Adaptive Nonlinear \({{\mathcal{H}}}_{\user2{\infty}}\) Control

  • Adriano A. G. Siqueira
  • Marco H. Terra
  • Marcel Bergerman


In this chapter, we present adaptive nonlinear \({\mathcal{H}}_{\infty}\) controllers for robot manipulators. Similarly to the controllers presented in Chap. 3, the ones here guarantee robustness to parametric uncertainty and external disturbances. They go beyond, however, by allowing us to estimate the parametric uncertainties and the unmodeled dynamics. These adaptive control laws are added into the standard nonlinear \({\mathcal{H}}_{\infty}\) control approach whose derivation is based on the nominal model of the manipulator. Two adaptive control strategies are considered in this chapter, the first one based on linear parameterizations and the second one based on neural networks estimates.


Robot Manipulator Robotic Manipulator Linear Parameterization Adaptive Control Strategy Regression Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bergerman M (1996) Dynamics and control of underactuated manipulators. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, p 129Google Scholar
  2. 2.
    Chang YC (2000) Neural network-based \({\mathcal{H}}_{\infty}\) tracking control for robotic systems. IEE Proc Control Theory Appl 147(3):303–311CrossRefGoogle Scholar
  3. 3.
    Chang YC, Chen BS (1997) A nonlinear adaptive \({\mathcal{H}}_{\infty}\) tracking control design in robotic systems via neural networks. IEEE Trans Control Syst Technol 5(1):13–29CrossRefGoogle Scholar
  4. 4.
    Chen BS, Chang YC, Lee TC (1997) Adaptive control in robotic systems with \({\mathcal{H}}_{\infty}\) tracking performance. Automatica 33(2):227–234MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Chen BS, Lee TS, Feng JH (1994) A nonlinear \({\mathcal{H}}_{\infty}\) control design in robotic systems under parameter perturbation and external disturbance. Int J Control 59(2):439–461MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Craig JJ (1985) Adaptive control of mechanical manipulators. Addison-Wesley, ReadingGoogle Scholar
  7. 7.
    Ge SS, Lee TH, Harris CJ (1998) Adaptive neural network control of robotic manipulators. World Scientific, SingaporeGoogle Scholar
  8. 8.
    Lewis FL, Abdallah CT, Dawson DM (2004) Robot manipulator control: theory and practice. Marcel Dekker, Inc., New YorkGoogle Scholar
  9. 9.
    Postlethwaite I, Bartoszewicz A (1998) Application of non-linear \({\mathcal{H}}_{\infty}\) control to the Tetrabot robot manipulator. Proc Inst Mech Eng: Part I. J Syst Control Eng 212(16):459–465CrossRefGoogle Scholar
  10. 10.
    Siqueira AAG, Petronilho A, Terra MH (2003) Adaptive nonlinear \({\mathcal{H}}_{\infty}\) techniques applied to a robot manipulator. In: Proceedings of the IEEE conference on control applications, Istanbul, TurkeyGoogle Scholar
  11. 11.
    Slotine JJ, Li W (1987) On the adaptive control of robot manipulators. Int J Rob Res 6(3):49–59CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Adriano A. G. Siqueira
    • 1
  • Marco H. Terra
    • 1
  • Marcel Bergerman
    • 2
  1. 1.Engineering School of São CarlosUniversity of São PauloSão CarlosBrazil
  2. 2.CMU Robotics InstitutePittsburghUSA

Personalised recommendations