Skip to main content

The Developmental Influence of Inhibitory Synaptic Transmission

  • Chapter
The Biology of Early Influences

Abstract

Environmental manipulations that affect brain development form the primary evidence for “activity-dependent” mechanisms. Manipulations of this sort probably alter the normal amount or the pattern of synaptic transmission and action potentials, and this altered activity state somehow influences the growth and differentiation of synaptic connections. The first studies to draw a strong causal relationship between environmental stimulation and the development of connections were performed in the cat visual system (Wiesel and Hubel, 1963, Wiesel and Hubel, 1965; Hubel and Wiesel, 1965). In control animals, extracellular recordings from cortex show that most neurons fire action potentials in response to stimulation of either eye. However, when visual stimulation to one eye is decreased during development, there is a dramatic loss in the ability of that eye to activate cortical neurons. While these changes are striking, the cellular mechanisms whereby differences in neural activity are translated into structural or functional changes are far from clear. To date, most studies have focused on the cellular mechanisms that might operate at developing excitatory synapses, such as the nerve-muscle junction. In contrast, little is known about the maturation of inhibitory synaptic contacts, and whether they too can exhibit “activity-dependent” mechanisms. This chapter summarizes experimental findings from a developing inhibitory projection in the auditory system, and provides evidence that inhibitory transmission plays an active role during ontogeny.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  • Aponte JE, Kotak VC and Sanes DH (1996) Decreased synaptic inhibition leads to dendritic hypertrophy prior to the onset of hearing. Auditory Neurosci 2:235–240.

    Google Scholar 

  • Barbin G, Pollard H, Gaiarsa JL and Ben-ari Y (1993) Involvement of GABAA receptors in the outgrowth of cultured hippocampal neurons. Neurosci Lett 152:150–154.

    Article  PubMed  CAS  Google Scholar 

  • Barthel F, Campard PK, Demeneix BA, Feltz P and Loeffler JP (1996) GABAB receptors negatively regulate transcription in cerebellar granular neurons through cyclic AMP responsive element binding protein-dependent mechanism. Neurosci 70:417–427.

    Article  CAS  Google Scholar 

  • Becker C-M, Hoch W and Betz H (1988) Glycine receptor heterogeneity in rat spinal cord during postnatal development. EMBO J 7:3717–3726.

    PubMed  CAS  Google Scholar 

  • Behar TN, Li Y-X, Tran HT, Ma W, Dunlap V, Scott C and Barker JL (1996) GABA stimulates chemotaxis and chemokinesis of embryonic cortical neurons via calcium-dependent mechanisms. J Neurosci 16:1808–1818.

    PubMed  CAS  Google Scholar 

  • Ben-Ari Y, Cherubini E, Corradetti R and Gaiarsa JL (1989) Giant synaptic potentials in immature rat CA3 hippocampal neurones. J Physiol 416:303–325.

    PubMed  CAS  Google Scholar 

  • Ben-Ari Y, Khazipov R, Leinekugel X, Caillard O and Gaiarsa J-L (1997) GABAA, NMDA and AMPA receptors: a developmentally regulated ‘ménage à trois’. Trends in Neurosci 20:523–529.

    Article  CAS  Google Scholar 

  • Berki AC, O’Donovan MJ and Antal M (1995) Developmental expression of glycine immunoreactivity and its colocalization with GABA in the embryonic chick lumbosacral spinal cord. J Comp Neurol 362:583–596.

    Article  PubMed  CAS  Google Scholar 

  • Boehm S, Harvey RJ, von Holst A, Rohrer H and Betz H (1997) Glycine receptors in cultured chick sympathetic neurons are excitatory and trigger neurotransmitter release. J Physiol 504:683–694.

    Article  PubMed  CAS  Google Scholar 

  • Bormann J, Hamill OP and Sakmann B (1987) Mechanism of anion permeation through channels gated by glycine and γ-aminobutyric acid in mouse cultured spinal neurones. J Physiol 385:243–286.

    PubMed  CAS  Google Scholar 

  • Born DE and Rubel EW (1988) Afferent influence on brain stem auditory nuclei of the chicken: presynaptic action potentials regulate protein synthesis in nucleus magnocellularis neurons. J Neurosci 8:901–919.

    PubMed  CAS  Google Scholar 

  • Boudreau JC and Tsuchitani C (1970) Cat superior olive s-segment cell discharge to tonal stimulation. In: Contributions to sensory physiology, Vol. 4 (Neff WD, ed), pp 143–213. New York, Academic Press.

    Google Scholar 

  • Bowery NG (1989) GABAB receptors and their significance in mammalian pharmacology. Trends Pharmacol Sci 10:401–408.

    Article  PubMed  CAS  Google Scholar 

  • Browner RH and Webster DB (1975) Projections of the trapezoid body and the superior olivary complex of the Kangaroo rat (Dipodomys merriami). Brain Behav Evol 11:322–354.

    PubMed  CAS  Google Scholar 

  • Callaway JC, Lasser-Ross N and Ross WN (1995) IPSPs strongly inhibit climbing fiber-activated [Ca2+]i increases in the dendrites of cerebellar purkinje neurons. J Neurosci 15:2777–2787.

    PubMed  CAS  Google Scholar 

  • Cant NB (1984) The fine structure of the lateral superior olivary nucleus of the cat. J Comp Neurol 227:63–77.

    Article  PubMed  CAS  Google Scholar 

  • Cant NB and Casseday JH (1986) Projections from the anteroventral cochlear nucleus to the lateral and medial superior olivary nuclei. J Comp Neurol 247:457–476.

    Article  PubMed  CAS  Google Scholar 

  • Cash S, Zucker RS and Poo M-m (1996) Spread of synaptic depression mediated by presynaptic cytoplasmic signaling. Science 272:998–1001.

    Article  PubMed  CAS  Google Scholar 

  • Caspary DM, Raza A, Lawharn Armour BA, Pippin J and Arneric SP (1990) Immunocytochemical and neurochemical evidence for age-related loss of GABA in the inferior colliculus: implications for neural presbycusis. J Neurosci 10:2363–2372.

    PubMed  CAS  Google Scholar 

  • Charpier S, Behrends JC, Triller A, Faber D and Korn H (1995) “Latent” inhibitory connections become functional during activity-dependent plasticity. Proc Natl Acad Sci USA 92:117–120.

    Article  PubMed  CAS  Google Scholar 

  • Connold AL, Evers JV and Vrbová (1986) Effect of low calcium and protease inhibitors on synapse elimination during postnatal development in the rat soleus muscle. Dev Brain Res 28:99–107.

    Article  CAS  Google Scholar 

  • Connor JA, Tseng HY and Hockberger PE (1987) Depolarization-and transmitter-induced changes in intracellular Ca2+ of rat cerebellar granule cells in explant cultures. J Neurosci 7:1384–1400.

    PubMed  CAS  Google Scholar 

  • Constantine-Paton M, Cline HT and Debski E (1990) Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways. Ann Rev Neurosci 13:129–154.

    Article  PubMed  CAS  Google Scholar 

  • Corner MA and Ramakers GJA (1992) Spontaneous firing as an epigenetic factor in brain: development-physiological consequences of chronic tetrodotoxin and picrotoxin exposure on cultured rat neocortex neurons. Dev Brain Res 65:57–64.

    Article  CAS  Google Scholar 

  • Deitch JS and Rubel EW (1984) Afferent influences on brain stem auditory nuclei of the chicken: Time course and specificity of dendritic atrophy following deafferentation. J Comp Neurol 229:66–79.

    Article  PubMed  CAS  Google Scholar 

  • Dubin MW, Stark LA and Archer SM (1986) A role for action-potential activity in the development of neuronal connections in the kitten retinogeniculate pathway. J Neurosci 6:1021–1036.

    PubMed  CAS  Google Scholar 

  • Eccles JC, Krnjevic K and Miledi R (1959) Delayed effects of peripheral severance of afferent nerve fibers on the efficacy of their central synapses. J Physiol 145:204–220.

    PubMed  CAS  Google Scholar 

  • Eccles JC (1969) The Inhibitory Pathways of the Central Nervous System. Springfield: Thomas.

    Google Scholar 

  • Feng AS and Rogowski BA (1980) Effects of monaural and binaural occlusion on the morphology of neurons in the medial superior olivary nucleus of the rat. Brain Res 189:530–534.

    Article  PubMed  CAS  Google Scholar 

  • Finck A, Schneck CD and Hartman AF (1972) Development of cochlear function in the neonate Mongolian gerbil (Meriones unguiculatus). J Comp Physiol Psychol 78:375–380.

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald KK and Sanes DH (1999) Serotonergic modulation of synapses in the developing gerbil lateral superior olive. J Neurophysiol 81:2743–2752.

    PubMed  CAS  Google Scholar 

  • Frieder B and Grimm VE (1985) Some long-lasting neurochemical effects of prenatal or early postnatal exposure to diazepam. J Neurochem 45:37–42.

    Article  PubMed  CAS  Google Scholar 

  • Fritschy JM, Paysan J, Enna A and Mohler H (1994) Switch in the expression of rat GABAA-receptor subtypes during postnatal development: an immunohistochemical study. J Neurosci 14:5302–5324.

    PubMed  CAS  Google Scholar 

  • Galli L and Maffei L (1988) Spontaneous impulse activity of rat retinal ganglion cells in prenatal life. Science 242:90–91.

    Article  PubMed  CAS  Google Scholar 

  • Glendenning KK, Hutson KA, Nudo RJ and Masterton RB (1985) Acoustic chiasm II: Anatomical basis of binaurality in lateral superior olive of cat. J Comp Neurol 232:261–285.

    Article  PubMed  CAS  Google Scholar 

  • Globus A and Scheibel AB (1966) Loss of dendritic spines as an index of presynaptic terminal patterns. Nature 212:463–465.

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb G (1980a) Development of species identification in ducklings. VI. Specific embryonic experience required to maintain species-typical perception in peking ducklings. J Comp Physiol Psychol 94:579–587.

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb G (1980b) Development of species identification in ducklings. VII. Highly specific early experience fosters species-specific perception in wood ducklings. J Comp Physiol Psychol 94:1019–1027.

    Article  Google Scholar 

  • Gottlieb G (1982) Development of species identification in ducklings. IX. The necessity of experiencing normal variations in embryonic auditory stimulation. Dev Psychobiol 15:507–517.

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb G (1983) Development of species identification in ducklings. X. Perceptual specificity in the wood duck embryo requires sib stimulation for maintenance. Dev Psychobiol 16:323–334.

    Article  PubMed  CAS  Google Scholar 

  • Green JS, Kotak VC and Sanes DH (1997) Glycine evokes a biphasic intracellular pH response in the developing LSO. Soc Neurosci Abst 23.

    Google Scholar 

  • Griffith WH and Murchison DA (1995) Enhancement of GABA-activated membrane currents in aged Fisher 344 rat basal forebrain neurons. J Neurosci 15:2407–2416.

    PubMed  CAS  Google Scholar 

  • Gutierrez A, Khan ZU, Morris SJ and De Blas AL (1994) Age-related decrease of GABAA receptor subunits and glutamic acid decarboxylase in the rat inferior colliculus. J Neurosci 14:7469–7477.

    PubMed  CAS  Google Scholar 

  • Hablitz JJ, Tehrani MH and Barnes EM Jr (1989) Chronic exposure of developing cortical neruons to GABA down-regulates GABA/benzodiazepine receptors and GABA-gated chloride currents. Brain Res 501:332–338.

    Article  PubMed  CAS  Google Scholar 

  • Hansen GH, Belhage B, Schousboe A and Meier E (1987) Temporal development of GABA agonist induced alterations in ultrastructure and GABA receptor expression in cultured cerebellar granule cells. Int J Dev Neurosci 5:263–269.

    Article  PubMed  CAS  Google Scholar 

  • Harris DM and Dallos P (1984) Ontogenetic changes in frequency mapping of a mammalian ear. Science 225:741–743.

    Article  PubMed  CAS  Google Scholar 

  • Heffner RS and Heffner HE (1988) Sound localization and use of binaural cues by the gerbil (Meriones unguiculatus). Behav Neurosci 102:422–428.

    Article  PubMed  CAS  Google Scholar 

  • Henkel CK and Brunso-Bechtold JK (1998) Calcium-binding proteins and GABA reveal spatial segregation of cell types within the developing lateral superior olivary nucleus of the ferret. Microsc Res Tech 41:234–245.

    Article  PubMed  CAS  Google Scholar 

  • Hubel DH and Wiesel TN (1965) Binocular interaction in striate cortex of kittens reared with artificial squint. J Neurophysiol 28:1041–1059.

    PubMed  CAS  Google Scholar 

  • Hyson RL and Rubel EW (1989) Transneuronal regulation of protein synthesis in the brainstem auditory system of the chick requires synaptic activation. J Neurosci 9:2835–2845.

    PubMed  CAS  Google Scholar 

  • Kaila K and Voipio J (1987) Postsynaptic fall in intracellular pH induced by GABA-activated bicarbonate conductance. Nature 330:163–165.

    Article  PubMed  CAS  Google Scholar 

  • Kaila K, Saarikoski J and Voipio J (1990) Mechanism of action of GABA on intracellular pH and on surface pH in crayfish muscle fibres. J Physiol 427:241–260.

    PubMed  CAS  Google Scholar 

  • Kaila K, Paalasmaa P, Taira T and Voipio J (1992) pH transients due to monosynaptic activation of GABAA receptors in rat hippocampal slices. NeuroReport 3:105–108.

    Article  PubMed  CAS  Google Scholar 

  • Kaila K, Voipio J, Paalasmaa P, Pasternack M and Deisz RA (1993) The role of bicarbonate in GABAA receptor-mediated IPSPs of rat neocortical neurones. J Physiol 464:273–289.

    PubMed  CAS  Google Scholar 

  • Kakazu Y, Akaike N, Komiyama S and Nabekura J (1999) Regulation of intracellular chloride by cotransporters in developing lateral superior olive neurons. J Neurosci 19:2843–2851.

    PubMed  CAS  Google Scholar 

  • Kandler K and Friauf E (1995) Development of glycinergic and glutamatergic synaptic transmission in the auditory brainstem of perinatal rats. J Neurosci 15:6890–6904.

    PubMed  CAS  Google Scholar 

  • Kerr LM, Ostapoff EM and Rubel EW (1979) Influence of acoustic experience on the ontogeny of frequency generalization gradients in the chicken. J Exp Psychol 5:97–115.

    CAS  Google Scholar 

  • Kim HY, Sapp DW Olsen RW and Tobin AJ (1993) GABA alters GABAA receptor mRNAs and increases ligand binding. J Neurochem 61:2334–2337.

    Article  PubMed  CAS  Google Scholar 

  • King AJ, Hutchings ME, Moore DR and Blakemore C (1988) Developmental plasticity in the visual and auditory representations in the mammalian superior colliculus. Nature 332:73–76.

    Article  PubMed  CAS  Google Scholar 

  • Kitzes LM, Kageyama GH, Semple MN and Kil J (1995) Development of ectopic projections from the ventral cochlear nucleus to the superior olivary complex induced by neonatal ablation of the contralateral cochlea. J Comp Neurol 353:341–363.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI, Esterly SD and Knudsen PF (1984a) Monaural occlusion alters sound localization during a sensitive period in the barn owl. J Neurosci 4:1001–1011.

    PubMed  CAS  Google Scholar 

  • Korada S, Schwartz IR (1999) Development of GABA, glycine, and their receptors in the auditory brainstem of gerbil: a light and electron microscopic study. J Comp Neurol 409:664–681.

    Article  PubMed  CAS  Google Scholar 

  • Kotak VC and Sanes DH (1995) Synaptically-evoked prolonged depolarizations in the developing central auditory system. J Neurophysiol 74:1611–1620.

    PubMed  CAS  Google Scholar 

  • Kotak VC and Sanes DH (1996) Developmental influence of glycinergic inhibition: Regulation of NMDA-mediated EPSPs. J Neurosci 16:1836–1843.

    PubMed  CAS  Google Scholar 

  • Kotak VC and Sanes DH (1997) Deafferentation of glutamatergic afferents weakens synaptic strength in the developing auditory system. Eur J Neurosci 9:2340–2347.

    Article  PubMed  CAS  Google Scholar 

  • Kotak VC and Sanes DH (1998) Long-term depression of inhibitory transmission in the developing auditory system. Soc Neurosci Abst 24.

    Google Scholar 

  • Kotak VC and Sanes DH (1999) Long-term depression of inhibitory transmission in the developing LSO may be mediated by postsynaptic calcium. Assoc Res Otolaryngol Abst 22.

    Google Scholar 

  • Kotak VC, Korada S, Schwartz IR and Sanes DH (1998) A developmental shift from GABAergic to glycinergic transmission in the central auditory system. J Neurosci 18:4646–4655.

    PubMed  CAS  Google Scholar 

  • Larsell O (1931) The effect of experimental excision of one eye on the development of the optic lobe and opticus layer in larvae of the tree-frog. J Exp Zool 58:1–20.

    Article  Google Scholar 

  • Lauder JM, Han VK, Henderson P, Verdoorn T and Towle AC (1986) Prenatal ontogeny of the GABAergic system in the rat brain: an immunocytochemical study. Neurosci 19:465–493.

    Article  CAS  Google Scholar 

  • Laurie DJ, Wisden W and Seeburg PH (1992) The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. embryonic and postnatal development. J Neurosci 12:4151–4172.

    PubMed  CAS  Google Scholar 

  • Levi-Montalcini R (1949) The development of the acoustico-vestibular centers in the chick embryo in the absence of the afferent root fibers and of descending fiber tracts. J Comp Neurol 91:209–241.

    Article  PubMed  CAS  Google Scholar 

  • Lippe WR (1994) Rhythmic spontaneous activity in the developing avian auditory system. J Neurosci 14:1486–1495.

    PubMed  CAS  Google Scholar 

  • Liu J, Morrow AL, Devaud LL, Grayson DR and Lauder JM (1997) Regulation of GABAA receptor subunit mRNA expression by the pesticide dieldrin in embryonic brainstem cultures: A quantitative, competitive reverse transcription-polymerase chain reaction study. J Neurosci Res 49:645–653.

    Article  PubMed  CAS  Google Scholar 

  • Llinás R and Yarom Y (1981) Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary cells in vitro. J Physiol 315:569–584.

    PubMed  Google Scholar 

  • Lo Y-J and Poo M-m (1991) Activity-dependent synaptic competition in vitro: heterosynaptic suppression of developing synapses. Science 254:1019–1022.

    Article  PubMed  CAS  Google Scholar 

  • Lo Y-j and Poo M-m (1994) Heterosynaptic supression of developing neruomuscular synapses in culture. J Neurosci 14:4684–4693.

    PubMed  CAS  Google Scholar 

  • Lo Y-J, Rao SC and Sanes DH (in press) Modulation of calcium by inhibitory systems in the developing auditory system. Neurosci.

    Google Scholar 

  • Ma W, Behar T and Barker JL (1992) Transient expression of GABA immunoreactivity in the developing rat spinal cord. J Comp Neurol 325:271–290.

    Article  PubMed  CAS  Google Scholar 

  • Maderdrut JL, Reitzel JL and Oppenheim RW (1986) Further behavioral analysis of GABA-mediated inhibition in the early chick embryo. Brain Res 390:157–160.

    PubMed  CAS  Google Scholar 

  • Martina M, Strata F and Cherubini E (1995) Whole cell and single channel properties of a new GABA receptor transiently expressed in the hippocampus. J Neurophysiol 73:902–906.

    PubMed  CAS  Google Scholar 

  • Mattson MP and Kater SB (1989) Excitatory and inhibitory neurotransmitters in the generation and degeneration of hippocampal neuroarchitecture. Brain Res 478:337–348.

    Article  PubMed  CAS  Google Scholar 

  • Meier E, Jorgensen OS and Schousboe A (1991) Effect of repeated treatment with gamma aminobutyric acid receptor agonist on postnatal neural development in rats. J Neurochem 49:1462–1470.

    Article  Google Scholar 

  • Meister M, Wong ROL, Baylor DA and Shatz CJ (1991) Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252:939–943.

    Article  PubMed  CAS  Google Scholar 

  • Michler-Stuke A and Wolff JR (1987) Facilitation and inhibition of neuron elongation by GABA in chick tectal neurons. In DA Redburn and A Schousboe (eds): Neurotrophic Activity of GABA During Development. Neurology and Neurobiology, Vol. 32. New York: Alan R. Liss, pp. 253–266.

    Google Scholar 

  • Mitchell CK and Redburn DA (1996) GABA and GABAA receptors are maximally expressed in association with cone synaptogenesis in neonatal rabbit retina. Dev Brain Res 95:63–71.

    Article  CAS  Google Scholar 

  • Mogdans J and Knudsen EI (1992) Adaptive adjustment of unit tuning to sound localization cues in response to monaural occlusion in developing owl optic tectum. J Neurosci 12:3473–3484.

    PubMed  CAS  Google Scholar 

  • Montpied P, Ginns EI, Martin BM, Roca D, Farb DH and Paul SM (1991) γ-Aminobutyric acid (GABA) induces a receptor-mediated reduction in GABAA receptor alpha subunit messenger RNAs in embryonic chick neurons in culture. J Biol Chem 266:6011–6014.

    PubMed  CAS  Google Scholar 

  • Moore MJ and Caspary DM (1983) Strychnine blocks binaural inhibition in lateral superior olivary neurons. J Neurosci 3:237–247.

    PubMed  CAS  Google Scholar 

  • Moore DR and Irvine DRF (1981) Plasticity of binaural interaction in the cat inferior colliculus. Brain Res 208:198–202.

    Article  PubMed  CAS  Google Scholar 

  • Morest DK (1968) The collateral system of the medial nucleus of the trapezoid body of the cat, its neuronal architecture and relation to the olivo-cochlear bundle. Brain Res 9:288–311.

    Article  PubMed  CAS  Google Scholar 

  • Mueller AL, Chesnut RM and Schwartzkroin PA (1983) Actions of GABA in developing rabbit hippocampus: An in vitro study. Neurosci Lett 39:193–198.

    Article  PubMed  CAS  Google Scholar 

  • Mueller AL, Taube JS and Schwartzkroin PA (1984) Development of hyperpolarizing inhibitory postsynaptic potentials and hyperpolarizing responses to γ-aminobutyric acid in rabbit hippocampus studied in vitro. J Neurosci 4:860–867.

    PubMed  CAS  Google Scholar 

  • Obata K, Oide M and Tanaka H (1978) Excitatory and inhibitory actions of GABA and glycine on embryonic chick spinal neurons in culture. Brain Res 144:179–184.

    Article  PubMed  CAS  Google Scholar 

  • Obrietan K and Van den Pol AN (1995) GABA neurotransmission in the hypothalamus: developmental reversal from Ca2+ elevating to depressing. J Neurosci 15:5065–5077.

    PubMed  CAS  Google Scholar 

  • Parks TN (1979) Afferent influences on the development of the brain stem auditory nuclei of the chicken: otocyst ablation. J Comp Neurol 183:665–678.

    Article  PubMed  CAS  Google Scholar 

  • Parks TN (1981) Changes in the length and organization of nucleus laminaris dendrites after unilateral otocyst ablation in chick embryos. J Comp Neurol 202:47–57.

    Article  PubMed  CAS  Google Scholar 

  • Peusner KD and Morest DK (1977) Neurogenesis in the nucleus vestibularis tangentialis of the chick embryo in the absence of the primary afferent fibers. Neurosci 2:253–270.

    Article  CAS  Google Scholar 

  • Poon PW and Chen X (1992) Postnatal exposire to tones alters the tuning characteristics of inferior collicular neurons in the rat. Brain Res 585:391–394.

    Article  PubMed  CAS  Google Scholar 

  • Poon PW, Chen XY and Hwang JC (1990) Altered sensitivities of auditory neurons in the rat midbrain following early postnatal exposure to patterned sounds. Brain Res 524:327–330.

    Article  PubMed  CAS  Google Scholar 

  • Poulter MO, Ohannesian L, Larmet Y and Feltz P (1997) Evidence that GABAA receptor subunit mRNA expression during development is regulated by GABAA receptor stimulation. J Neurochem 68:631–639.

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen GL (1946) The olivary peduncle and other fiber projections of the superior olivary complex. J Comp Neurol 84:141–219.

    Article  Google Scholar 

  • Redburn DA (1992) Development of GABAergic neurons on the mammalian retina. In: RR Mize, RR Marc, AM Sillito (Eds), Progress in Brain Research, Vol 90, Elsevier: New York, pp 133–147.

    Google Scholar 

  • Redfern PA (1970) Neuromuscular transmission in new-born rats. J Physiol 209:701–709.

    PubMed  CAS  Google Scholar 

  • Reh TA and Constantine-Paton M (1985) Eye-specific segregation requires neural activity in three-eyed Rana pipiens. J Neurosci 5:1132–1143.

    PubMed  CAS  Google Scholar 

  • Reichling DB, Kyrozis A, Wang J and Macdermott AB (1994) Mechanisms of GABA and glycine depolarization-induced calcium transients in rat dorsal horn neurons. J Physiol 476:411–421.

    PubMed  CAS  Google Scholar 

  • Reitzel JL, Maderdrut JL and Oppenheim RW (1979) Behavioral and biochemical analysis of GABA-mediated inhibition in the early chick embryo. Brain Res 172:487–504.

    Article  PubMed  CAS  Google Scholar 

  • Rivera C, Wegelius K, Reeben M, Saarma M and Kaila K (1997) Developmental regulation of K-Cl cotransporter (KCC2 and KCC1) mRNA in early postnatal rat hippocampus. Soc Neurosci Abst 23:44.

    Google Scholar 

  • Russell FA and Moore DR (1995) Afferent reorganization within the superior olivary complex of the gerbil: Development and induction by neonatal, unilateral cochlear removal. J Comp Neurol 352:607–625.

    Article  PubMed  CAS  Google Scholar 

  • Ryan AF and Woolf NK (1988) Development of tonotopic representation in the mongolian gerbil: a 2-deoxyglucose study. Dev Brain Res 41:61–70.

    Article  Google Scholar 

  • Sanes DH and Constantine-Paton M (1985) The sharpening of frequency tuning curves requires patterned activity during development in the mouse, Mus musculus. J Neurosci 5:1152–1166.

    PubMed  CAS  Google Scholar 

  • Sanes DH, Geary WA, Wooten GF and Rubel EW (1987) Quantitative distribution of the glycine receptor in the auditory brain stem of the gerbil. J Neurosci 7:3793–3802.

    PubMed  CAS  Google Scholar 

  • Sanes DH and Wooten GF (1987) Development of glycine receptor distribution in the lateral superior olive of the gerbil. J Neurosci 7:3803–3811.

    PubMed  CAS  Google Scholar 

  • Sanes DH and Rubel EW (1988) The ontogeny of inhibition and excitation in the gerbil lateral superior olive. J Neurosci 8:682–700.

    PubMed  CAS  Google Scholar 

  • Sanes DH, Merickel M and Rubel EW (1989) Evidence for an alteration of the tonotopic map in the gerbil cochlea during development. J Comp Neurol 279:436–444.

    Article  PubMed  CAS  Google Scholar 

  • Sanes DH, Goldstein NA, Ostad M and Hillman DE (1990) Dendritic morphology of central auditory neurons correlates with their tonotopic position. J Comp Neurol 294:443–454.

    Article  PubMed  CAS  Google Scholar 

  • Sanes DH (1990) An in vitro analysis of sound localization mechanisms in the gerbil lateral superior olive. J Neurosci 10:3494–3506.

    PubMed  CAS  Google Scholar 

  • Sanes DH and Siverls V (1991) The development and specificity of inhibitory axonal arborizations in the lateral superior olive. J Neurobiol 22:837–854.

    Article  PubMed  CAS  Google Scholar 

  • Sanes DH and Chokshi P (1992) Glycinergic transmission influences the development of dendritic shape. NeuroReport 3:323–326.

    Article  PubMed  CAS  Google Scholar 

  • Sanes DH, Markowitz S, Bernstein J and Wardlow J (1992b) The influence of inhibitory afferents on the development of postsynaptic dendritic arbors. J Comp Neurol 321:637–644.

    Article  PubMed  CAS  Google Scholar 

  • Sanes DH, Song J and Tyson J (1992a) Refinement of dendritic arbors along the tonotopic axis of the gerbil lateral superior olive. Dev Brain Res 67:47–55.

    Article  CAS  Google Scholar 

  • Sanes DH (1993) The development of synaptic function and integration in the central auditory system. J Neurosci 13:2627–2637.

    PubMed  CAS  Google Scholar 

  • Sanes DH and Takacs C (1993) Activity-dependent refinement of inhibitory connections. Eur J Neurosci 5:570–574.

    Article  PubMed  CAS  Google Scholar 

  • Sanes DH and Hafidi A (1996) Glycinergic transmission regulates dendrite size in organotypic culture. J Neurobiol 31:503–511.

    Article  PubMed  CAS  Google Scholar 

  • Sanes DH and Walsh EJ (1997) Development of Auditory Processing. In: Development of the Auditory System. (Eds, EW Rubel, AN Popper, RR Fay) Springer-Verlag: New York.

    Google Scholar 

  • Schnupp JWH, King AJ, Smith AL and Thompson ID (1995) NMDA-receptor antagonists disrupt the formation of the auditory space map in the mammalian superior colliculus. J Neurosci 15:1516–1531.

    PubMed  CAS  Google Scholar 

  • Shatz CJ (1990) Impulse activity and the patterning of connections during CNS development. Neuron 5:745–756.

    Article  PubMed  CAS  Google Scholar 

  • Sherman SM and Spear PD (1982) Organization of visual pathways in normal and visually deprived cats. Physiol Rev 62:738–855.

    PubMed  CAS  Google Scholar 

  • Silverman MS and Clopton BM (1977) Plasticity of binaural interaction. I. Effect of early auditory deprivation. J Neurophysiol 40:1266–1274.

    PubMed  CAS  Google Scholar 

  • Snyder RL, Rebscher SJ, Cao K, Leake PA and Kelly K (1990) Chonic intracochlear electrical stimulation in the neonatally deafened cat. I: Expansion of central representation. Hear Res 50:7–34.

    Article  PubMed  CAS  Google Scholar 

  • Spangler KM, Warr WB and Henkel CK (1985) The projections of principal cells of the medial nucleus of the trapezoid body in the cat. J Comp Neurol 238:249–262.

    Article  PubMed  CAS  Google Scholar 

  • Spoerri PE (1988) Neurotrophic effects of GABA in cultures of embryonic chick brain and retina. Synapse 2:11–22.

    Article  PubMed  CAS  Google Scholar 

  • Sretavan DW, Schatz CJ and Stryker MP (1988) Modification of retinal ganglion cell axon morphology by prenatal infusion of tetrodotoxin. Nature 336:468–471.

    Article  PubMed  CAS  Google Scholar 

  • Staley KJ, Soldo BL and Proctor WR (1995) Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors. Science 269:977–981.

    Article  PubMed  CAS  Google Scholar 

  • Steward O and Rubel EW (1985) Afferent influences on brain stem auditory nuclei of the chicken: Cessation of amino acid incorporation as an antecedent to age-dependent transneuronal degeneration. J Comp Neurol 231:385–395.

    Article  PubMed  CAS  Google Scholar 

  • Stryker MP and Harris WA (1986) Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex. J Neurosci 6:2117–2133.

    PubMed  CAS  Google Scholar 

  • Swann JW, Brady RJ and Martin DL (1989) Postnatal development of GABA-mediated synaptic inhibition in rat hippocampus. Neurosci 28:551–561.

    Article  CAS  Google Scholar 

  • Takahashi T, Momiyama A, Hirai K, Hishinuma F and Akagi H (1992) Functional correlation of fetal and adult forms of glycine receptors with developmental changes in inhibitory synaptic receptor channels. Neuron 9:1155–1161.

    Article  PubMed  CAS  Google Scholar 

  • Tremblay E, Ben-Ari Y and Roisin MP (1995) Different GABAB-mediated effects on protein kinase C activity and immunoreactivity in neonatal and adult rat hippocampal slices. J Neurochem 65:863–870.

    Article  PubMed  CAS  Google Scholar 

  • Trune DR (1982) Influence of neonatal cochlear removal on development of mouse cochlear nucleus: II. Dendritic morphometry of its neurons. J Comp Neurol 209:425–434.

    Article  PubMed  CAS  Google Scholar 

  • Udin SB (1983) Abnormal visual input leads to the development of abnormal axon trajectories in frogs. Nature 301:336–338.

    Article  PubMed  CAS  Google Scholar 

  • Van Huizen F, Romjin HJ, Van Der Hooff P and Habets AM (1987) Picrotoxin-induced disinhibition of spontaneous bioelectric activity accelerates synaptogenesis in rat cerebral cortex cultures. Exp Neurol 97:280–288.

    Article  PubMed  Google Scholar 

  • Wang J, Reichling DB, Kyrozis A and Macdermott AB (1994) Developmental loss of GABA-and Glycine-induced depolarization and Ca2+ transients in embryonic rat dorsal horn neurons in culture. Eur J Neurosci 6:1275–1280.

    Article  PubMed  CAS  Google Scholar 

  • Warr WB (1982) Parallel ascending pathways from the cochlear nucleus: Neuroanatomical evidence of functional specialization. In: Contributions to Sensory Physiology, vol. 7, (Neff WD, ed), pp. 1–38. New York: Academic.

    Google Scholar 

  • Watkins DW, Wilson JR and Sherman SM (1978) Receptive-filed properties of neurons in binocular and monocular segments of striate cortex in cats raised with binocular lid suture. J Neurophysiol 41:322–337.

    PubMed  CAS  Google Scholar 

  • Webster DB and Webster M (1979) Effects of neonatal conductive hearing loss on brain stem auditory nuclei. Ann Otol Rhinol Laryngol 88:684–688.

    PubMed  CAS  Google Scholar 

  • Wiesel TN and Hubel DH (1963) Effects of visual deprivation on morphology and physiology of cells in the cat’s lateral geniculate body. J Neurophysiol 26:978–993.

    PubMed  CAS  Google Scholar 

  • Wiesel TN and Hubel DH (1965) Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J Neurophysiol 28:1029–1040.

    PubMed  CAS  Google Scholar 

  • Wilmington D, Gray L and Jarsdoerfer R (1994) Binaural processing after corrected congenital unilateral conductive hearing loss. Hear Res 74:99–114.

    Article  PubMed  CAS  Google Scholar 

  • Withington-Wray DJ, Binns KE, Dhanjal SG, Brickley SG and Keating MJ (1990) The maturation of the superior collicular map of auditory space in the guinea pig is disrupted by developmental auditory deprivation. Eur J Neurosci 2:693–703.

    Article  PubMed  Google Scholar 

  • Wolff JR, Joó F and Dames W (1978) Plasticity of dendrites shown by continuous GABA administration in superior cervical ganglion of adult rat. Nature 274:72–74.

    Article  PubMed  CAS  Google Scholar 

  • Wolff JR, Joó F, Dames W and Fehér O (1979) Induction and maintenance of free postsynaptic membrane thickenings in the adult superior cervical ganglion. J Neurocytol 8:549–563.

    Article  PubMed  CAS  Google Scholar 

  • Woolf NK and Ryan AF (1984) The development of auditory function in the cochlea of the mongolian gerbil. Hearing Res 13:277–283.

    Article  CAS  Google Scholar 

  • Woolf NK and Ryan AF (1985) Ontogeny of neural discharge patterns in the ventral cochlear nucleus of the mongolian gerbil. Dev Brain Res 17:131–147.

    Article  Google Scholar 

  • Wu WL, Ziskind-Conhaim L and Sweet MA (1992) Early development of glycine-and GABA-mediated synapses in rat spinal cord. J Neurosci 12:3935–3945.

    PubMed  CAS  Google Scholar 

  • Zhang L, Spigelman I and Carlen PL (1991) Development of GABA-mediated, chloride-dependent inhibition in CA1 pyramidal neurones of immature rat hippocampal slices. J Physiol 444:25–49.

    PubMed  CAS  Google Scholar 

  • Zhang J, Shen W and Slaughter MM (1997) Two metabotropic γ-aminobutyric acid differentially modulate calcium currents in retinal ganglion cells. J Gen Physiol 110:45–58.

    Article  PubMed  CAS  Google Scholar 

  • Zook JM and DiCaprio RA (1988) Intracellular labeling of afferents to the lateral superior olive in the bat, Eptesicus fuscus. Hearing Res 34:141–148.

    Article  CAS  Google Scholar 

  • Zou D-J and Cline HT (1996) Expression of constituitively active CaMKII in target tissue modifies presynaptic axon arbor growth. Neuron 16:529–539.

    Article  PubMed  CAS  Google Scholar 

  • Zukin SR, Young AB and Snyder SH (1975) Development of the synaptic glycine receptor in chick embryo spinal cord. Brain Res 83:525–530.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Sanes, D.H., Kotak, V.C., Fitzgerald, K.K. (1999). The Developmental Influence of Inhibitory Synaptic Transmission. In: Hyson, R.L., Johnson, F. (eds) The Biology of Early Influences. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-29598-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-29598-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46298-6

  • Online ISBN: 978-0-585-29598-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics