Skip to main content

Preclinical Liver Metastases: Three-Dimensional High-Frequency Ultrasound Imaging

  • Chapter
Liver Cancer

Part of the book series: Methods of Cancer Diagnosis, Therapy and Prognosis ((HAYAT,volume 5))

  • 1807 Accesses

Metastasis, the spread of a primary cancer to distant organs, continues to be the most significant cause of cancer mortality. Isolated primary tumors can often be treated surgically with a relatively high success rate. However, if the primary tumor has invaded the surrounding tissue and metastasized to secondary sites in the body, treatment options are often limited to systemic chemotherapies with much lower success rates and greater toxicity. Thus, it is imperative that a greater understanding of the biology of the metastatic process be acquired in order to achieve a significant reduction in the morbidity and mortality associated with cancer diagnosis.

The process of metastasis consists of multiple biological steps governed by a wide range of molecular processes (Chambers et al., 2002). The cells in a developing primary tumor must invade the surrounding tissue and gain access to a blood or lymphatic vessel to facilitate dissemination. Once the metastatic cell has arrived at a secondary site, the cell must arrest in the vascular system, survive, undergo cell division in the new microenvironment, and eventually recruit new blood vessels to allow for continued development. Although many cells initiate this sequence of events by gaining access to the vascular system, < 1% of these cells are able to complete all of the steps to form overt metastases (Chambers et al., 2002). The multi-step nature and biological and molecular complexity of the metastatic process have necessitated that a variety of research tools be used to effectively model this process. In vitro models have allowed for a greater understanding of how tumor cells circumvent normal cell growth and survival regulations. In vitro models are essential to isolate the contribution of specific molecular pathways to the development of a metastatic cell, but fail to capture the complexity of the entire metastatic process that exists in the in vivo situation. Thus, in order to study the complete metastatic process it is necessary to develop and utilize animal models. Animal models are used to study the interactions of a tumor cell with a changing micro-environment as it progresses through the metastatic process, and are often used to evaluate novel therapeutics and treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrecht, T., Hohmann, J., Oldenburg, A., Skrok, J., and Wolf, K.J. 2004. Detection and characterisation of liver metastases. Eur. Radiol. 14 Suppl. 8:P25–P33.

    PubMed  Google Scholar 

  • Anwer, K., Kao, G., Proctor, B., Anscombe, I., Florack, V., Earls, R., Wilson, E., McCreery, T., Unger, E., Rolland, A., and Sullivan, S.M. 2000. Ultrasound enhancement of cationic lipid-mediated gene transfer to primary tumors following systemic administration. Gene Ther. 7:1833–1839.

    Article  PubMed  CAS  Google Scholar 

  • Blankenberg, F.G., Katsikis, P.D., Tait, J.F., Davis, R.E., Naumovski, L., Ohtsuki, K., Kopiwoda, S., Abrams, M.J., Darkes, M., Robbins, R.C., Maecker, H.T., and Strauss, H.W. 1998. In vivo detection and imaging of phosphatidylserine expression during programmed cell death. Proc. Natl. Acad. Sci. U S A 95:6349–6354.

    Article  PubMed  CAS  Google Scholar 

  • Cai, S.R., Garbow, J.R., Culverhouse, R., Church, R.D., Zhang, W., Shannon, W.D., and McLeod, H.L. 2005. A mouse model for developing treatment for secondary liver tumors. Int. J. Oncol. 27:113–120.

    PubMed  Google Scholar 

  • Chambers, A.F., MacDonald, I.C., Schmidt, E.E., Koop, S., Morris, V.L., Khokha, R., and Groom, A.C. 1995. Steps in tumor metastasis: new concepts from intravital videomicroscopy. Cancer Metastasis Rev. 14:279–301.

    Article  PubMed  CAS  Google Scholar 

  • Chambers, A.F., Groom, A.C., and MacDonald, I.C. 2002. Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer 2:563–572.

    Article  PubMed  CAS  Google Scholar 

  • Cheung, A.M., Brown, A.S., Hastie, L.A., Cucevic, V., Roy, M., Lacefield, J.C., Fenster, A., and Foster, F.S. 2005. Three-dimensional ultrasound biomicroscopy for xenograft growth analysis. Ultrasound Med. Biol. 31:865–870.

    Article  PubMed  Google Scholar 

  • Choy, G., Choyke, P., and Libutti, S.K. 2003. Current advances in molecular imaging: non-invasive in vivo bioluminescent and fluorescent optical imaging in cancer research. Mol. Imaging 2:303–312.

    Article  PubMed  CAS  Google Scholar 

  • Couture, O., Bevan, P.D., Cherin, E., Cheung, K., Burns, P.N., and Foster, F.S. 2006. Investigating perfluorohexane particles with high-frequency ultrasound. Ultrasound Med. Biol. 32:73–82.

    Article  PubMed  Google Scholar 

  • Dayton, P.A., and Ferrara, K.W. 2002. Targeted imaging using ultrasound. J. Magn. Reson. Imaging 16:362–377.

    Article  PubMed  Google Scholar 

  • Demicheli, R., Terenziani, M., and Bonadonna, G. 1998. Estimate of tumor growth time for breast cancer local recurrences: rapid growth after wake-up? Breast Cancer Res. Treat. 51: 133–137.

    Article  PubMed  CAS  Google Scholar 

  • Ellegala, D.B., Leong-Poi, H., Carpenter, J.E., Klibanov, A.L., Kaul, S., Shaffrey, M.E., Sklenar, J., and Lindner, J.R. 2003. Imaging tumor ang-iogenesis with contrast ultrasound and micro-bubbles targeted to alpha(v)beta3. Circulation 108:336–341.

    Article  PubMed  Google Scholar 

  • Evelhoch, J.L., Gillies, R.J., Karczmar, G.S., Koutcher, J.A., Maxwell, R.J., Nalcioglu, O., Raghunand, N., Ronen, S.M., Ross, B.D., and Swartz, H.M. 2000. Applications of magnetic resonance in model systems: cancer therapeutics. Neoplasia 2:152–165.

    Article  PubMed  CAS  Google Scholar 

  • Fenster, A., Downey, D.B., and Cardinal, H.N. 2001. Three-dimensional ultrasound imaging. Phys. Med. Biol. 46:R67–R99.

    Article  PubMed  CAS  Google Scholar 

  • Foster, F.S., Pavlin, C.J., Harasiewicz, K.A., Christopher, D.A., and Turnbull, D.H. 2000. Advances in ultrasound biomicroscopy. Ultrasound Med. Biol. 26:1–27.

    Article  PubMed  CAS  Google Scholar 

  • Foster, F.S., Zhang, M.Y., Zhou, Y.Q., Liu, G., Mehi, J., Cherin, E., Harasiewicz, K.A., Starkoski, B.G., Zan, L., Knapik, D.A., and Adamson, S.L. 2002. A new ultrasound instrument for in vivo microimaging of mice. Ultrasound Med. Biol. 28:1165–1172.

    Article  PubMed  CAS  Google Scholar 

  • Gambhir, S.S. 2002. Molecular imaging of cancer with positron emission tomography. Nat. Rev. Cancer 2: 683–693.

    Article  PubMed  CAS  Google Scholar 

  • Gillies, R.J., Bhujwalla, Z.M., Evelhoch, J., Garwood, M., Neeman, M., Robinson, S.P., Sotak, C.H., and Van Der Sanden, B. 2000. Applications of magnetic resonance in model systems: tumor biology and physiology. Neoplasia 2:139–151.

    Article  PubMed  CAS  Google Scholar 

  • Goertz, D.E., Yu, J.L., Kerbel, R.S., Burns, P.N., and Foster, F.S. 2002. High-frequency Doppler ultrasound monitors the effects of antivascu-lar therapy on tumor blood flow. Cancer Res. 62:6371–6375.

    PubMed  CAS  Google Scholar 

  • Goertz, D.E., Yu, J.L., Kerbel, R.S., Burns, P.N., and Foster, F.S. 2003. High-frequency 3-D color-flow imaging of the microcirculation. Ultrasound Med. Biol. 29:39–51.

    Article  PubMed  Google Scholar 

  • Goertz, D.E., Cherin, E., Needles, A., Karshafian, R., Brown, A.S., Burns, P.N., and Foster, F.S. 2005. High frequency nonlinear B-scan imaging of microbubble contrast agents. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52:65–79.

    Article  PubMed  Google Scholar 

  • Graham, K.C., Wirtzfeld, L.A., MacKenzie, L.T., Postenka, C.O., Groom, A.C., MacDonald, I.C., Fenster, A., Lacefield, J.C., and Chambers, A.F. 2005. Three-dimensional high-frequency ultrasound imaging for longitudinal evaluation of liver metastases in preclinical models. Cancer Res. 65:5231–5237.

    Article  PubMed  CAS  Google Scholar 

  • Hastie, L.A., Graham, K.C., Groom, A.C., MacDonald, I.C., Chambers, A.F., Fenster, A., and Lacefield, J.C. 2004. Variability of three-dimensional high-frequency ultrasound measurements of small tumor volumes. IEEE Ultrason. Sympos. Proc. 3:2185–2188.

    Google Scholar 

  • Heyn, C., Ronald, J.A., Mackenzie, L.T., MacDonald, I.C., Chambers, A.F., Rutt, B.K., and Foster, P.J. 2006. In vivo magnetic resonance imaging of single cells in mouse brain with optical validation. Magn. Reson. Med. 55:23–29.

    Article  PubMed  Google Scholar 

  • Holmgren, L., O'Reilly, M.S., and Folkman, J. 1995. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat. Med. 1: 149–153.

    Article  PubMed  CAS  Google Scholar 

  • Karrison, T.G., Ferguson, D.J., and Meier, P. 1999. Dormancy of mammary carcinoma after mastectomy. J. Natl. Cancer Inst. 91:80–85.

    Article  PubMed  CAS  Google Scholar 

  • Khanna, C., and Hunter, K. 2005. Modeling metastasis in vivo. Carcinogenesis 26:513–523.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, H., Saga, T., Kawamoto, S., Sato, N., Hiraga, A., Ishimori, T., Konishi, J., Togashi, K., and Brechbiel, M.W. 2001. Dynamic micro-magnetic resonance imaging of liver micrometas-tasis in mice with a novel liver macromolecular magnetic resonance contrast agent DAB-Am64-(1B4M-Gd)(64). Cancer Res. 61:4966–4970.

    PubMed  CAS  Google Scholar 

  • Kolios, M.C., Czarnota, G.J., Lee, M., Hunt, J.W., and Sherar, M.D. 2002. Ultrasonic spectral parameter characterization of apoptosis. Ultrasound Med. Biol. 28:589–597.

    Article  PubMed  CAS  Google Scholar 

  • Krix, M., Kiessling, F., Vosseler, S., Farhan, N., Mueller, M.M., Bohlen, P., Fusenig, N.E., and Delorme, S. 2003. Sensitive noninvasive monitoring of tumor perfusion during antiang-iogenic therapy by intermittent bolus-contrast power Doppler sonography. Cancer Res. 63: 8264–8270.

    PubMed  CAS  Google Scholar 

  • Lanza, G.M., Wallace, K.D., Fischer, S.E., Christy, D.H., Scott, M.J., Trousil, R.L., Cacheris, W.P., Miller, J.G., Gaffney, P.J., and Wickline, S.A. 1997. High-frequency ultrasonic detection of thrombi with a targeted contrast system. Ultrasound Med. Biol. 23:863–870.

    Article  PubMed  CAS  Google Scholar 

  • Lawrie, A., Brisken, A.F., Francis, S.E., Cumberland, D.C., Crossman, D.C., and Newman, C.M. 2000. Microbubble-enhanced ultrasound for vascular gene delivery. Gene Ther. 7:2023–2027.

    Article  PubMed  CAS  Google Scholar 

  • Leach, M.O. 2001. Application of magnetic resonance imaging to angiogenesis in breast cancer. Breast Cancer Res. 3:22–27.

    Article  PubMed  CAS  Google Scholar 

  • Lencioni, R., Pinto, F., Armillotta, N., and Bartolozzi, C. 1996. Assessment of tumor vascu-larity in hepatocellular carcinoma: comparison of power Doppler US and color Doppler US. Radiology 201:353–358.

    PubMed  CAS  Google Scholar 

  • Lindner, J.R. 2004. Microbubbles in medical imaging: current applications and future directions. Nat. Rev. Drug Discov. 3:527–532.

    Article  PubMed  CAS  Google Scholar 

  • Lyons, S.K. 2005. Advances in imaging mouse tumour models in vivo. J. Pathol. 205:194–205.

    Article  PubMed  CAS  Google Scholar 

  • Mazonakis, M., Damilakis, J., Mantatzis, M., Prassopoulos, P., Maris, T., Varveris, H., and Gourtsoyiannis, N. 2004. Stereology versus planimetry to estimate the volume of malignant liver lesions on MR imaging. Magn. Reson. Imaging 22:1011–1016.

    Article  PubMed  Google Scholar 

  • Miller, D.L., and Quddus, J. 2000. Diagnostic ultrasound activation of contrast agent gas bodies induces capillary rupture in mice. Proc. Natl. Acad. Sci. U S A 97:10179–10184.

    Article  PubMed  CAS  Google Scholar 

  • Morris, V.L., MacDonald, I.C., Koop, S., Schmidt, E.E., Chambers, A.F., and Groom, A.C. 1993. Early interactions of cancer cells with the microvasculature in mouse liver and muscle during hematogenous metastasis: videomi-croscopic analysis. Clin. Exp. Metastasis 11: 377–390.

    Article  PubMed  CAS  Google Scholar 

  • Narula, J., Acio, E.R., Narula, N., Samuels, L.E., Fyfe, B., Wood, D., Fitzpatrick, J.M., Raghunath, P.N., Tomaszewski, J.E., Kelly, C., Steinmetz, N., Green, A., Tait, J.F., Leppo, J., Blankenberg, F.G., Jain, D., and Strauss, H.W. 2001. Annexin-V imaging for noninvasive detection of cardiac allograft rejection. Nat. Med. 7:1347–1352.

    Article  PubMed  CAS  Google Scholar 

  • Paulus, M.J., Gleason, S.S., Kennel, S.J., Hunsicker, P.R., and Johnson, D.K. 2000. High resolution X-ray computed tomography: an emerging tool for small animal cancer research. Neoplasia 2:62–70.

    Article  PubMed  CAS  Google Scholar 

  • Price, R.J., Skyba, D.M., Kaul, S., and Skalak, T.C. 1998. Delivery of colloidal particles and red blood cells to tissue through microvessel ruptures created by targeted microbubble destruction with ultrasound. Circulation 98:1264–1267.

    PubMed  CAS  Google Scholar 

  • Steinbauer, M., Guba, M., Cernaianu, G., Kohl, G., Cetto, M., Kunz-Schughart, L.A., Geissler, E.K., Falk, W., and Jauch, K.W. 2003. GFP-transfected tumor cells are useful in examining early metastasis in vivo, but immune reaction precludes long-term tumor development studies in immunocompetent mice. Clin. Exp. Metastasis 20:135–141.

    Article  PubMed  CAS  Google Scholar 

  • Tong, S., Cardinal, H.N., McLoughlin, R.F., Downey, D.B., and Fenster, A. 1998. Intra- and inter-observer variability and reliability of prostate volume measurement via two-dimensional and three-dimensional ultrasound imaging. Ultrasound Med. Biol. 24:673–681.

    Article  PubMed  CAS  Google Scholar 

  • Tunis, A.S., Czarnota, G.J., Giles, A., Sherar, M.D., Hunt, J.W., and Kolios, M.C. 2005. Monitoring structural changes in cells with high-frequency ultrasound signal statistics. Ultrasound Med. Biol. 31:1041–1049.

    Article  PubMed  CAS  Google Scholar 

  • Turnbull, D.H., Ramsay, J.A., Shivji, G.S., Bloomfield, T.S., From, L., Sauder, D.N., and Foster, F.S. 1996. Ultrasound backscatter microscope analysis of mouse melanoma progression. Ultrasound Med. Biol. 22:845–853.

    Article  PubMed  CAS  Google Scholar 

  • Udagawa, T., Fernandez, A., Achilles, E.G., Folkman, J., and D'Amato, R.J. 2002. Persistence of microscopic human cancers in mice: alterations in the angiogenic balance accompanies loss of tumor dormancy. FASEB J. 16:1361–1370.

    Article  PubMed  CAS  Google Scholar 

  • Unger, E.C., Matsunaga, T.O., McCreery, T., Schumann, P., Sweitzer, R., and Quigley, R. 2002. Therapeutic applications of microbubbles. Eur. J. Radiol. 42:160–168.

    Article  PubMed  Google Scholar 

  • Weber, S.M., Peterson, K.A., Durkee, B., Qi, C., Longino, M., Warner, T., Lee, F.T., Jr., and Weichert, J.P. 2004. Imaging of murine liver tumor using microCT with a hepatocyte-selective contrast agent: accuracy is dependent on adequate contrast enhancement. J. Surg. Res. 119:41–45.

    Article  PubMed  CAS  Google Scholar 

  • Weissleder, R. 2002. Scaling down imaging: molecular mapping of cancer in mice. Nat. Rev. Cancer 2:11–18.

    Article  PubMed  CAS  Google Scholar 

  • Welch, D.R. 1997. Technical considerations for studying cancer metastasis in vivo. Clin. Exp. Metastasis 15:272–306.

    Article  PubMed  CAS  Google Scholar 

  • Weller, G.E., Wong, M.K., Modzelewski, R.A., Lu, E., Klibanov, A.L., Wagner, W.R., and Villanueva, F.S. 2005. Ultrasonic imaging of tumor angiogenesis using contrast microbubbles targeted via the tumor-binding peptide arginine-arginine-leucine. Cancer Res. 65:533–539.

    PubMed  CAS  Google Scholar 

  • Wirtzfeld, L.A., Wu, G., Bygrave, M., Yamasaki, Y., Sakai, H., Moussa, M., Izawa, J.I., Downey, D.B., Greenberg, N.M., Fenster, A., Xuan, J.W., and Lacefield, J.C. 2005. A new three-dimensional ultrasound microimaging technology for preclinical studies using a transgenic prostate cancer mouse model. Cancer Res. 65: 6337–6345.

    Article  PubMed  CAS  Google Scholar 

  • Wu, M., Mazurchuk, R., Chaudhary, N.D., Spernyak, J., Veith, J., Pera, P., Greco, W., Hoffman, R.M., Kobayashi, T., and Bernacki, R.J. 2003. High-resolution magnetic resonance imaging of the efficacy of the cytosine analogue 1-[2-C-cyano-2-deoxy-beta-D-arabino-pentofuranosyl]-N(4)-palmitoyl cytosine (CS-682) in a liver-metastasis athymic nude mouse model. Cancer Res. 63:2477–2482.

    PubMed  CAS  Google Scholar 

  • Xu, H.X., Yin, X.Y., Lu, M.D., Liu, G.J., and Xu, Z.F. 2003. Estimation of liver tumor volume using a three-dimensional ultrasound volumetric system. Ultrasound Med. Biol. 29:839–846.

    Article  PubMed  Google Scholar 

  • Yang, M., Baranov, E., Jiang, P., Sun, F.X., Li, X.M., Li, L., Hasegawa, S., Bouvet, M., Al-Tuwaijri, M., Chishima, T., Shimada, H., Moossa, A.R., Penman, S., and Hoffman, R.M. 2000. Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc. Natl. Acad. Sci. U S A 97:1206–1211.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Graham, K.C., Wirtzfeld, L.A., Lacefield, J.C., Chambers, A.F. (2009). Preclinical Liver Metastases: Three-Dimensional High-Frequency Ultrasound Imaging. In: Hayat, M.A. (eds) Liver Cancer. Methods of Cancer Diagnosis, Therapy and Prognosis, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9804-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9804-8_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9803-1

  • Online ISBN: 978-1-4020-9804-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics