Parasitic Plants in Agriculture: Chemical Ecology of Germination and Host-Plant Location as Targets for Sustainable Control: A Review

  • Justin B. Runyon
  • John F. Tooker
  • Mark C. Mescher
  • Consuelo M. De Moraes
Chapter
Part of the Sustainable Agriculture Reviews book series (SARV, volume 1)

Abstract

Parasitic plants are among the most problematic pests of agricultural crops worldwide. Effective means of control are generally lacking, in part because of the close physiological connection between the established parasite and host plant hindering efficient control using traditional methods. Seed germination and host location are critical early-growth stages that occur prior to host attachment, and provide promising targets for ecologically sound management of parasitic weeds. Knowledge of parasite-host interactions, particularly chemical cues that induce parasite seed germination and mediate host location, should facilitate the development of novel management approaches. In parasitic plants that attach to host roots—e.g., Striga and Orobanche spp.—seed germination is known to occur only in the presence of chemical stimulants released from plant roots. The recent finding that these same chemicals promote the colonization of beneficial fungi has potentially important implications for the control of parasitic plants. Far less is known about the early stages of parasitic plants that attach above-ground to host shoots—e.g., Cuscuta spp. Seeds of these parasites lack germination stimulants, and it was only recently shown that foraging C. pentagona seedlings use airborne cues to locate and select among hosts. We review research on seed germination and host location by the major parasitic weeds that attack agricultural crops, and discuss the implications of recent findings for the development of sustainable and effective management strategies.

Keywords

Striga Orobanche Cuscuta Strigolactones Volatiles Plant-plant communication 

References

  1. Ahonsi M.O., Berner D.K., Emechebe A.M., Lagoke S.T., Sanginga N. (2003) Potential of ethylene-producing pseudomonads in combination with effective N2-fixing bradyrhizobial strains as supplements to legume rotation for Striga hermonthica control, Biol. Control 28, 1–10.CrossRefGoogle Scholar
  2. Akiyama K., Matsuzaki K., Hayashi H. (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi, Nature 435, 824–827.PubMedCrossRefGoogle Scholar
  3. Babalola O.O., Sanni A.I., Odhiambo G.D., Torto B. (2007) Plant growth-promoting rhizobacteria do not pose any deleterious effect on cowpea and detectable amounts of ethylene are produced, World J. Microbiol. Biotechnol. 23, 747–752.CrossRefGoogle Scholar
  4. Barbiker A.G.T., Hamdoun A.M., Rudwan A., Mansi N.G., Faki H.H. (1987) Influence of soil moisture on activity and persistence of the strigol analog GR 24, Weed Res. 27, 173–178.CrossRefGoogle Scholar
  5. Benvenuti S., Dinelli G., Bonetti A., Catizone P. (2005) Germination ecology, emergence and host detection in Cuscuta campestris, Weed Res. 45, 270–278.CrossRefGoogle Scholar
  6. Berner D.K., Kling J.G., Singh B.B. (1995) Striga research and control – A perspective from Africa, Plant Dis. 79, 652–660.CrossRefGoogle Scholar
  7. Berner D.K., Schaad N.W., Volksch B. (1999) Use of ethylene-producing bacteria for stimulation of Striga spp. seed germination, Biol. Control 15, 274–282.CrossRefGoogle Scholar
  8. Bernhard R.H., Jensen J.E., Andreasen C. (1998) Prediction of yield loss caused by Orobanche spp. in carrot and pea crops based on the soil seedbank, Weed Res. 38, 191–197.CrossRefGoogle Scholar
  9. Besserer A., Puech-Pagès V., Kiefer P., Gomez-Roldan V., Jauneau A., Roy S., Portais J.C., Roux C., Bécard G., Séjalon-Delmas N. (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria, PLoS Biol. 4, e266.CrossRefGoogle Scholar
  10. Botanga C.J., Alabi S.O., Echekwu C.A., Lagoke S.T.O. (2003) Genetics of suicidal germination of Striga hermonthica (Del.) Benth by cotton, Crop Sci. 43, 483–488.CrossRefGoogle Scholar
  11. Bouwmeester H.J., Matusova R., Zhongkui S., Beale M.H. (2003) Secondary metabolite signaling in host-parasitic plant interactions, Curr. Opin. Plant Biol. 6, 358–364.CrossRefGoogle Scholar
  12. Bouwmeester H.J., Roux C., Lopez-Raez J.A., Bécard G. (2007) Rhizosphere communication of plants, parasitic plants and AM fungi, Tends Plant Sci. 12, 224–230.CrossRefGoogle Scholar
  13. Cook C.E., Whichard L.P., Turner B., Wall M.E. (1966) Germination of witchweed (Striga lutea Lour.) – isolation and properties of a potent stimulant, Science 154, 1189–1190.PubMedCrossRefGoogle Scholar
  14. Dawson J.H., Musselman L.J., Wolswinkel P., Dörr I. (1994) Biology and control of Cuscuta, Rev Weed Sci 6, 265–317.Google Scholar
  15. De Moraes C.M., Lewis W.J., Paré P.W., Alborn H.T., Tumlinson J.H. (1998) Herbivore-infested plants selectively attract herbivores, Nature 393, 570–573.CrossRefGoogle Scholar
  16. De Moraes C.M., Mescher M.C., Tumlinson J.H. (2001) Caterpillar-induced nocturnal volatiles repel conspecific females, Nature 410, 577–580.PubMedCrossRefGoogle Scholar
  17. Degen T., Dillmann C., Marion-Poll F., Turlings T.C.J. (2004) High genetic variability of herbivore-induced volatile emission within a broad range of maize inbred lines, Plant Physiol. 135, 1928–1938.PubMedCrossRefGoogle Scholar
  18. Dubé M.P., Olivier A. (2001) Striga gesnerioides and its host, cowpea: interaction and methods of control, Can. J. Bot. 79, 1225–1240.CrossRefGoogle Scholar
  19. El-Halmouch Y., Benharrat H., Thalouarn P. (2006) Effect of root exudates from different tomato genotypes on broomrape (O. aegyptiaca) seed germination and tubercle development, Crop Prot. 25, 501–507.CrossRefGoogle Scholar
  20. Evidente A., Andolfi A., Fiore M., Boari A., Vurro M. (2006) Stimulation of Orobanche ramosa seed germination by fusicoccin derivatives: a structure-activity relationship study, Phytochemistry 67, 19–26.PubMedCrossRefGoogle Scholar
  21. Fate G., Chang M., Lynn D.G. (1990) Control of germination in Striga asiatica: chemistry of spatial definition, Plant Physiol. 93, 201–207.PubMedCrossRefGoogle Scholar
  22. Fenández-Aparicio M., Sillero J.C., Rubiales D. (2007) Intercropping with cereals reduces infection of Orobanche crenata in legumes, Crop Prot. 26, 1166–1172.CrossRefGoogle Scholar
  23. Gbèhounou G., Adango E. (2003) Trap crops of Striga hermonthica: in vitro identification and effectiveness in situ, Crop Prot. 22, 395–404.CrossRefGoogle Scholar
  24. Goldwasser Y., Yoder J.I. (2001) Differential induction of Orobanche seed germination by Arabidopsis thaliana, Plant Sci. 160, 951–959.PubMedCrossRefGoogle Scholar
  25. Goldwasser Y., Lanini W.T., Wrobel R.L. (2001) Tolerance of tomato varieties to lespedeza dodder, Weed Sci. 49, 520–523.CrossRefGoogle Scholar
  26. Gressel J., Hanafi A., Head G., Marasas W., Babatunde Obilana A., Ochanda J., Souissi T., Tzotzos G. (2004) Major heretofore intractable biotic constraints to African food security that may be amenable to novel biotechnological solutions, Crop Prot. 23, 661–689.CrossRefGoogle Scholar
  27. Hauck C., Müller S., Schildknecht H. (1992) A germination stimulant for parasitic flowering plants from Sorghum bicolor, a genuine host plant, J. Plant Physiol. 139, 474–478.Google Scholar
  28. Haussmann B.I.G., Hess D.E., Welz H.G., Geiger H.H. (2000) Improved methodologies for breeding Striga-resistant sorghums, Field Crops Res. 66, 195–211.CrossRefGoogle Scholar
  29. Humphrey A.J., Galster A.M., Beale M.H. (2006) Strigolactones in chemical ecology: waste products or vital allelochemicals?, Nat. Prod. Rep. 23, 592–614.PubMedCrossRefGoogle Scholar
  30. Joel D.M. (2000) The long-term approach to parasitic weeds control: manipulation of specific developmental mechanisms of the parasite, Crop Prot. 19, 753–758.CrossRefGoogle Scholar
  31. Kelly C.K. (1990) Plant foraging: a marginal value model and coiling response in Cuscuta subinclusa, Ecology 7, 1916–1925.CrossRefGoogle Scholar
  32. Kelly C.K. (1992) Resource choice in Cuscuta europaea, Proc. Nat. Acad. Sci. USA 89, 12194–12197.PubMedCrossRefGoogle Scholar
  33. Khan Z.R., Pickett J.A., van den Berg J., Wadhams L.J., Woodcock C.M. (2000) Exploiting chemical ecology and species diversity: stem borer and striga control for maize and sorghum in Africa, Pest Manag. Sci. 56, 957–962.CrossRefGoogle Scholar
  34. Khan Z.R., Hassanali A., Overholt W., Khamis T.M., Hooper A.M., Pickett J.A., Wadhams L.J., Woodcock C.M. (2002) Control of witchweed Striga hermonthica by intercropping with Desmodium spp., and the mechanism defined as allelopathic, J. Chem. Ecol. 28, 1871–1885.PubMedCrossRefGoogle Scholar
  35. Khan Z.R., Midega C.A.O., Hassanali A., Pickett J.A., Wadhams L.J. (2007) Assessment of different legumes for control of Striga hermonthica in maize and sorghum, Crop Sci. 47, 730–736.CrossRefGoogle Scholar
  36. Koch M.A., Binder C., Sanders R.A. (2004) Does the generalist parasitic plant Cuscuta campestris selectively forage in heterogeneous communities?, New Phytol. 162, 147–155.CrossRefGoogle Scholar
  37. Kuijt J. (1969) The Biology of Parasitic Flowering Plants, University of California Press, Berkeley.Google Scholar
  38. Lane J.A., Bailey J.A., Butler R.C., Terry P.J. (1993) Resistance of cowpea Vigna unguiculata (L.) Walp to Striga gesnerioides (Willd) Vatke, a parasitic angiosperm, New Phytol. 125, 405–412.CrossRefGoogle Scholar
  39. Lendzemo V.W., Kuyper T.W., Kropff M.J., van Ast A. (2005) Field inoculation with arbuscular mycorrhizal fungi reduces Striga hermonthica performance on cereal crops and has the potential to contribute to integrated Striga management, Field Crops Res. 91, 51–61.CrossRefGoogle Scholar
  40. Lendzemo V.W, Kuyper T.W., Matusova R., Bouwmeester H.J., Ast A.V. (2007) Colonization by arbuscular mycorrhizal fungi of sorghum leads to reduced germination and subsequent attachment and emergence of Striga hermonthica, Plant Signal. Behav. 2, 58–62.PubMedGoogle Scholar
  41. Lins R.D., Colquhoun J.B., Mallory-Smith C.A. (2006) Investigation of wheat as a trap crop for control of Orobanche minor, Weed Res. 46, 313–318.CrossRefGoogle Scholar
  42. Logan D.C., Stewart G.R. (1991) Role of ethylene in the germination of the hemiparasite Striga hermonthica, Plant Physiol. 97, 1435–1438.PubMedCrossRefGoogle Scholar
  43. Mangnus E.M., Zwanenburg B. (1992) Tentative molecular mechanism for germination stimulation of Striga and Orobanche seeds by strigol and its synthetic analogs, J. Agric. Food Chem. 40, 1066–1070.CrossRefGoogle Scholar
  44. Matusova R., van Mourik T., Bouwmeester H.J. (2004) Changes in the sensitivity of parasitic weed seeds to germination stimulants, Seed Sci. Res. 14, 335–344.CrossRefGoogle Scholar
  45. Matusova R., Rani K., Verstappen F.W.A., Franssen M.C.R., Beale M.H., Bouwmeester H.J. (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway, Plant Physiol. 139, 920–934.PubMedCrossRefGoogle Scholar
  46. Mescher M.C., Runyon J., De Moraes C.M. (2006) Plant host finding by parasitic plants: a new perspective on plant to plant communication, Plant Signal. Behav. 1, 284–286.PubMedGoogle Scholar
  47. Musselman L.J., Yoder J.I., Westwood J.H. (2001) Parasitic plants major problem of food crops, Science 293, 1434.PubMedCrossRefGoogle Scholar
  48. Nickrent D.L. (2007) Parasitic plant genera and species. Parasitic plant connection, http://www.parasiticplants.siu.edu/
  49. Nickrent D.L., Duff R.J., Colwell A.E., Wolfe A.D., Young N.D., Steiner K.E., dePamphilis C.W. (1998) Molecular phylogenetic and evolutionary studies of parasitic plants, in: Soltis D.E., Soltis P.S., Doyle J.J. (Eds.), Molecular Systematics of Plants II. DNA Sequencing, Kluwer Academic Publishers, Boston, Massachusetts, USA, pp. 211–241.Google Scholar
  50. Oswald A. (2005) Striga control – technologies and their dissemination, Crop Prot. 24, 333–342.CrossRefGoogle Scholar
  51. Parker C. (1991) Protection of crops against parasitic weeds, Crop Prot. 10, 6–22.CrossRefGoogle Scholar
  52. Parker C., Riches C.R. (1993) Parasitic Weeds of the World: Biology and Control, CAB International, Wallingford, UK.Google Scholar
  53. Plenchette C., Clermont-Dauphin C., Meynard J.M., Fortin J.A. (2005) Managing arbuscular mycorrhizal fungi in cropping systems, Can. J. Plant Sci. 85, 31–40.Google Scholar
  54. Press M.C, Graves J.D. (1995) Parasitic Plants, Chapman and Hall, London, UK.Google Scholar
  55. Rispail N., Dita M.A., González-Verdejo C., Pérez-de-Luque A., Castillejo M.A., Prats E., Román B., Jorrín J., Rubiales D. (2007) Plant resistance to parasitic plants: molecular approaches to an old foe, New Phytol. 173, 703–712.PubMedCrossRefGoogle Scholar
  56. Rubiales D. (2003) Parasitic plants, wild relatives and the nature of resistance, New Phytol. 160, 459–461.CrossRefGoogle Scholar
  57. Runyon J.B., Mescher M.C., De Moraes C.M. (2006) Volatile chemical cues guide host location and host selection by parasitic plants, Science 313, 1964–1967.PubMedCrossRefGoogle Scholar
  58. Sanders I.R., Koide R.T., Shumway D.L. (1993) Mycorrhizal stimulation of plant parasitism, Can. J. Bot., 71, 1143–1146.Google Scholar
  59. Serghini K., Pérez-de-Luque A., Castejón-Muñoz M., García-Torres L., Jorrín J.V. (2001) Sunflower (Helianthus annuus L.) response to broomrape (Orobanche cernua Loefl.) parasitism: induced synthesis and excretion of 7-hydroxylated simple coumarins, J. Exp. Bot. 52, 2227–2234.PubMedGoogle Scholar
  60. Siame B.A., Weerasuriya Y., Wood K., Ejeta G., Butler L.G. (1993) Isolation of strigol, a germination stimulant for Striga asiatica, from host plants, J. Agric. Food Chem. 41, 1486–1491.CrossRefGoogle Scholar
  61. Tooker J.F., De Moraes, C.M. (2007) Feeding by Hessian fly [Mayetiola destructor (Say)] larvae does not induce plant indirect defences, Ecol. Entomol. 32,153–161.CrossRefGoogle Scholar
  62. Tooker J.F., Rohr J.R., Abrahamson W.G., De Moraes C.M. (2008) Gall insects can avoid and alter indirect plant defenses. New Phytol. 178, 657–672.Google Scholar
  63. Turlings T.C.J., Ton J. (2006) Exploiting scents of distress: the prospect of manipulating herbivore-induced plant odours to enhance the control of agricultural pests, Curr. Opin. Plant Biol. 9, 421–427.PubMedCrossRefGoogle Scholar
  64. Vurro M., Boari A., Pilgeram A.L., Sands D.C. (2006) Exogenous amino acids inhibit seed germination and tubercle formation of Orobanche ramosa (Broomrape): Potential application for management of parasitic weeds, Biol. Control 36, 258–265.CrossRefGoogle Scholar
  65. Wigchert S.C.M., Kuiper E., Boelhouwer G.J., Nefkens G.H.L., Verkleij J.A.C., Zwanenburg B. (1999) Dose-response of seeds of the parasitic weeds Striga and Orobanche toward the synthetic germination stimulants GR 24 and Nijmegen 1, J. Agric. Food Chem. 47, 1705–1710.PubMedCrossRefGoogle Scholar
  66. Yokota T., Sakai H., Okuno K., Yoneyama K., Takeuchi Y. (1998) Alectrol and orobanchol, germination stimulants for Orobanche minor, from its host red clover, Phytochemistry 49, 1967–1973.CrossRefGoogle Scholar
  67. Yoneyama K., Ogasawara M., Takeuchi Y., Konnai M., Sugimoto Y., Seto H., Yoshida S. (1998) Effect of jasmonates and related compounds on seed germination of Orobanche minor Smith and Striga hermonthica (Del.) Benth, Biosci. Biotechnol. Biochem. 62, 1448–1450.CrossRefGoogle Scholar
  68. Yoneyama K., Yoneyama K., Takeuchi Y., Sekimoto H. (2007) Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites, Planta 225, 1031–1038.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Justin B. Runyon
    • 1
  • John F. Tooker
    • 1
  • Mark C. Mescher
    • 1
  • Consuelo M. De Moraes
    • 2
  1. 1.Department of EntomologyPennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of EntomologyPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations