Skip to main content

Part of the book series: Trends in Mathematics ((TM))

Abstract

Tube formulas refer to study of volumes of r neighbourhoods of sets. For sets satisfying some (possible very weak) convexity conditions, this has a long history going back to Steiner in the early Nineteenth century. However, within the past 20 years, Lapidus has initiated and pioneered a systematic study of tube formulas for fractal sets. Following this line of investigation, it is natural to ask as to what extent it is possible to develop a theory of multifractal tubes. In this survey we will explain one approach to this problem based on Olsen (Multifractal tubes, Preprint, 2011). In particular, we will propose a general framework for studying tube formulas of multifractals and, as an example, we give a complete description of the asymptotic behaviour of the multifractal tube formulas for self-similar measures satisfying the Open Set Condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arbeiter, M., Patzschke, N.: Random self-similar multifractals. Math. Nachr. 181, 5–42 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berger, M., Gostiaux, B.: Differential Geometry: Manifolds, Curves and Surfaces. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  3. Cawley, R., Mauldin, R.D.: Multifractal decomposition of Moran fractals. Adv. Math. 92, 196–236 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cole, J.: The Geometry of Graph Directed Self-Conformal Multifractals. Ph.D. Thesis, University of St. Andrews, Scotland (1998)

    Google Scholar 

  5. Cutler, C.D.: The Hausdorff distribution of finite measures in Euclidean space. Can. J. Math. 38, 1459–1484 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cutler, C.D.: Connecting ergodicity and dimension in dynamical systems. Ergod. Theor. Dyn. Syst. 10, 451–462 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cutler, C.D.: Measure disintegrations with respect to σ-stable monotone indices and pointwise representation of packing dimension. Proceedings of the 1990 Measure Theory Conference at Oberwolfach. Supplemento Ai Rendiconti del Circolo Mathematico di Palermo, Ser. II, No. 28, pp. 319–340 (1992)

    Google Scholar 

  8. Das, M.: Local properties of self-similar measures. Illinois Math. J. 42, 313–332 (1998)

    MATH  Google Scholar 

  9. Das, M.: Hausdorff measures, dimensions and mutual singularity. Trans. Amer. Math. Soc. 357, 4249–4268 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Falconer, K.J.: Fractal Geometry — Mathematical Foundations and Applications. Wiley, Chichester (1990)

    MATH  Google Scholar 

  11. Falconer, K.J.: On the Minkowski measurability of fractals. Proc. Am. Math. Soc. 123, 1115–1124 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Falconer, K.J.: Techniques in Fractal Geometry. Wiley, Chichester (1997)

    MATH  Google Scholar 

  13. Federer, H.: Curvature measures. Trans. Amer. Math. Soc. 93, 418–491 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  14. Federer, H.: Geometric Measure Theory. Springer, New York (1969)

    MATH  Google Scholar 

  15. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 2, 2nd edn. Wiley, New York (1971)

    Google Scholar 

  16. Feller, W.: An Introduction to Probability Theory and its Applications, vol. 1, 3rd edn. Wiley, New York (1986)

    Google Scholar 

  17. Frisch, U., Parisi, G.: On the singularity structure of fully developed turbulence. Appendix to U. Frisch, Fully developed turbulence and intermittency, Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics. Proceedings of the International School of Physics “Enrico Fermi”, Course LXXXVIII, pp. 84–88. North Holland, Amsterdam (1985)

    Google Scholar 

  18. Fu, J.H.G.: Tubular neighborhoods in Euclidean spaces. Duke Math. J. 52, 1025–1046 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fu, J.H.G.: Curvature measures of subanalytic sets. Amer. Math. J. 116, 819–880 (1994)

    Article  MATH  Google Scholar 

  20. Gatzouras, D.: Lacunarity of self-similar and stochastically self-similar sets. Trans. Amer. Math. Soc. 352, 1953–1983 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gray, A.: Tubes. Progress in Mathematics, vol. 221. Birkhäuser, Boston (2004)

    Google Scholar 

  22. Halsey, T.C., Jensen, M.H., Kadanoff, L.P., Procaccia, I., Shraiman, B.J.: Fractal measures and their singularities: the characterization of strange sets. Phys. Rev. A 33, 1141–1151 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hofbauer, F., Raith, P., Steinberger, T.: Multifractal dimensions for invariant subsets of piecewise monotonic interval maps Fund. Math. 176, 209–232 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Hutchinson, J.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hug, D., Last, G., Weil, W.: A local Steiner-type formula for general closed sets and applications. Math. Z. 246, 237–272 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lalley, S.: The packing and covering functions of some self-similar fractals. Indiana Univ. Math. J. 37, 699–710 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lalley, S.: Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-Euclidean tessellations and their fractal limits. Acta Math. 163, 1–55 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lalley, S.: Probabilistic methods in certain counting problems of ergodic theory. Ergodic theory, symbolic dynamics, and hyperbolic spaces. In: Bedford, T., Keane, M., Caroline Series (eds.) Papers from the Workshop on Hyperbolic Geometry and Ergodic Theory held in Trieste, April 17–28, 1989, pp. 223–257. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1991)

    Google Scholar 

  29. Lapidus, M.L., van Frankenhuysen, M.: Fractal Geometry and Number Theory: Complex Dimensions of Fractal Strings and Zeros of Zeta Functions. Birkhäuser, Boston (2000)

    MATH  Google Scholar 

  30. Lapidus, M.L., van Frankenhuysen, M.: Fractal geometry, complex dimensions and zeta functions: geometry and spectra of fractal strings. Springer Monographs in Mathematics. Springer, New York (2006)

    MATH  Google Scholar 

  31. Levitin, M., Vassiliev, D.: Spectral asymptotics, renewal theorem, and the Berry conjecture for a class of fractals. Proc. London Math. Soc. 72, 188–214 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mandelbrot, B.: Possible refinement of the log-normal hypothesis concerning the distribution of energy dissipation in intermittent turbulence. Statistical Models and Turbulence. Lecture Notes in Physics, vol. 12. Springer, New York (1972)

    Google Scholar 

  33. Mandelbrot, B.: Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier. Fluid. J. Mech. 62, 331–358 (1974)

    Article  MATH  Google Scholar 

  34. Mattila, P.: On the structure of self-similar fractals. Ann. Acad. Sci. Fenn. Ser. A I Math. 7, 189–195 (1982)

    MathSciNet  MATH  Google Scholar 

  35. Morvan, J.-M.: Generalized Curvatures. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  36. Olsen, L.: A multifractal formalism. Adv. Math. 116, 82–196 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. Olsen, L.: Self-affine multifractal Sierpinski sponges in ℝ d Pacific J. Math. 183, 143–199 (1998)

    MathSciNet  MATH  Google Scholar 

  38. Olsen, L.: Multifractal tubes. Preprint (2011)

    Google Scholar 

  39. O’Neil, T.: The multifractal spectrum of quasi self-similar measures. J. Math. Anal. Appl. 211, 233–257 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  40. O’Neil, T.: The multifractal spectra of projected measures in Euclidean spaces. Chaos Solitons Fract. 11, 901–921 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pesin, Y.: Dimension type characteristics for invariant sets of dynamical systems. Russian Math. Surveys 43, 111–151 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  42. Pesin, Y.: Dimension theory in dynamical systems. Contemporary Views and Applications. The University of Chicago Press, Chicago (1997)

    Google Scholar 

  43. Peres, Y., Solomyak, B.: Existence of L q dimensions and entropy dimension for self-conformal measures Indiana Univ. Math. J. 49, 1603–1621 (2000)

    MathSciNet  MATH  Google Scholar 

  44. Peyrière, J.: Multifractal measures. In: Proceedings of the NATO Advanced Study Institute on Probabilistic and Stochastic Methods in Analysis with Applications, Il Ciocco, pp. 175–186. NATO ASI Series, Series C: Mathematical and Physical Sciences, vol. 372, Kluwer, Dordrecht (1992)

    Google Scholar 

  45. Schechter, A.: On the centred Hausdorff measure. Bull. Lond. Math. Soc. 62, 843–851 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  46. Schief, A.: Separation properties for self-similar sets. Proc. Amer. Math. Soc. 122, 111–115 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  47. Schneider, R.: Curvature measures of convex bodies. Ann. Mat. Pura Appl. IV, 116, 101–134 (1978)

    Article  MATH  Google Scholar 

  48. Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  49. Stacho, L.L.: On curvature measures. Acta Sci. Math. 41, 191–207 (1979)

    MathSciNet  MATH  Google Scholar 

  50. Weyl, H.: On the volume of tubes. Amer. Math, J. 61, 461–472 (1939)

    Google Scholar 

  51. Winter, S.: Curvature measures and fractals. Diss. Math. 453, 1–66 (2008)

    Google Scholar 

  52. Zähle, M.: Integral and current representation of Federer’s curvature measures. Arch. Math. 46, 557–567 (1986)

    Article  MATH  Google Scholar 

  53. Zähle, M.: Curvatures and currents for unions of sets with positive reach. Geom. Dedicata 123, 155–171 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Olsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Olsen, L. (2013). Multifractal Tubes. In: Barral, J., Seuret, S. (eds) Further Developments in Fractals and Related Fields. Trends in Mathematics. Birkhäuser, Boston. https://doi.org/10.1007/978-0-8176-8400-6_9

Download citation

Publish with us

Policies and ethics