Skip to main content

Processes

  • Chapter
Micromanufacturing
  • 914 Accesses

Abstract

Manufacturing processes convert raw material into desired parts to make usable and saleable products. All manufacturing processes are evaluated and then selected for specific applications based on the type and amount of energy involved, the process mechanism and its capability (including accuracy and repeatability), environmental effects, and economy. In addition to these measures, micromanufacturing processes also need to be evaluated on the quality of the removal (or plastic deformation or addition) of the smallest amount of material in one cycle, as well as the achievable precision of the related micromanufacturing equipment. This chapter begins by describing the status of the micromanufacturing processes observed during the WTEC visits to Asia and Europe. The state-of-the-art of micromanufacturing processes in the U.S. is also included in this chapter. The sites visited in Asia and Europe include industry, universities and research organizations. Specific issues of process mechanism, modeling and simulation, surface integrity, and scaling effects are summarized in the second part of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balendra, R., Y. Qin. 2004. Research dedicated to the development of advanced metal forming technologies. Journal of Materials Processing Technology 145, 144–152.

    Article  Google Scholar 

  • Cao, J., N. Krishnan, Z. Wang, H. Lu. 2004. Microforming: Experimental investigation of the extrusion process for micropins and its numerical simulation using RKEM. Journal of Manufacturing Science and Engineering 126:4, 642–652.

    Article  Google Scholar 

  • Cohen, A., G. Zhang, F.-G. Tseng. 1999. EFAB: Rapid, low-cost desktop micromachining of high aspect ratio true 3-D MEMS (Micro electro mechanical systems). In Proceedings of the 12th IEEE International Conference, January 17–21, Orlando, USA.

    Google Scholar 

  • Dutta, M., R. V. Shenoy, L. T. Romonkiw. 1996. Recent advances in the study of electrochemical micromachining. J Eng Ind 118:29, 29–36.

    Google Scholar 

  • Ehrfeld, W., H. Lehr, F. Michel, A. Wolf. 1996. Micro electro discharge machining as a technology in micromachining. Proceedings of SPIE 2879, 332–337.

    Google Scholar 

  • FANUC ROBOnano alpha-0iB machining samples, http://www.fanuc.co.jp/en/product/ROBOnano/sample/index.html (Accessed October 20, 2005).

    Google Scholar 

  • FANUC ROBOnano Ui, Brochure (2004).

    Google Scholar 

  • Fraunhofer Institut Lasertechnik (ILT). http://www.ilt.fhg.de (Accessed October 20, 2005).

    Google Scholar 

  • Fraunhofer Institut Produktionstechnologie (IPK), http://www.ipt.fraunhofer.de (Accessed October 20, 2005).

    Google Scholar 

  • Fukuda Laboratory, Nagoya University, http://www.mein.nagoya-u.ac.jp/ (Accessed October 20, 2005).

    Google Scholar 

  • Geiger. M, A. Mebner, U. Engel. 1997. Production of microparts: Size effects in bulk metal forming, similarity theory. Production Engineering 4:1, 55–58.

    Google Scholar 

  • Gershenfeld, N. Private communication to author. December, 2004.

    Google Scholar 

  • Goto. A., T. Magara, T. Moro. 1998. Formation of hard layer on metallic material by EDM. In Proceedings of the 12th International Symposium for Electro-Machining, May, Aachen, Germany.

    Google Scholar 

  • Goto. A., T. Moro, K. Matsukawa, M. Akiyoshi. 2001. Development of electrical discharge coating method. In Proceedings of the 13th International Symposium for Electro-Machining, May 9–11, Bilbao, Spain.

    Google Scholar 

  • Hitachi Anisotropic Conductive Film ANISOLM™. Brochure (2004).

    Google Scholar 

  • Hitachi Arranged Tubes Technology. Brochure (2004).

    Google Scholar 

  • Ikawa, N., R. R. Donaldson, R. Komanduri, W. Koenig, T. H. Aachen, P. A. McKeown, T. Moriwaki, I. F. Stowers. 1991a. Ultra-precision metal cutting: The past, present and future. Annals of the CIRP 40, 587–594.

    Google Scholar 

  • Ikawa, N., S. Shimada, H. Tanaka, G. Ohmori. 1991b. Atomistic analysis of nanometric chip removal as affected by tool-work interaction in diamond turning. Annals of the CIRP 40, 551–554.

    Google Scholar 

  • Ikuta, K. Biochemical Micro System Engineering Laboratory, Deptartment of Micro System Engineering, School of Engineering, Nagoya University, http://biomicro.ikuta.mech.nagoya-u.ac.jp/~ikuta/index.html (Accessed October 20, 2005).

    Google Scholar 

  • IPK (Institut Produktionsanlagen und Konstruktionstechnik) and IWF (Institut fur Werkzeugmaschinen und Fabrikbetrieb) handout. “Future,” page 3–34, Jan, 2004.

    Google Scholar 

  • ITRI (Industrial Technology Research Institute) Annual Report “An Introduction to ITRI Nanotechnology,” 2004, Taiwan, pages 1–56.

    Google Scholar 

  • Kang, S. and A. G. Cooper. 1999. Fabrication of high quality ceramic parts using mold SDM. Paper presented at the Solid Freedom Fabrication Symposium, August, Austin, USA, 427–434.

    Google Scholar 

  • Kawahara, N., T. Suto, T. Hirano, Y. Ishikawa, Y. Kitahara, N. Ooyama, T. Ataka. 1997. Microfactories: new applications of micromachine technology to the manufacture of small products. Microsystem Technology 3: 37–41.

    Article  Google Scholar 

  • Kitahara, T., K. Ashida, M. Tanaka, Y. Ishikawa, N. Ooyama, Y. Nakazawa. 1998. Microfactory and Microlathe. In Proceedings of the International Workshop on Microfactories, December 7–9, Tsukuba, Japan.

    Google Scholar 

  • Lee, K. and D. A. Dornfeld. 2002. An experimental study on burr formation in micro milling aluminum and copper, Transaction of the NAMRI/SME 30, 255–261.

    Google Scholar 

  • Liu, X., R. DeVor, S. Kapoor, K. Ehmann. 2005. The Mechanics of Machining at the Micro-Scale: Assessment of the Current State-of-the Science. Trans ASME Journal of Manufacturing Science and Engineering 126, 666–678.

    Article  Google Scholar 

  • Lucca, D. A., R. L. Rhorer, R. Komanduri. 1991. Energy dissipation in the ultraprecision machining of copper. Annals of the CIRP 40, 69–72.

    Google Scholar 

  • Lucca, D. A. and Y. W. Seo. 1993. Effect of tool edge geometry on energy dissipation in ultraprecision machining. Annals of the CIRP 42, 83–86.

    Google Scholar 

  • Lucca, D. A., Y. W. Seo, L. Rhorer. 1994. Energy dissipation and tool-workpiece contact in ultraprecision machining. STLE Tribology Transactions 37, 651–657.

    Google Scholar 

  • Masuzawa, T. 2000. State of the art of micromachining. Annals of the CIRP 49:2, 473–488.

    Google Scholar 

  • Masuzawa, T. 2001. Micro EDM. In Proceedings of 13th International Symposium for Electromachining, May 9–11, Bilbao, Spain.

    Google Scholar 

  • Matsuura Machinery Corporation, http://www.vcnet.fukui.fukui.jp/co/en/matsuura.html (Accessed October 20, 2005).

    Google Scholar 

  • Micro-Blast: Micropump based on liga and silicon technology, http://www.el.utwente.nl/tdm/mmd/projects/mublast/ (Accessed October 20, 2005).

    Google Scholar 

  • Miraikan, (The National Museum of Emerging Science and Innovation), http://www.miraikan.jst.go.jp (Accessed October 20, 2005).

    Google Scholar 

  • MIRDC (Metal Industries Research & Development) Research report, Taiwan, 2004, page 1–21, http://www.mirdc.org.tw (Accessed October 20, 2005).

    Google Scholar 

  • Moriwaki, T., N. Sugimura, K. Manabe, K. Iwata. 1991. A study on orthogonal micromachining of single crystal copper. Transactions of the NAMRI/SME 19, 177–183.

    Google Scholar 

  • Ohmori, H. and T. Nakagawa. 1995. Analysis of mirror surface generation of hard and brittle materials by ELID (Electrolytic in-Process Dressing) grinding with superfine grain metallic bond wheels. Annals of the CIRP, 44:1, 287–290.

    Google Scholar 

  • Ohmori, H., K. Katahira, Y. Uehara, W. Lin. 2003. ELID-grinding of microtool and applications to fabrication of microcomponents, International Journal of Materials and Product Technology 18:4/5/6, 498–508.

    Google Scholar 

  • Okazaki, K. Micromachine tool to machine micro-parts. 2000. In Proceedings of the American Society for Precision Engineering 15th Annual Meeting, October, Scottsdale, Arizona.

    Google Scholar 

  • Okazaki, K. and T. Kitahara. 2000. Microlathe equipped with numerical control. Journal of the JSPE 67:11, 1878.

    Google Scholar 

  • Photosensitive film for µ-TAS ME-1000 series. Hardcopy of viewgraphs from presentation on [date], [location].

    Google Scholar 

  • Rajurkar, K.P., Z. Yu. 2003. Micro EDM and its applications. In Proceedings of SME’s Precision Micro Machining Technology and Applications Technical Conference, June 11–12, Minneapolis, USA.

    Google Scholar 

  • Regenfuß, P., L. Hartwig, S. Klötzer, R. Ebert, T. Brabant, T. Petsch, H. Exner. 2004. Industrial freeform generation of microtools by laser micro sintering. In Proceedings of the Solid Freeform Fabrication Symposium, D. Bourell, et al., eds., August 2–4, Austin, TX, 709–719.

    Google Scholar 

  • Research Activities Report, 2003 Robotics and Mechatronics, Nagoya University, page 1–72, March, 2004.

    Google Scholar 

  • RIKEN Research, brochure, 2004, Japan.

    Google Scholar 

  • Tönshoff, H. K., T. Masuzawa. 1997. Three dimensional micromachining by machine tools. Annals of the CIRP 46:2, 621–628.

    Google Scholar 

  • Ueda, K, K. Iwata. 1980. Chip formation mechanism in single crystal cutting of beta-brass. Annals of the CIRP 29, 65–68.

    Article  Google Scholar 

  • Vogler, M. P., S. G. Kapoor, R. E. DeVor. 2004. On the modeling and analysis of machining performance in micro-endmilling, Part I: Surface generation. Journal of Manufacturing Science and Engineering 126:4, 685–694.

    Article  Google Scholar 

  • Waldorf, D. J., R. E. De Vor, S. G. Kapoor. 1999. An evaluation of ploughing models for orthogonal machining, Journal of Manufacturing Sciences and Engineering 121, 550–558.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Rajurkar, K., Madou, M. (2007). Processes. In: Micromanufacturing. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5949-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-5949-0_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5948-3

  • Online ISBN: 978-1-4020-5949-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics