refractory metastatic liver carcinoma: A quantitative comparison of tumor response with glass and resin based agents. Cancer Biother. Radiopharm. 21:305–313.PubMedCrossRefGoogle Scholar
  34. Wong, C.Y., Schmidt, J., Bong, J.S., Chundru, S., Kestin, L., Yan, D., Grills, I., Gaskill, M., Cheng, V., Martinez, A.A., and Fink-Bennett, D. 2007. Correlating metabolic and anatomic responses of primary lung cancers to radiotherapy by combined F-18 FDG PET-CT imaging. Radiat. Oncol. 2:18.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  • Ching-Yee Oliver Wong
    • 1
  1. 1.Positron Diagnostic Center and Medical Cyclotron, Department of Nuclear MedicineMichigan State University, William Beaumont HospitalRoyal OakUSA

Personalised recommendations