Skip to main content

Abstract

The concept of the blood-brain barrier derives from the classical studies of the pioneers in chemotherapy, such as Ehrlich, who administered dyestuffs parenterally in the hope that they would attack infective organisms. Thus Ehrlich observed that many dyes, after intravenous injection, stained the tissues of practically the whole body, while the brain was spared. Later, Lewandowsky (1900) showed that the Prussian blue reagents (iron salt and potassium ferrocyanide) did not pass from blood to brain, and he formulated clearly the concept of the blood-brain barrier (Bluthirnschranke). The more definitive demonstration of the barrier we owe to Goldmann, who showed (1909) that, after intravenous injection with trypan blue, the brain was unstained; the dye did not enter the cerebrospinal fluid (CSF), although the choroid plexuses and meninges were stained. In a second paper (Goldmann, 1913), he described experiments in which trypan blue was injected into the CSF; in this event, the brain tissue was strongly stained, so that Goldmann rightly concluded that there was, indeed, a barrier between blood, on the one hand, and brain tissue on the other. Any argument that the failure to stain the brain with trypan blue after intravenous injection was due to a peculiar staining feature of the nervous tissue was negated by this fundamental ‘second experiment’, the first experiment being the demonstration that nervous tissue was unstained after intravenous injection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, NJ., Davson, H., Glen, I. and Grant, N. (1971). Chloride transport and potential across the blood—CSF barrier. Brain Res., 29, 185–193

    Article  PubMed  CAS  Google Scholar 

  • Ahlskog, J.E. et al. (1989). Cerebrospinal fluid indices of blood-brain barrier permeability following adrenal—brain transplantation in patients with Parkinson’s disease. Exp. Neurol., 105, 152–161

    Article  PubMed  CAS  Google Scholar 

  • Ahmed, N. and Van Harreveld, A. (1969). The iodide space in rabbit brain. J Physiol., 204, 31–50

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Andres, K.H. (1967). Uber die Feinstruktur der Arachnoidea und Dura mater von Mammalia. Z. Zellforsch., 79, 272–295

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, B.K., Robinson, PJ. and Rapoport, S.I. (1987). Size-dependent blood-brain barrier opening demonstrated with [14C] sucrose and a 200,000-Da [3H] dextran. Exp. Neurol., 97, 686–696

    Article  PubMed  CAS  Google Scholar 

  • Aronson, P.S. (1978). Energy-dependence of phlorizin-binding to isolated renal microvillus membranes. J. Membrane Biol., 42, 81–98

    Article  CAS  Google Scholar 

  • Ashcroft, G.W., Dow, R.C. and Moir, A.T.B. (1968). The active transport of 5-hydroxyindole-3-acetic acid and 3-methoxy-4-hydroxyphenylacetic acid from a recircu-lating perfusion system of the cerebral ventricles of the unanaesthetized dog. J. Physiol., 199, 397–425

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ashwell, G. and Morell, A.G. (1974). The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv. Enzymol, 41, 99–128

    PubMed  CAS  Google Scholar 

  • Audus, K.L. and Borchardt, R.T. (1986). Characteristics of the large neutral amino acid transport system of bovine microvessel endothelial cell monolayers. J. Neurochem., 47, 484–488

    Article  PubMed  CAS  Google Scholar 

  • Bakay, L. and Lindberg, O. (1949). Studies on the role of the cerebrospinal fluid in brain metabolism as measured with radioactive phosphate. Acta Physiol. Scand., 17, 179–190

    Article  PubMed  CAS  Google Scholar 

  • Balin, BJ., Broadwell, R.D. and Salcman, M. (1987). Tubular profiles do not form transendothelial channels through the blood-brain barrier. J. Neurocytol., 16. 721–735

    Article  PubMed  CAS  Google Scholar 

  • Baly, D.L. and Horuk, R. (1988). The biology and biochemistry of the glucose transporter. Biochem. Biophys. Acta, 947, 571–590

    PubMed  CAS  Google Scholar 

  • Baños, G., Daniel, P.M., Moorhouse, S.R. and Pratt, O.E. (1973). The influx of amino acids into the brain of the rat in vivo: the essential compared with some non-essential amino acids. Proc. Roy. Soc. B, 183, 59–70

    Article  Google Scholar 

  • Barondes, S.H. (1988). Bifunctional properties of lectins: lectins redefined. Trends Biochem. Sci., 13, 480–482

    Article  PubMed  CAS  Google Scholar 

  • Beck, D.W., Roberts, R.L. and Olson, J J. (1986). Glial cells influence membrane-associated enzyme activity at the blood-brain harrier Brain Res., 381, 131–137

    Article  PubMed  CAS  Google Scholar 

  • Beck, D.W., Vinters, H.V., Hart, M.N. and Cancilla, P.A. (1984). Glial cells influence polarity of the blood-brain barrier. J Neuropathol. Exp Neurol., 43, 219–224

    Article  PubMed  CAS  Google Scholar 

  • Bertler, A., Falck, B., Owman, C. and Rosengren, C. (1966). The localization of monoaminergic blood-brain barrier mechanisms. Pharmacol. Rev., 18, 369–385

    PubMed  CAS  Google Scholar 

  • Bertler, A., Falck, B. and Rosengren, E. (1963). The direct demonstration of a barrier mechanism in the brain capillaries. Acta Pharmacol. Toxicol., 20, 317–321

    Article  CAS  Google Scholar 

  • Bertossi, M., Ribatti, D., Nico, B., Virginntino, D., Mancini, L. and Roncali, L. (1989). Computerized three-dimensional reconstruction of the developing blood-brain barrier. Acta Neuropathol., 79, 48–51

    Article  PubMed  CAS  Google Scholar 

  • Betz, A.L., Firth, J.A. and Goldstein, G.W. (1980). Polarity of the blood-brain barrier: distribution of enzymes between the luminal and antiluminal membranes of brain capillary endothelial cells. Brain Res., 192, 17–28

    Article  PubMed  CAS  Google Scholar 

  • Betz, A.L. and Goldstein, G.W. (1978). Polarity of the blood-brain barrier: neutral amino acid transport into isolated brain capillaries. Science, 202, 225–227

    Article  PubMed  CAS  Google Scholar 

  • Birnbaum, M J., Haspel, H.C. and Rosen, O.M. (1986). Cloning and characterization of a cDNA encoding the rat brain glucose-transporter protein. Proc. Natl Acad. Sci. USA, 83, 5784–5788

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bito, L.Z., Bradbury, M.W.B. and Davson, H. (1966). Factors affecting the distribution of iodide and bromide in the central nervous system. J. Physiol., 185, 323–354

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bito, L.Z. and Davson, H. (1966). Local variations in cerebrospinal fluid composition and its relationship to the composition of the extracellular fluid of the cortex. Exp. Neurol., 14, 264–280

    Article  PubMed  CAS  Google Scholar 

  • Bito, L.Z. and Davson, H. (1974). Carrier-mediated removal of prostaglandins from cerebrospinal fluid. J. Physiol., 236, 39P-40P

    Google Scholar 

  • Bito, L.Z., Davson, H. and Salvador, E.V. (1976). Inhibition of in vitro concentrative prostaglandin accumulation by prostaglandins, prostaglandin analogues and by some inhibitors of organic anion transport. J. Physiol., 256, 257–271

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Blasberg, R.G., Fenstermacher, J.D. and Patlak, C.S. (1983). Transport of α-aminoisobutyric acid across brain capillary and cellular membranes. J. Cereb. Blood Flow Metab., 3, 8–32

    Article  PubMed  CAS  Google Scholar 

  • Bourke, R.S., Gabelnick, H.L. and Young, O. (1970). Mediated transport of chloride from blood into cerebrospinal fluid. Exp . Brain Res., 10, 17–38

    Article  PubMed  CAS  Google Scholar 

  • Bowman, P.D., Ennis, S.E., Rarey, K.E., Betz, A.L. and Goldstein, G.W. (1983). Brain microvessel endothelial cells in tissue culture: a model of blood-brain barrier permeabil-ity. Ann. Neurol., 14, 396–402

    Article  PubMed  CAS  Google Scholar 

  • Bradbury, M.W.B. (1979). The Concept of a Blood-Brain Barrier. Wiley, Chichester

    Google Scholar 

  • Bradbury, M.W.B. and Cole, D.F. (1980). The role of the lymphatic system in drainage of cerebrospinal fluid and aqueous humour. J. Physiol., 299, 353–365

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bradbury, M.W.B., Cserr, H.E. and Westrop, R. J. (1981). Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. : Am. JPhysiol., 240, F329-F336

    Google Scholar 

  • Bradbury, M.W.B. and Kleeman, C.R. (1967). Stability of the potassium content of cerebrospinal fluid and brain. Am. J. Physiol., 213, 519–528

    PubMed  CAS  Google Scholar 

  • Bradbury, M.W.B., and Sarna, G.S. (1977). Homeostasis of the ionic composition of the cerebrospinal fluid. Exp. EyeRes., 25(Suppl), 249–257

    CAS  Google Scholar 

  • Bradbury, M.W.B., Segal, M.B. and Wilson, J. (1972). Transport of potassium at the blood-brain barrier. J. Physiol., 221, 617–632

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bradbury, M.W.B. and Stulcova, B. (1970). Efflux mechanism contributing to the stability of the potassium concentration in cerebrospinal fluid. J. Physiol., 208, 415–430

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bradbury, M.W.B., Villamil, M. and Kleeman, C.R. (1968). Extracellular fluid, ionic distribution and exchange in isolated frog brain. Am. J. Physiol., 214, 643–651

    PubMed  CAS  Google Scholar 

  • Brendel, K., Meezan, E. and Carlson, E.C. (1974). Isolated brain microvessels: a purified metabolically active preparation from bovine cerebral cortex. Science, 185, 953–955

    Article  PubMed  CAS  Google Scholar 

  • Brightman, M.W. (1965). The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. Am. J. Anat., 117, 193–220

    Article  PubMed  CAS  Google Scholar 

  • Brightman, M.W. (1977). Morphology of blood-brain interfaces. Exp. Eye Res., 25 (Suppl), 1–25

    Article  PubMed  Google Scholar 

  • Brightman, M.W. and Reese, T.S. (1969). Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol., 40, 648–677

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Broadwell, R.D. (1988). Absence of a blood-brain barrier within transplanted brain tissue? Science, 241, 473–474

    Article  PubMed  CAS  Google Scholar 

  • Broadwell, R.D. (1989). Transcytosis of macromolecules through the blood-brain barrier: a cell biological perspective and critical appraisal. Acta Neuropathol., 79, 117–128

    Article  PubMed  CAS  Google Scholar 

  • Broadwell, R.D., Balin, B. J. and Selcman, M. (1988). Transcytotic pathway for blood-borne protein through the blood-brain barrier. Proc. Natl Acad. Sci. USA, 85, 632–636

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bruns, R.R. and Palade, G.E. (1968). Studies on blood capillaries. I. and II. J. Cell Biol., 37, 244–299

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bugge, J. (1974). The cephalic arteries of hystriomorph rodents. Symp. Zool. Soc. London, 34, 61–68

    Google Scholar 

  • Bundgaard, M., Hagman, P. and Crone, C. (1983). The three-dimensional organization of plasmalemmal vesicular profiles in the endothelium of rat heart capillaries. Microvasc. Res., 25, 358–368

    Article  PubMed  CAS  Google Scholar 

  • Cameron, I.R., Davson, H. and Segal, M.B. (1969). The effect of hypercapnia on the blood-brain barrier to sucrose in the rabbit. Yale J. Biol. Med., 42, 241–247

    PubMed  CAS  PubMed Central  Google Scholar 

  • Campbell, P.N. and Davson, H. (1948). Absorption of 3-methylglucose from the small intestine of the rat and cat. Biochem. J., 43, 426–429

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cardelli-Cangiano, P. et al. (1987). Isolated brain microvessels as in vitro equivalent of the blood-brain barrier: selective removal by collagenase of the A-system of neutral amino acid transport. J. Neurochem., 47, 1667–1678

    Article  Google Scholar 

  • Carter-Su, C., Pessin, J.E., Moia, R., Gitomer, W. and Geeh, M.P. (1982). Photoaffinity labelling of the human erythrocyte D-glucose transporter. J. Biol. Chem., 257, 5419–5425

    PubMed  CAS  Google Scholar 

  • Carter-Su, C., Pillion, D.J. and Czech, M.P. (1980). Reconstituted D-glucose transport from the adipocyte plasma membrane. Biochemistry, 19, 2374–2385

    Article  PubMed  CAS  Google Scholar 

  • Chen, C.-C. et al. (1986). Human erythrocyte glucose transporter: normal asymmetric orientation and function in liposomes. Proc. Natl Acad. Sci. USA, 83, 2652–2656

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Christensen, H.N. (1969). Some special kinetic problems of transport. Adv. Enzymol., 32, 1–31

    PubMed  CAS  Google Scholar 

  • Christensen, H.N. (1979). Exploiting amino acid structure to learn about membrane transport. Adv. Embryol. RelatedAreas Mol. Biol., 49, 41–101

    CAS  Google Scholar 

  • Christensen, H.N. et al. (1965). The use of N-methylation to direct the route of mediated transport of amino acids. J Biol. Chem., 240, 3609–3636

    PubMed  CAS  Google Scholar 

  • Christensen, H.N., Handgloten, M.E., Lam, I., Tager, S. and Zand, R. (1969). A bicyclic amino acid to improve discriminations among transport systems. J. Biol. Chem., 244, 1510–1520

    PubMed  CAS  Google Scholar 

  • Christensen, H.N. and Liang, M. (1966). Transport of diamino acids into the Ehrlich cell. J. Biol. Chem., 241, 5542–5551

    PubMed  CAS  Google Scholar 

  • Christensen, H.N., Oxender, D.L., Liang, M. and Vatz, K.A. (1965). The use of N-methylation to directthe route of mediated transport of amino acids. J. Biol.Chem., 240, 3609–3616

    PubMed  CAS  Google Scholar 

  • Clemente, C.D. and Holst, E.A. (1954). Pathological changes in neurons, neuroglia and blood-brain barrier induced by X-irradiation of heads of monkeys. Arch. Neurol. Psychiat., 71, 66–79

    Article  CAS  Google Scholar 

  • Collander, R. (1949). The permeability of plant protoplasts to small molecules. Physiol. Plant., 2, 300

    Article  Google Scholar 

  • Collander, R. and Barlund, H. (1933). Permeabilitatsstudien an Chara Ceralophylla. Acta. Bot. Fenn., 11, 1–14

    Google Scholar 

  • Courtice, F.S. and Simmonds, W. J. (1951). The removal of protein from the subarachnoid space. Aust. J. Exp. Biol. Med. Sci., 29, 255–263

    Article  PubMed  CAS  Google Scholar 

  • Crane, R.K. (1977). The gradient hypothesis and other models of carrier-mediated active transport. Rev. Physiol Biochem. Pharmacol., 78, 99–159

    PubMed  CAS  Google Scholar 

  • Crane, R.K., Forstner, G. and Eicholz, A. (1965). An effect of Na+ concentration on the apparent Michaelis constant for intestinal sugar transport in vitro. Biochim. Biophys. Acta, 109, 467–477

    Article  PubMed  CAS  Google Scholar 

  • Cremer, J.E., Heath, D.F., Teal, H.M., Woods, M.S. and Cavanagh, J.B. (1975). Some dynamic aspects of brain metabolism in rats given portocaval anastomosis. Neuropathol. Appl. Neurobiol., 1, 293–311

    Article  CAS  Google Scholar 

  • Crone, C. (1961). Om diffusionen afnogle organiske non-elektrolyter fra bold til hjernevaev. Ejnar Munksgaard, Kobenhaven

    Google Scholar 

  • Crone, C. (1963). The permeability of capillaries in various organs as determined by the use of the ‘Indicator Diffusion’ method. Acta Physiol. Scand., 58, 292–305

    Article  PubMed  CAS  Google Scholar 

  • Crone, C. (1965). Facilitated transfer of glucose from blood into brain tissue. J. Physiol., 181, 103–113

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Crone, C. and Olesen, P. (1981). The electrical resistance of brain capillary endothelium. J. Physiol., 182, 53P-54P

    Google Scholar 

  • Cserr, H.F., Cooper, D.N., Suri, P.K. and Patlak, C.S. (1981). Efflux of radiolabeled polyethylene glycols and albumin from rat brain. Am. J. Physiol., 240, F319–F328

    Google Scholar 

  • Cuello, A.C. (1983). Cerebral distribution of opioid peptides. Br. Med. Bull., 39, 11–16

    PubMed  CAS  Google Scholar 

  • Curry, F.E. and Michel, C.C. (1980). A fiber matrix model of capillary permeability. Membrane Res., 20, 96–99

    CAS  Google Scholar 

  • Davson, H. (1955). A comparative study of the aqueous humour and cerebrospinal fluid in the rabbit. J. Physiol., 129, 111–133

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Davson, H. (1956). Physiology of the Ocular and Cerebrospinal Fluids. Churchill, London

    Google Scholar 

  • Davson, H. (1958). Some aspects of the relationship between the cerebrospinal fluid and the central nervous system. In The Cerebrospinal Fluid. Ciba Foundation Symposium. Churchill, London, pp. 189–203

    Google Scholar 

  • Davson, H. (1967). Physiology of the Cerebrospinal Fluid. Churchill, London

    Google Scholar 

  • Davson, H. (1976). The blood-brain barrier. Review Lecture, Physiological Society. J. Physiol., 255, 1–28

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Davson, H., Begley, D J., Chain, D.G., Briggs, F.O. and Shepherd, M.T. (1986). Steady-state distribution of cycloleucine and α-aminoisobutyric acid between plasma and cerebrospinal fluid. Exp. Neurol., 91, 163–173

    Article  PubMed  CAS  Google Scholar 

  • Davson, H. and Danielli, J.F. (1942). The Permeability of Natural Membranes. Cambridge University Press, Cambridge

    Google Scholar 

  • Davson, H. and Hollingsworth, J.G. (1973). Active transport of 131I across the blood-brain barrier. J. Physiol., 233, 327–347

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Davson, H., Hollingsworth, J.G., Carey, M.B. and Fenstermacher, J.D. (1982). Ventriculo-cisternal perfusion of twelve amino acids in the rabbit. J. Neurobiol., 13, 293–318

    Article  PubMed  CAS  Google Scholar 

  • Davson, H., Kleeman, C.R. and Levin, E. (1961). blood-brain barrier and extracellular space. J. Physiol., 159, 67P-68P

    Google Scholar 

  • Davson, H., Kleeman, C.R. and Levin, E. (1963). The blood-brain barrier. In Drugs and Membranes. (Proc. 1st. Int. Congr. Pharmacol. Stockholm). Pergamon, Oxford, pp. 71–94

    Google Scholar 

  • Davson, H. and Oldendorf, W.H. (1967). Transport in the central nervous system. Proc. Roy. Soc. Med., 60, 326–328

    PubMed  CAS  PubMed Central  Google Scholar 

  • Davson, H. and Pollay, M. (1963). The turnover of 24Na in the cerebrospinal fluid and its bearing on the blood-brain barrier. J. Physiol., 167, 247–255

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Davson, H. and Segal, M.B. (1970). The effects of some inhibitors and accelerators of sodium transport on the turnover of 22Na in the cerebrospinal fluid. J. Physiol., 209, 131–153

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Davson, H. and Spaziani, E. (1959). The blood-brain barrier.J. Physiol., 149, 135–143

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Davson, H. and Spaziani, E. (1960). The fate of substances injected into the anterior chamber of the eye. J. Physiol., 151, 202–215

    PubMed  CAS  PubMed Central  Google Scholar 

  • Davson, H. and Welch, K. (1971). The permeation of several materials into the fluids of the rabbit’s brain. J. Physiol., 218, 337–351

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Davson, H., Welch, K. and Segal, M.B. (1987). Physiology and Pathophysiology of the Cerebrospinal Fluid. Churchill Livingstone, London

    Google Scholar 

  • Deane, R. and Segal, M.B. (1985). The transport of sugars across the perfused choroid plexus of the sheep. J. Physiol., 362, 245–260

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • DeBault, L.E., and Cancilla, P.A. (1980). γ -glutamyl transpeptidase in isolated brain endothelial cells and induction by glial cells in vitro. Science, 207, 653–655

    Article  PubMed  CAS  Google Scholar 

  • Dehouck, M.-P., Méresse, S., Delorme, P., Fruchart, J.-C. and Cecchelli, R. (1990). An easier, reproducible, and mass production method to study the blood-brain barrierin in vitro. J. Neurochem., 54, 1798–1801

    Article  PubMed  CAS  Google Scholar 

  • Deng, Q-S. and Johanson, C.E. (1989). Stilbenes inhibit exchange of chloride between blood, choroid plexus and cerebrospinal fluid. Brain Res., 501, 183–187

    Article  PubMed  CAS  Google Scholar 

  • Diamond, J.M. and Bossert, W.H. (1967). Standing gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J. Gen. Physiol., 50, 2061–2083

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dick, A.P.K., Harik, S.I., Klip, A. and Walker, D.M. (1984). Identification and character-ization of the glucose transporter of the blood-brain barrier by cytochalasin B binding and immunological reactivity. Proc. Natl Acad. Sci. USA, 81, 7233–7237

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Duffy, K.R. and Pardridge, W.M. (1987). Blood-brain barrier transcytosis of insulin in developing rabbits. Brain Res., 420, 32–38

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg, H.M. and Suddith, R.L. (1979). Cerebral vessels have the capacity to transport sodium and potassium. Science, 206, 1083–1085

    Article  PubMed  CAS  Google Scholar 

  • Elsworth, J.D., Redmond, D.E. and Roth, R.H. (1982). Plasma and cerebrospinal fluid 3-methoxy-4-hydroxyphenylethylene glycol (MHPG) as indices of brain norepinephrine metabolism in primates. Brain Res., 235, 115–124

    Article  PubMed  CAS  Google Scholar 

  • Ernst, S.A. (1975). Transport ATPase cytochemistry: ultrastructural localization of potassium-dependent phosphatase activities in rat kidney cortex. J. Cell Biol., 66, 586–608

    Article  PubMed  CAS  Google Scholar 

  • Farrell, C.L. and Shivers, R.R. (1984). Capillary junctions in the rat are not affected by osmotic opening of the blood-brain barrier. Acta Neuropathol., 63, 179–188

    Article  PubMed  CAS  Google Scholar 

  • Felgenhauer, K. (1974). Protein size and cerebrospinal fluid. Klin. Wchschr., 52, 1158–1164

    Article  CAS  Google Scholar 

  • Fenstermacher, J.D. and Davson, H. (1982). Distribution of two model amino acids from cerebrospinal fluid to brain and blood. Am. J. Physiol., 242, F171–F180

    Google Scholar 

  • Fenstermacher, J.D. and Patlak, C.S. (1975). The exchange of material between cerebros-pinal fluid and brain. In Cserr, H.F., Fenstermacher, J.D. and Fencl, J.D. (Eds), Fluid Environment of the Brain. Academic Press, New York, pp. 201–214

    Google Scholar 

  • Fenstermacher, J.D., Patlak, C.S. and Blasberg, R.G. (1974). Transport of material between brain extracellular fluid, brain cells and blood. Fed. Proc., 33, 2070–2074

    PubMed  CAS  Google Scholar 

  • Firth, J.A. (1977). Cytochemical localization of the K+ regulation interface between blood and brain. Experientia, 33, 1093–1094

    Article  PubMed  CAS  Google Scholar 

  • Fishman, J.B. and Fine, R.E. (1985). A Golgi-derived exocytic coated vesicle can contain both newly synthesized acetylcholinesterase and internalized transferrin. J. Cell Biol., 101, 423a

    Google Scholar 

  • Frank, H. J.L. and Pardridge, W.M. (1987). A direct in vitro demonstration of insulin binding to isolated brain microvessels. Diabetes, 30, 757–761

    Article  Google Scholar 

  • Fremont-Smith, F., Dailey, M.E., Merritt, H.H. and Carroll, M.P. (1931). The composi-tion of the human cerebrospinal fluid and blood plasma in meningitis. Arch. Neurol. Psychiat., 25, 1290–1296

    Article  CAS  Google Scholar 

  • Frokjaer -Jensen, J. (1980). Three-dimensional organization of plasmalemmal vesicles in endothelial cells. An analysis by serial sectioning of frog mesenteric capillaries. J. Ultrastruct. Res., 73, 9–20

    Article  PubMed  CAS  Google Scholar 

  • Frokjaer-Jensen, J. (1984). The plasmalemmal vesicular system in striated muscle capillar-ies and in pericvtes. Tissue and Cell, 16, 31–42

    Article  PubMed  CAS  Google Scholar 

  • Gerhart, D.Z., LeVasseur, R. J., Broderius, M.A. and Drewes, L.R. (1989). Glucose transporter localization in brain using light and electron immunocytochemistry. J. Neurosci. Res., 22, 464–472

    Article  PubMed  CAS  Google Scholar 

  • Gherst-Egea, J.-F., Minn, A. and Siest, G. (1988). A new aspect of the protective function of the blood-brain barrier: activation of four drug-metabolizing enzymes in isolated brain microvessels. Life Sci., 42, 2515–2523

    Article  Google Scholar 

  • Gjedde, A. and Crone, C. (1975). Induction processes in blood-brain transfer of ketone bodies during starvation. Am. J. Physiol., 229, 1165–1169

    PubMed  CAS  Google Scholar 

  • Glynn, I.M., Hara, Y. and Richards, D.E. (1984). The occlusion of sodium ions within the mammalian sodium-potassium pump: its role in sodium transport. J. Physiol., 351, 531–547

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Glynn, I.M. and Richards, D.E. (1982). Occlusion of rubidium ions by the sodium-potassium pump: its implications for the mechanism of potassium transport. J. Physiol., 330, 17–43

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Glynn, I.M., Richards, D.E. and Hara, Y. (1985). The properties and role of occluded ion forms of the Na,K-ATPase. In Glynn, I.M. and Ellory, C. (Eds), The Sodium Pump. The Company of Biologists, Cambridge

    Google Scholar 

  • Goldmann, E.E. (1909). Die äussere und innere Sekretion des gesunden und kranken Organismus im Lichte der ‘vitalen Färbung’. Beitr. Klin. Chir., 64,192–265

    Google Scholar 

  • Goldmann, E.E. (1913). Vitalfärbung am Zentralnervensystem. Abh. Preuss. Akad. Wiss. Phys.-Math. Kl., No. 1, 1–60

    Google Scholar 

  • Goldstein, .G.W. (1979). Relation of potassium transport to oxidative metabolism in isolated brain capillaries. J. Physiol., 286, 185–195

    Article  Google Scholar 

  • Goldstein, G.W. (1988). Endothelial cell-astrocyte interactions. A cellular model of the blood-brain barrier. Ann. N.Y. Acad. Sci., 529, 31–39

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, G.W. and Betz, A.L. (1983). Recent advances in understanding brain capillary function. Ann. Neurol., 14, 389–395

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, G.W., Betz, A.L. and Bowman, P.D. (1984). Use of isolated brain capillaries and cultured endothelial cells to study the blood-brain barrier. Fed. Proc., 43, 191–195

    PubMed  CAS  Google Scholar 

  • Goldstein, J.L. et al. (1985). Receptor-mediated endocytosis: concepts emerging from LDL receptor system. Ann. Rev. Cell Biol., 1, 1–39

    Article  PubMed  CAS  Google Scholar 

  • Greig, N.H., Fredericks, W.R., Holloway, H.W., Sonerant, T.T. and Rapoport, S.I. (1988). Delivery of human interferon-alpha to brain by transient osmotic blood-brain barrier modification in the rat. J. Pharmacol., 245, 581–586

    CAS  Google Scholar 

  • Griffin, D.E. and Giffels, J. (1982). Study of protein characteristics that influence entry into cerebrospinal fluid of normal mice and mice with encephalitis. J. Clin. Invest., 70, 289–295

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Griffiths, G. and Simons, K. (1986). The trans Golgi network: sorting at the exit side of the Golgi complex. Science, 234, 438–443

    Article  PubMed  CAS  Google Scholar 

  • Häggendal, E. and Johansson, B. (1972). Effect of increased intravascular pressure on the blood-brain barrier to protein in dogs. Acta Neuropathol. Scand., 48, 271–275

    Article  Google Scholar 

  • Hammes, G.G. (1982). Unifying concept for the coupling between ion pumping and ATP hydrolysis or synthesis. Proc. NatlAcad. Sci., 79, 6881–6884

    Article  CAS  Google Scholar 

  • Hansson, H.-A. and Johansson, B.B. (1980). Induction of pinocytosis in cerebral vessels by acute hypertension and by hyperosmolar solutions. J Neurosci. Res., 5, 183–190

    Article  PubMed  CAS  Google Scholar 

  • Hardebo, J.E. (1980). A time study in rat on the opening and reclosure of the blood-brain barrier after hypertensive or hypertonic insult. Exp. Neurol., 70, 155–166

    Article  PubMed  CAS  Google Scholar 

  • Hardebo, J.E., Emson, P.C., Falck, B., Owman, C. and Rosengren, E. (1980). Enzymes related to monoamine transmitter metabolism in brain microvessels. J. Neurochem., 35, 1388–1393

    Article  PubMed  CAS  Google Scholar 

  • Hardebo, J.E., Falck, B., Owman, C. and Rosengren, E. (1979). Studies on the enzymatic blood-brain barrier: quantitative measurements of DOPA decarboxylase in the wall of microvessels as related to the parenchyma in various CNS regions. Acta Physiol. Scand., 105, 453–460

    Article  PubMed  CAS  Google Scholar 

  • Hardebo, J.E. and Nilsson, B. (1981). Opening of the blood-brain barrier by acute elevation of the intracarotid pressure. Acta Physiol. Scand., 111, 43–49

    Article  PubMed  CAS  Google Scholar 

  • Harik, S.I., Doull, G.H. and Dick, A.P.K. (1985). Specific ouabain binding to brain microvessels and choroid plexus. J. Cereb. Blood Flow Metab., 5, 156–160

    Article  PubMed  CAS  Google Scholar 

  • Hawkins, R.A., Mans, A.M. and Biebuyck, J.F. (1982). Amino acid supply to individual cerebral structures in awake and anesthetized rats. Am. J. Physiol., 242, E1–E11

    Google Scholar 

  • Hawkins, R.A., Mans, A.M., Davis, D.W., Hibbard, L.S. and Lu, D.M. (1983). Glucose availability to individual cerebral structures is correlated to glucose metabolism. J. Neurochem., 40, 1013–1018

    Article  PubMed  CAS  Google Scholar 

  • Hediger, M.A., Coady, M. J., Ikeda, T.S. and Wright, E.M. (1987a). Expression cloning and a cDNA sequencing of the Na+/glucose co-transporter. Nature, 330, 379–381

    Article  PubMed  CAS  Google Scholar 

  • Hediger, M.A., Coady, M. J., Ikeda, T.S. and Wright, E.M. (1987b). Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature, 330, 379–381

    Article  PubMed  CAS  Google Scholar 

  • Heinemann, U. and Lux, H.D. (1977). Ceiling of stimulus induced rises in extracellular potassium concentration in the cerebral cortex of the cat. Brain Res., 120, 231–249

    Article  PubMed  CAS  Google Scholar 

  • Heisey, S.R., Held, D. and Pappenheimer, J.R. (1962). Bulk flow and diffusion in the cerebrospinal fluid of the goat. Am. J. Physiol., 203, 775–781

    PubMed  CAS  Google Scholar 

  • Hibbard, L.S. and Hawkins, R.A. (1984). Three-dimensional reconstitution of metabolic data from quantitative autoradiography of rat brain. Am. J. Physiol., 247, E412–E419

    Google Scholar 

  • Hjelle, J.T., Baird-Lambert, J., Cardinale, G., Spector, S. and Udenfriend, S. (1978). Isolated microvessels: the blood-brain barrierin vitro. Proc. Natl Acad. Sci. USA, 75, 4544–4548

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hofstee, B.H. J. (1959). Non-inverted versus inverted plots in enzyme kinetics. Nature, 184, 1296–1298

    Article  PubMed  CAS  Google Scholar 

  • Hollingsworth, J.G. and Davson, H. (1973). Transport of sulfate in the rabbit’s brain. J. Neurobiol., 4, 389–396

    Article  PubMed  CAS  Google Scholar 

  • Hopfer, U. and Groseclose, R. (1980). The mechanism of Na+-dependent D-glucose transport. J. Biol. Chem., 255, 4453–4462

    PubMed  CAS  Google Scholar 

  • Houthoff, H. J., Go, G.K. and Gerrito, P.O. (1982). The mechanism of blood-brain barrier impairment by hyperosmolar perfusion. Acta Neuropathol., 56, 99–112

    Article  PubMed  CAS  Google Scholar 

  • Iversen, L.L. and Neal, M. J. (1968). The uptake of [3H]GABA by slices of rat cerebral cortex. J. Neurochem., 15, 1141–1149

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, J.M. (1977). Penetration of systemically injected horseradish peroxidase into ganglion and nerves of the autonomic nervous system. J. Neurocytol., 6, 607–618

    Article  PubMed  CAS  Google Scholar 

  • Johanson, C.E., Parandoosh, Z. and Smith, Q.R. (1985). Cl-HCO3 exchange in choroid plexus: analysis by the DMO method for cell pH. Am. J. Physiol., 249, F478–F484

    Google Scholar 

  • Johanson, C.E. et al. (1989). In Intracranial Pressure. VII. Ed. Hoff & Betz. Springer Verlag: Berlin.

    Google Scholar 

  • Johanson, C.E., Sweeney, S.M., Parmelee, J.T. and Epstein, M.H. (1990). Cotransport of sodium and chloride by the adult mammalian choroid plexus. Am. J. Physiol., 258, C211–C216

    Google Scholar 

  • Johnson, D.C., Singer, S., Hoop, B. and Kazemi, H. (1987). Chloride flux from blood to CSF: inhibition by furosemide and bumetanide. Appl. Physiol., 63, 159–160

    Google Scholar 

  • Joó, F. (1971). Increased production of coated vesicles in the brain capillaries during enhanced permeability of the blood-brain barrier. Br. J. Exp. Pathol., 52, 646–649

    PubMed  PubMed Central  Google Scholar 

  • Joó, F. (1985). The blood-brain barrier in vitro: ten years of research on microvessels isolated from the brain. Neurochem. Int., 7, 1–25

    Article  PubMed  Google Scholar 

  • Jørgensen, P.L. (1985). Conformational E1-E2 transitions in αβ-units related to cation transport by pure Na,K-ATPase. In Glynn, I.M. and Ellory, C. (Eds), The Sodium Pump. The Company of Biologists, Cambridge, pp. 83–96

    Google Scholar 

  • Karlish, SJ.D., Yates, D.W. and Glynn, I.M. (1978). Conformational transitions between Na+-bound and K+-bound forms of (Na+ + K+)-ATPase, studied with formicin nucleotides. Biochim. Biophys. Acta, 525, 252–264

    Article  PubMed  CAS  Google Scholar 

  • Karnovsky, M. J. (1967). The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J. Cell Biol., 35, 213–236

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kasanicki, M.A., Cairns, M.T., Davies, A., Gardiner, R.M. and Baldwin, S.A. (1987). Identification and characterization of the glucose-transport protein of the bovine blood-brain barrier. Biochem. J. 247, 101–108

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Katzman, R. and Leiderman, P.H. (1953). Brain potassium exchange in normal adult and immature rats. Am. J. Physiol., 175, 263–270

    PubMed  CAS  Google Scholar 

  • Kessler, M. and Semenza, G. (1983). The small intestinal Na+, D-glucose cotransporter: an asymmetric gated channel (or pore) responsive to ∆Ψ. J. Membrane Biol., 76, 27–56

    Article  CAS  Google Scholar 

  • Kety, S.S. (1951). The theory and application of the exchange of inert gas at the lungs and tissues. Pharmacol Rev., 3, 1–41

    PubMed  CAS  Google Scholar 

  • Krogh, A. (1946). The active and passive exchanges of inorganic ions through the surfaces of living cells and through living membranes generally. Proc. Roy. Soc. B, 133, 140–200

    Article  CAS  Google Scholar 

  • Kromphardt, H., Grobecker, H., Ring, K. and Heinz, E. (1963). Über den Einfluss von Alkali-ionen auf den Glycintransport in Ehrlich-Ascites Tumorzellen. Biochim. Biophys. Acta, 74, 549–551

    Article  PubMed  CAS  Google Scholar 

  • Kumagai, A.K., Eisenberg, J.B. and Pardridge, W.M. (1987). Absorptive mediated endocytosis of cationized albumin and a ß-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. J. Biol. Chem., 262, 15214–15219

    PubMed  CAS  Google Scholar 

  • Kyte, J. and Doolittle, R.F. (1982). A simple method of displaying the hydropathic character of a protein. J. Mol. Biol., 157, 105–132

    Article  PubMed  CAS  Google Scholar 

  • Lai, F.M., Udenfriend, S. and Spector, S. (1975). Presence of norepinephrine and related enzymes in isolated brain microvessels. Proc. Natl Acad Sci. USA, 72, 4622–4625

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • LeFevre, P.G. (1962). Rate and affinity in human red blood cell sugar transport. Am. J. Physiol., 203, 286–290

    PubMed  CAS  Google Scholar 

  • Levin, V.A., Fenstermacher, J.D. and Patlak, C.A. (1970). Sucrose and inulin space measurements of cerebral cortex in four mammalian species. Am. J. Physiol., 219, 1528–1533

    PubMed  CAS  Google Scholar 

  • Lewandowsky, M. (1900). Zur Lehre der Cerebralspinalflüssigkeit. Z. Klin. Med., 40, 480–494

    Google Scholar 

  • Lin, J.-T., Swarc, K., Kinne, R. and Jung, C.Y. (1984). Structure state of the Na+/D-glucose cotransporter in calf kidney brush-border enzymes. Target size analysis of the Na+-dependent phlorizin binding and Na+-dependent D-glucose transport. Biochim. Biophys. Acta, 777, 201–208

    Article  PubMed  CAS  Google Scholar 

  • Long, D.M. (1970). Capillary ultrastructure and the blood-brain barrier in human malignant brain tumors. Neurosurgery, 32, 127–144

    Article  CAS  Google Scholar 

  • Lossinsky, A.S., Vorbrodt, A.W. and Wisniewski, H.M. (1983). Ultracytechemical studies on vesicular and canalicular transport structures in the injured mammalian blood-brain barrier. Acta Neuropathol., 61, 239–245

    Article  PubMed  CAS  Google Scholar 

  • Lossinsky, A.-S., Vorbrodt, A.W., Wisniewski, H.M. and Iwanowski, L. (1981). Ultra-cytochemical evidence for endothelial channel-lysosome connections in mouse brain following blood-brain barrier changes. Acta Neuropathol., 53, 197–202

    Article  PubMed  CAS  Google Scholar 

  • Lucchesi, K.J. and Gosselin, R.E. (1990). Mechanism of L-glucose, raffinose and inulin transport across intact blood-brain barrier. Am. J. Physiol., 258, H695-H705

    Google Scholar 

  • Lund-Andersen, H. (1979). Transport of glucose from blood to brain. Physiol. Rev., 59, 305–352

    PubMed  CAS  Google Scholar 

  • Lux, H.D. and Naher, E. (1973). The equilibration time course of (K+)0 in cat cortex. Exp. Brain Res., 17, 190–205

    Article  PubMed  CAS  Google Scholar 

  • McComb, J.G. and Hyman, S. (1990). Lymphatic drainage of cerebrospinal fluid in the primate. In Johansson, B.B., Owman, C. and Widner, H. (Eds), Pathophysiology of the Blood-Brain Barrier. Elsevier, Amsterdam

    Google Scholar 

  • Madrazzo, I. et al. (1987). Open neurosurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson’s disease. New Engl J. Med., 316, 831–834

    Article  Google Scholar 

  • Maren, T.H. (1977). Ion secretion into cerebrospinal fluid. Exp. Eye Res., 25 (Suppl), 157–159

    Article  PubMed  CAS  Google Scholar 

  • Masuzawa, T., Saito, T. and Sato, F. (1981). Cytochemical studies on enzyme activity associated with cerebrospinal fluid secretion in the choroid plexus and ventricular ependyma. Brain Res., 222, 309–322

    Article  PubMed  CAS  Google Scholar 

  • Michaelis, L. and Menten, M.L. (1913). Die Kinetik der Inverdnwirkung. Biochem. Z., 49, 333–369

    CAS  Google Scholar 

  • Miller, L.P. and Oldendorf, W.H. (1986). Regional kinetic constants for blood-brain barrier pyruvic acid transport in conscious rats by the monocarboxylic acid carrier. J. Neurochem., 46, 1412–1416

    Article  PubMed  CAS  Google Scholar 

  • Miller, L.P., Pardridge, W.M., Braun, L.D. and Oldendorf, W.H. (1985). Kinetic constants for blood-brain barrier amino acid transport in conscious rats. J. Neurochem., 45, 1427–1432

    Article  PubMed  CAS  Google Scholar 

  • Mueckler, M. et al. (1985). Sequence and structure of a human glucose transporter. Science, 229, 941–945

    Article  PubMed  CAS  Google Scholar 

  • Murphy, V.A. and Johanson, C.E. (1989). Alteration of sodium transport by the choroid plexus with amiloride. Biochim. Biophys. Acta, 979, 187–192

    Article  PubMed  CAS  Google Scholar 

  • Murphy, V.A. and Johanson, C.E. (1990). Na+-H+ exchange in choroid plexus and CSF in acute metabolic acidosis or alkalosis. Am. J. Physiol., 258, F1528–F1537

    Google Scholar 

  • Nabeshima, S., Reese, T.S., Landis, D.M.D. and Brightman, M.W. (1975). Junctions in the meninges and marginal glia. J. Comp. Neurol., 164, 127–170

    Article  PubMed  CAS  Google Scholar 

  • Neame, K.D. and Richards, T.G. (1972). Elementary Kinetics of Membrane Carrier Transport. Blackwell, Oxford

    Google Scholar 

  • Neuwelt, E.A. and Rapoport, S.I. (1983). Modification of the blood-brain barrier in the chemotherapy of malignant brain tumors. Fed. Proc., 43, 214–219

    Google Scholar 

  • Nieh, M., Kunz, U. and Koepsell, K. (1987). Identification of D-glucose-binding polypeptides which are components of the renal Na+-D-glucose cotransporter. J. Biol. Chem., 262, 10718–10727

    Google Scholar 

  • Nishimura, M., Johnson, D.C. and Kazemi, H. (1988). Effects of inhibitors on chloride outflux from cerebrospinal fluid. J. Appl. Physiol., 64, 2183–2189

    PubMed  CAS  Google Scholar 

  • Norby, J.C., Klodos, I. and Christiansen, N.O. (1983). Kinetics of Na-ATPase activity by the Na-K-pump. Interactions of the phosphorylated intermediates with Na+, Tris+, and K+. J. Gen. Physiol., 82, 725–759

    Article  PubMed  CAS  Google Scholar 

  • Novikoff, A.B., Yam, A. and Novikoff, P.M. (1975). Cytochemical study of secretory process in transplantable insulinoma of Syrian golden hamster. Proc. Natl Acad. Sci. USA, 72, 4501–4505

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ockner, R.K., Weisiger, R.A. and Gollan, J.L. (1983). Hepatic uptake of albumin-bound substances: albumin receptor concept. Am. J. Physiol., 245, G13–G18

    Google Scholar 

  • Oldendorf, W.H. (1971). Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am. J. Physiol., 221, 1629–1639

    PubMed  CAS  Google Scholar 

  • Oldendorf, W.H. (1971/2). Blood-brain barrier permeability to lactate. Eur. Neurol., 6, 49–55

    Article  PubMed  CAS  Google Scholar 

  • Oldendorf, W.H. (1973). Carrier-mediated blood-brain barrier transport of short-chain monocarboxylic acids. Am. J. Physiol., 224, 1450–1453

    PubMed  CAS  Google Scholar 

  • Oldendorf, W.H. and Davson, H. (1967). Brain extracellular space and the sink action of the cerebrospinal fluid. Arch. Neurol., 17, 196–205

    Article  PubMed  CAS  Google Scholar 

  • Oppelt, W.W., Maren, T.H., Owens, E.S. and Rall, D.P. (1963). Effects of acid-base alterations on cerebrospinal fluid production. Proc. Soc. Exp. Biol. Med., N.Y., 114, 86–89

    Article  CAS  Google Scholar 

  • Orlowski, M. (1963). Arch. Immun. Exp. Ther., 11, 1 (quoted by Orlowski et al., 1974)

    Google Scholar 

  • Orlowski, M., Sessa, G. and Green, J.P. (1974). γ-Glutamyl transpeptidase in brain capillaries: possible site of a blood-brain barrier for amino acids. Science, 184, 66–68

    Article  PubMed  CAS  Google Scholar 

  • Pan, B.-T. and Johnstone, R.M. (1983). Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell, 33, 967–977

    Article  PubMed  CAS  Google Scholar 

  • Pan, B.-T. and Johnstone, R.M. (1984). Selective externalization of the transferrin receptor by sheep reticulocytes in vitro. Response to ligands and inhibition of exocytosis. J. Biol. Chem., 259, 9776–9782

    PubMed  CAS  Google Scholar 

  • Pappenheimer, J.R. (1953). Passage of molecules through capillary walls. Physiol. Rev., 33, 387–423

    PubMed  CAS  Google Scholar 

  • Pappenheimer, J.R., Heisey, J.R. and Jordan, E.F. (1961). Active transport of Diodrast and phenolsulfonaphthalein from cerebrospinal fluid to blood. Am. J. Physiol., 200, 1–10

    PubMed  CAS  Google Scholar 

  • Pardridge, W.M. (1977). Kinetics of competitive inhibition of neutral amino acid transport across the blood-brain barrier. J. Neurochem., 28, 103–108

    Article  PubMed  CAS  Google Scholar 

  • Pardridge, W.M. (1979). Carrier-mediated transport of thyroid hormones through the blood-brain barrier: primary role of albumin-bound hormone. Endocrinology, 105, 605–612

    Article  PubMed  CAS  Google Scholar 

  • Pardridge, W.M. (1981). Transport of protein-bound hormones into tissues in vivo. Endocrinol. Rev., 2, 103–123

    Article  CAS  Google Scholar 

  • Pardridge, W.M. (1984). Transport of nutrients and hormones through the blood-brain barrier. Fed. Proc., 43, 201–204

    PubMed  CAS  Google Scholar 

  • Pardridge, W.M. (1987). Plasma protein-mediated transport of steroid and thyroid hormones. Am. J. Physiol., 252, E157–E164

    Google Scholar 

  • Pardridge, W.M., Eisenberg, J. and Cefalu, W.T. (1985). Absence of albumin receptor on brain capillaries in vivo or in vitro. Am. J. Physiol., 249, E264–E267

    Google Scholar 

  • Pardridge, W.M. and Landaw, E.M. (1984). Tracer kinetic model of blood-brain barrier transport of plasma protein-bound ligand. J. Clin. Invest., 74, 745–752

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pardridge, W.M. and Mietus, L.J. (1979). Transport of steroid hormone through the rat blood-brain barrier. J. Clin. Invest., 64, 145–154

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pardridge, W.M. and Mietus, L. J. (1980). Effect of progesterone-binding globulin versus a progesterone antiserum on steroid hormone transport through the blood-brain barrier. Endocrinology, 106, 1137–1141

    Article  PubMed  CAS  Google Scholar 

  • Pardridge, W.M. and Mietus, L. J. (1981). Enkephalin and blood-brain barrier: studies of binding and degradation in isolated brain microvessels. Endocrinology, 109, 1138–1143

    Article  PubMed  CAS  Google Scholar 

  • Pardridge, W.M. and Oldendorf, W.H. (1975a). Kinetics of blood-brain barrier transport of hexoses. Biochim. Biophys. Acta, 382, 377–392

    Article  PubMed  CAS  Google Scholar 

  • Pardridge, W.M. and Oldendorf, W.H. (1975b). Kinetic analysis of blood-brain barrier transport of amino acids. Biochim. Biophys. Acta, 401, 128–136

    Article  PubMed  CAS  Google Scholar 

  • Pardridge, W.M., Triguero, D. and Buciak, J. (1989). Transport of histone through the blood-brain barrier. J. Pharmacol., 251, 821–826

    CAS  Google Scholar 

  • Pardridge, W.M., Triguero, D., Yang, J. and Cancilla, P.A. (1990). Comparison of in vitro and in vivo models of drug transcytosis through the blood-brain barrier. J. Pharmacol., 253, 884–891

    CAS  Google Scholar 

  • Pardridge, W.M., Yang, J. and Eisenberg, J. (1985)Blood-brain barrier protein phos-phorylation and dephosphorylation. J. Neurochem., 45, 1141–1147

    Article  PubMed  CAS  Google Scholar 

  • Patlak, C.S., Blasberg, R.G. and Fenstermacher, J.D. (1983). Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J. Cereb. Blood Flow Metab., 3, 1–7

    Article  PubMed  CAS  Google Scholar 

  • Patlak, C.S. and Fenstermacher, J.D. (1975). Measurements of blood-brain transfer constants by ventriculocisternal perfusion. Am. J. Physiol., 229, 877–884

    PubMed  CAS  Google Scholar 

  • Peerce, B.E., and Wright, E.M. (1984a). Conformational changes in the intestinal brush-border sodium-glucose cotransporter labeled with fluorescein isothiocyanate.Proc. Natl Acad. Sci. USA, 81, 2223–2226

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Peerce, B.E. and Wright, E.M. (1984b). Sodium-induced conformational changes in the glucose transporter of intestinal brush-borders. J. Biol. Chem., 259, 14105–14112

    PubMed  CAS  Google Scholar 

  • Peerce, B.E. and Wright, E.M. (1985). Evidence for tyrosyl residues at the Na+ site on the intestinal Na+/glucose cotransporter. J. Biol. Chem., 260, 6026–6031

    PubMed  CAS  Google Scholar 

  • Peerce, B.E. and Wright, E.M. (1986). Distance between substrate sites on the Na-glucose cotransporter by fluorescent energy transfer. Proc. Natl Acad. Sci. USA, 83, 8092–8096

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Perlow, M. J., Freed, W. J., Hoffer, B. J., Seiger, A., Olson, L. and Wyatt, R.J. (1979). Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science, 204, 643–647

    Article  PubMed  CAS  Google Scholar 

  • Pollay, M. (1966). Cerebrospinal fluid transport and the thiocyanate space of brain. Am. J. Physiol, 210, 275–279

    PubMed  CAS  Google Scholar 

  • Pollay, M. and Curl, F. (1967). Secretion of cerebrospinal fluid by the ventricular ependyma of the rabbit. Am. J. Physiol., 213, 1031–1038

    PubMed  CAS  Google Scholar 

  • Pollay, M. and Davson, H. (1963). The passage of certain substances out of the cerebrospinal fluid. Brain, 86, 137–150

    Article  PubMed  CAS  Google Scholar 

  • Preston, J.E., Segal, M.B., Walley, G.J., and Zloković, B.V. (1989). Neutral amino acid uptake by the isolated perfused sheep choroid plexus. J. Physiol, 408, 31–43

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Prince, D.A., Lux, H.D. and Naher, E. (1973). Measurement of extracellular potassium activity in cat cortex. Brain Res., 50, 489–495

    Article  PubMed  CAS  Google Scholar 

  • Quinton, P.M., Wright, E.M. and Tormey, J. McD. (1973). Localization of sodium pumps in the choroid plexus epithelium. J. Cell Biol., 58, 724–730

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Quiocho, F.A. and Vyas, N.K. (1984). Novel stereospecificity of the L-arabinose-binding protein. Nature, 310, 381–386

    Article  PubMed  CAS  Google Scholar 

  • Rall, D.P., Oppelt, W.W. and Patlak, C.S. (1962). Extracellular space of brain as determined by diffusion of inulin from the ventricular system. Life Sci., 2, 43–48

    Article  Google Scholar 

  • Rapoport, S.I. (1976). Opening of the blood-brain barrier by acute hypertension. Exp. Neurol., 52, 467–479

    Article  PubMed  CAS  Google Scholar 

  • Rapoport, S.I., Hori, M. and Klatzo, I. (1972). Testing of a hypothesis for osmotic opening of the blood-brain barrier. Am. J. Physiol., 223, 323–331

    PubMed  CAS  Google Scholar 

  • Rapoport, S.I., Ohno, K. and Pettigrew, K.D. (1979). Drug entry into the brain. Brain Res., 172, 354–359

    Article  PubMed  CAS  Google Scholar 

  • Reese, T.S. and Brightman, M.W. (1968). Similarity in structure and permeability to peroxidase of epithelia overlying fenestrated cerebral capillaries. Anat. Rec., 160, 414 (abstract)

    Google Scholar 

  • Reese, T.S., and Karnovsky, M.J. (1967). Fine structural localization of a blood-brain barrier to exogenous peroxidase. J. Cell Biol., 34, 207–217

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Renkin, E.M. (1954). Filtration, diffusion and molecular sieving through porous cellulose membranes. J. Gen. Physiol., 38, 225–243

    PubMed  CAS  PubMed Central  Google Scholar 

  • Renkin, E.M. (1959). Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am. J. Physiol., 197, 1205–1210

    PubMed  CAS  Google Scholar 

  • Riklis, E. and Quastel, J.H. (1958). Effects of cations on sugar absorption by isolated surviving guinea pig intestine. Can. J. Biochem. Physiol., 36, 347–362

    Article  PubMed  CAS  Google Scholar 

  • Roncali, L., Nico, B., Ribatti, D., Bertossi, M. and Mancini, L. (1986). Microscopical and ultrastructural investigation on the development of the blood-brain barrier in the chick embryo optic tectum. Acta Neuropathol., 70, 193–201

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, I.H., Goldman, A.L. and Rosenberg, L.E. (1965). The role of sodium ion in the transport of amino acids by the intestine. J. Biochim. Biophys. Acta, 102, 101–171

    Google Scholar 

  • Rosenberg, T. and Wilbrandt, W. (1955). The kinetics of membrane transport involving chemical reactions. Exp. Cell Res., 9, 49–67

    Article  PubMed  CAS  Google Scholar 

  • Rosenstein, J.R. and Brightman, M.W. (1986). Alterations of the blood-brain barrier after transplantation of autonomic ganglia into the mammalian central nervous system. J. Comp. Neurol., 250, 339–351

    Article  PubMed  CAS  Google Scholar 

  • Rothstein, A. and Ramjeesingh, M. (1980). The functional arrangement of the anion channel of red blood cells. Ann. N.Y. Acad. Sci., 358, 1–12

    Article  PubMed  CAS  Google Scholar 

  • Saito, Y. and Wright, E.M. (1987). Regulation of intracellular chloride in bullfrog choroid plexus. Brain Res., 417, 267–272

    Article  PubMed  CAS  Google Scholar 

  • Schatzmann, H.J. (1953). Herzglykoside als Hemmungstoffe fur die aktiven Kalium- und Natriumtransport durch die Erythrocytenmembran. Helv. Physiol. Pharmacol. Acta, 11, 346–354

    PubMed  CAS  Google Scholar 

  • Semenza, G., Kessler, M., Hosang, M., Weber, J. and Schmidt, U. (1984). Biochemistry of the Na+, D-glucose cotransporter of the small intestinal brush-border membrane. The state of the art in 1984. Biochim. Biophys. Acta, 779, 343–379

    Article  PubMed  CAS  Google Scholar 

  • Sen, A.K. and Widdas, W.F. (1962). Variations of the parameters of glucose transfer across the human erythrocyte membrane in the presence of inhibitors of transfer. J. Physiol., 160, 404–416

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shivers, R.R., Edmonds, C.L. and Del Maestro, R.F. (1984). Microvascular permeability in induced astrocytomas and peritumor neuropil of rat brain. Acta Neuropathol., 64, 192–202

    Article  PubMed  CAS  Google Scholar 

  • Skou, J.C. (1989). Sodium-potassium pump. In Membrane Transport (Ed. Tosteson, D.C.), Amer. Physiol. Soc., Bethesda, Md., pp. 155–185

    Chapter  Google Scholar 

  • Smith, QR. and Rapoport, S.I. (1984). Carrier-mediated transport of chloride across the blood-brain barrier. J. Neurochem., 42, 754–763

    Article  PubMed  CAS  Google Scholar 

  • Solenski, NJ. and Williams, S.K. (1985). Insulin binding and vesicular ingestion in capillary endothelim. J. Cell Physiol., 124, 87–95

    Article  PubMed  CAS  Google Scholar 

  • Somjen, G.G., Segal, M.B. and Herreras, O. (1992). Osmotic hypertensive opening of the blood-brain barrier in rats does not necessarily provide access for potassium to cerebral intracranial fluid. J. Physiol. (in press)

    Google Scholar 

  • Spector, R. (1986). Nucleoside and vitamin homeostasis in the mammalian central nervous system. Ann. N.Y. Acad. Sci., 481, 221–230

    Article  PubMed  CAS  Google Scholar 

  • Stem, L. and Gautier, R. (1921). Rapports entre le liquide céphalorachidien et lacirculation sanguine. Arch. Int. Physiol., 17, 138–192

    Google Scholar 

  • Stern, L. and Gautier, R. (1922). Les rapports entre le liquide céphalo-rachidien et les éléments nerveux de l’axe cérébrospinal. Arch. Int. Physiol, 17, 391–448

    Google Scholar 

  • Stewart, P.A. and Wiley, M.J. (1981). Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail chick transplantation chimeras. Devel. Biol., 84, 183–192

    Article  CAS  Google Scholar 

  • Stollman, Y.R., Gartner, U., Theilman, L., Ohmi, N. and Wolkoff, A.W. (1983). Hepatic bilirubin uptake in the isolated perfused rat liver is not facilitated by albumin binding. J. Clin. Invest., 72, 718–723

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stoorvogel, W., Geuze, H J., Griffith, J.M. and Strous, GJ. (1988). The pathways of endocytosed transferrin and secretory protein in the trans-Golgi reticulum. J. Cell Biol, 106, 1821–1829

    Article  PubMed  CAS  Google Scholar 

  • Szentesvanyi, I., Patlak, C.S., Ellis, R.A. and Cserr, H.F. (1984). Drainage of interstitial fluid from different regions of rat brain. Am. J. Physiol., 246, F835–F844

    Google Scholar 

  • Takasato, Y., Rapoport, S.I. and Smith, QR. (1984). An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am. J. Physiol., 247, H484–H493

    Google Scholar 

  • Tao-Cheng, J.-H., Nagy, Z. and Brightman, M.W. (1987). Tight junctions of brain capillaries in vitro are enhanced by astroglia. J. Neurosci., 7, 3293–3299

    PubMed  CAS  Google Scholar 

  • Taverna, R.D. and Langdon, R.G. (1973). Reversible association of cytochalasin B with the human erythrocyte membrane. Biochim. Biophys. Acta, 323, 207–219

    Article  PubMed  CAS  Google Scholar 

  • Terasaki, T., Ken-Ichihirai, Sato, H., Kang, Y.S., and Tsuji, A. (1989). Absorptive-mediated endocytosis of a dynorphin-like analgesic peptide, E-2078, into the blood- brain barrier. J. Pharmacol., 251, 351–357

    CAS  Google Scholar 

  • Tibbling, G., Link, H. and Ohman, S. (1977). Principle of albumin and IgG analyses in neurological disorders. I. Establishment of reference values. Scand. J. Clin. Lab. Invest., 37, 385–390

    Article  PubMed  CAS  Google Scholar 

  • Triguero, D., Buciak, J. and Pardridge, W.M. (1990). Capillary depletion method for quantification of blood-brain barrier transport of circulating peptides and plasma protein. J. Neurochem., 54, 1882–1888

    Article  PubMed  CAS  Google Scholar 

  • Triguero, D., Buciak, J.B., Yang, J. and Pardridge, W.M. (1989). Blood-brain barrier transport of cationized immunoglobulin G: enhanced delivery compared to native protein. Proc. Natl Acad. Sci. USA, 86, 4761–4765

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tripathi, R.J. and Tripathi, R.C. (1974). Vacuolar transcellular channels as a drainage pathway for cerebrospinal fluid. J. Physiol., 239, 195–206

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vogh, B.P., Godman, D.R. and Maren, T.H. (1985). Aluminium and gallium arrest formation of cerebrospinal fluid by the mechanism of OH- depletion. J. Pharmacol., 233, 715–721

    CAS  Google Scholar 

  • Vogh, B.P. and Langham, M.R. (1981). The effect of furosemide and bumetanide on cerebrospinal fluid function. Brain Res., 221, 171–183

    Article  PubMed  CAS  Google Scholar 

  • Vorbrodt, A.W., Lossinsky, A.S. and Wisniewski, H.M. (1982). Cytochemical localization of ouabain-sensitive, K+-dependent p-nitro-phenylphosphatase (Transport ATPase) in the mouse central and peripheral nervous systems. Brain Res., 243, 225–234

    Article  PubMed  CAS  Google Scholar 

  • Weindl, A. and Joynt, R. (1973). Barrier properties of the subcommissural organ. Arch. Neurol., 29, 16–22

    Article  PubMed  CAS  Google Scholar 

  • Weisiger, RJ., Gollan, J. and Ockner, R. (1981). Receptor for albumin on the liver cell surface may mediate uptake of fatty acids and other albumin-bound substances. Science, 211, 1048–1051

    Article  PubMed  CAS  Google Scholar 

  • Welch, K. (1962a). Active transport of iodide by choroid plexus of rabbit in vitro. Am. J. Physiol., 202, 757–760

    PubMed  CAS  Google Scholar 

  • Welch, K. (1962b). Concentration of thiocyanate by the choroid plexus of the rabbit in vitro. Proc. Soc. Exp. Biol. Med., 109, 953–954

    Article  PubMed  CAS  Google Scholar 

  • Welch, K. (1969). A model for the distribution of materials in fluids of the central nervous system. Brain Res., 16, 453–468

    Article  PubMed  CAS  Google Scholar 

  • Westergaard, E., Go, G., Klatzo, I. and Spatz, M. (1976). Increased permeability of cerebral vessels to horseradish peroxidase induced by ischemia in Mongolian gerbils. Acta Neuropathol., 35, 307–325

    PubMed  CAS  Google Scholar 

  • Westergaard, E., Van Deurs, B. and Brøndsted, H.E. (1977). Increased vesicular transfer of horseradish peroxidase across cerebral endothelium evoked by acute hypertension. Acta Neuropathol., 37, 141–152

    Article  PubMed  CAS  Google Scholar 

  • Whittam, R. (1962). The asymmetrical stimulation of a membrane adenosine triphospha-tase in relation to active cation transport. Biochem. J. 84, 110–118

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Widdas, W.F. (1952). Inability of difusion to account for placental glucose transfer in the sheep and consideration of the kinetics of a possible carrier transfer. J. Physiol., 118, 23–39

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Widdas, W.F. (1954). Facilitated transfer of hexoses across the human erythrocyte membrane. J. Physiol., 125, 163–180

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wolff, J. (1963). Beiträge zur Ultrastruktur der Kapillaren in der normalen Grosshirnrinde. Z. Zellforsch., 73, 174–191

    Article  Google Scholar 

  • Wright, E.M. (1970). Ion transport across the frog posterior choroid plexus. Brain Res., 23, 302–304

    Article  PubMed  CAS  Google Scholar 

  • Yudilevich, D.L. and De Rose, N. (1971). Blood-brain transfer of glucose and other molecules measured by rapid indicator dilution. Am. J. Physiol., 220, 841–846

    PubMed  CAS  Google Scholar 

  • Yudilevich, D.L., De Rose, N. and Sepulveda, F.V. (1972). Facilitated transport of amino acids through the blood-brain barrier of the dog studied on a single capillary pass. Brain Res., 44, 569–578

    Article  PubMed  CAS  Google Scholar 

  • Ziylan, Y.Z. (1984). Pathophysiology of the opening of the blood-brain and blood-cerebrospinal fluid barriers in acute hypertension. Exp. Neurol., 84, 18–28

    Article  PubMed  CAS  Google Scholar 

  • Ziylan, Y.Z., Robinson, P.J. and Rapoport, S.I. (1983). Differential blood-brain permeabil-ity to [14C] sucrose and [3H] inulin after osmotic opening in the rat. Exp. Neurol., 79, 845–857

    Article  PubMed  CAS  Google Scholar 

  • Ziylan, Y.Z., Robinson, P.J. and Rapoport, S.I. (1984). Blood-brain barrier permeability and sucrose and dextran after osmotic opening. Am. J. Physiol., 247, R634–R638

    Google Scholar 

  • Zloković, B.V., Begley, D.J., Djuricic, B.M. and Mitrovic, D.M. (1986). Measurement of solute transport across the blood-brain barrier in the perfused guinea pig brain: method and application to N-methyl-alpha-aminoisobutyric acid.J. Neurochem., 46, 1444–1459

    Article  PubMed  Google Scholar 

  • Zloković, B.V. Davson, H., Preston, J.E. and Segal, M.B. (1987a). The effects of aluminium chloride on the rate of secretion of the cerebrospinal fluid. Exp. Neurol., 98, 436–452

    Article  PubMed  Google Scholar 

  • Zloković, B.V. et al. (1987b). Neuropeptide transport mechanisms in the central nervous system. In Peptide and Amino Acid Transport Mechanisms in the Central Nervous System (Eds Rakic, L., Begley, D.J., Davson, H. and Zloković, B.V.), Macmillan, London

    Google Scholar 

  • Zloković, B.V., Lipovac, M.N., Begley, D.J., Davson, H. and Rakic, L. (1988). Slow penetration of thyrotropin releasing hormone across the blood-brain barrier of in situ perfused guinea pig brain. J. Neurochem., 51, 252–257

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 1993 The authors

About this chapter

Cite this chapter

Davson, H., Zloković, B., Rakić, L., Segal, M.B. (1993). History and Basic Concepts. In: An Introduction to the Blood-Brain Barrier. Palgrave, London. https://doi.org/10.1007/978-1-349-11882-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-11882-3_1

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-11884-7

  • Online ISBN: 978-1-349-11882-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics