Non-Enzymatic Degradation Pathways of Lactose and Their Significance in Dairy Products

  • John O’Brien*


Milk products are especially sensitive to the effects of heat treatment encountered under conventional process and storage conditions because of an abundance of reactive functional groups: aldehyde group of lactose, ε-amino group of lysine and other reactive N-containing groups (e.g. indolyl group of tryptophan, imidazole group of histidine, guanidino group of arginine and the α-amino group of proteins and free amino acids).


Food System Maillard Reaction Skim Milk Powder Furfuryl Alcohol Maillard Reaction Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author wishes to thank Dr Judith O’Connor for assistance with the references.


  1. Adachi, S. 1958. Formation of lactulose and tagatose from lactose in strongly heated milk. Nature 181, 840–841.CrossRefGoogle Scholar
  2. Adachi, S., Patton, S. 1961. Presence and significance of lactulose in milk products: A review. J. Dairy Sci. 44, 1375–1393.CrossRefGoogle Scholar
  3. Affertsholt-Allen, T. 2007. Market developments and industry challenges for lactose and derivatives, presentation at IDF Symposium. Lactose and its Derivatives, 14–16 May 2007,
  4. Aider, M., de Halleux, D. 2007. Isomerization of lactose and lactulose production: Review. Trends Food Sci. Technol. 18, 356–364.CrossRefGoogle Scholar
  5. Als-Nielsen, B., Gluud, L.L., Gluud, C. 2004. Non-absorbable disaccharides for hepatic encephalopathy,
  6. Amaya, J., Lee, T-C., Chichester, C.O. 1976. Biological inactivation of proteins by the Maillard reaction. Effect of mild heat on the tertiary structure of insulin. J. Agric. Food Chem. 24, 465–467.CrossRefGoogle Scholar
  7. Anderson, T.R., Quicke, G.V. 1984. An isotopic method for determining chemically reactive lysine based on succinylation. J. Sci. Food Agric. 35, 472–480.CrossRefGoogle Scholar
  8. Andrews, G.R. 1984. Distinguishing pasteurized, UHT and sterilized milks by their lactulose content. J. Soc. Dairy Technol. 37, 92–96.CrossRefGoogle Scholar
  9. Andrews, G.R. 1986. Formation and occurrence of lactulose in heated milk. J. Dairy Res. 53, 665–680.CrossRefGoogle Scholar
  10. Andrews, G.R., Prasad, S.K. 1987. Effect of the protein, citrate and phosphate content of milk on formation of lactulose during heat treatment. J. Dairy Res. 54, 207–218.CrossRefGoogle Scholar
  11. Angyal, S.J. 1984. The composition of reducing sugars in solution. Adv. Carbohydr. Chem. Biochem. 42, 15–68.CrossRefGoogle Scholar
  12. Aoki, T., Matsumoto, T., Kako, Y., Kato, Y., Matsuda, T. 1994. Improvement of functional properties of β-lactoglobulin by glucose-6-phosphate conjugation. In: Maillard Reactions in Chemistry, Food and Health (T.P. Labuza, G.A. Reineccius, V.M. Monnier, J. O'Brien, J.W. Baynes, eds.), p. 409 (abstr.) Royal Society of Chemistry, Cambridge.CrossRefGoogle Scholar
  13. Armstrong, J.J., Hill, S.E., Mitchell, J.R. 1994. Enhancement of the gelation of food macromolecules using the Maillard reaction and elevated temperatures. In: Maillard Reactions in Chemistry, Food and Health (T.P. Labuza, G.A. Reineccius, V.M. Monnier, J. O'Brien, J.W. Baynes, eds.), pp. 159–163, Royal Society of Chemistry, Cambridge.CrossRefGoogle Scholar
  14. Ashoor, S.H., Zent, J.B. 1984. Maillard browning of common amino acids and sugars. J. Food Sci. 49, 1206–1207.CrossRefGoogle Scholar
  15. Assoumani, M.B., Nguyen, N.P., Lardinois, P.F., van Bree, J., Baudichau, A., Bruyer, D.C. 1990. Use of a lysine oxidase electrode for lysine determination in Maillard model reactions and in soybean meal hydrolysates. Lebensm. Wiss. Technol. 23, 322–327.Google Scholar
  16. Badoud, R., Hunston, F., Fay, L., Pratz, G. 1990. Oxidative degradation of protein-bound Amadori products: formation of N-ε-carboxymethyl lysine and N-carboxymethyl amino acids as indicators of the extent of non-enzymatic glycosylation. In: The Maillard Reaction in Food Processing, Human Nutrition and Physiology (P.A. Finot, H.U. Aeschbacher, R.F. Hurrell, R. Liardon eds.), pp. 79–84, Birkhäuser Verlag, Basel.CrossRefGoogle Scholar
  17. Beck, J., Ledl, F., Severin, T. 1988. Formation of 1-deoxy-d-erythro-2,3-hexodiulose from Amadori compounds. Carbohydr. Res. 177, 240–243.CrossRefGoogle Scholar
  18. Ben-Gera, I., Zimmerman, G. 1972. Changes in the nitrogenous constituents of staple foods and feeds during storage. I. Decrease in the chemical availability of lysine. J. Food Sci. Technol. India, 9, 113–118.Google Scholar
  19. Berg, H.E. 1993. Reactions of Lactose During Heat Treatment of Milk: A Quantitative Study, PhD Thesis, Wageningen Agricultural University.Google Scholar
  20. Berg, H.E., van Boekel, M.A.J.S., Jongen, W.M.F. 1990. Heating milk: A study of mutagenicity. J. Food Sci. 55, 1000–1003, 1017.CrossRefGoogle Scholar
  21. Berrens, L. 1996. Neoallergens in heated pecan nut: Products of Maillard type degradation? Allergy 51, 277–278.Google Scholar
  22. Birlouez-Aragon, I., Mas, P.A., Ait Ameur, L., Locquet, N., de St Louvent, E., Zude, M. 2004. Fluorescence fingerprints as a rapid predictor of the nutritional quality of processed and stored foods. Czech J. Food Sciences 22(Special Issue), 68–71.Google Scholar
  23. Blank, I. 2005. Current status of acrylamide research in food: Measurement, safety assessment, and formation. Ann. N.Y. Acad. Sci. 1043, 30–40.CrossRefGoogle Scholar
  24. Blank, I., Davidek, T., Pollien, P., Devaud, S. 2004. Flavour and vinylogous compounds generated by Maillard-type reactions. Czech J. Food Sciences 22(Special Issue), 50–53.Google Scholar
  25. Bleumink, E., Berrens, L. 1996. Synthetic approaches to the biological activity of beta-lactoglobulin in human allergy to cow’s milk. Nature 212, 514–543.Google Scholar
  26. Bobbio, F.O., Bobbio, P.A., Trevisan, L.M.V. 1973. Maillard reaction. II: catalytic effect of anions. Lebensm. Wiss. Technol. 6, 215–218.Google Scholar
  27. Bosch, L., Alegria, A., Farre, R., Clemente, G. 2007. Fluorescence and color as markers for the Maillard reaction in milk-cereal based infant foods during storage. Food Chem. 105, 1135–1143.CrossRefGoogle Scholar
  28. Buera, M.P., Chirife, J., Resnik, S.L. 1990. Browning reactions of Heyns rearrangement products. Kinetics of the Maillard reaction during processing and storage. Nahrung 34, 759–764.CrossRefGoogle Scholar
  29. Burton, H. 1984. Reviews of the progress of Dairy Science: the bacteriological, chemical, biochemical and physical changes that occur in milk at temperatures of 100–150°C. J. Dairy Res. 51, 341–363.CrossRefGoogle Scholar
  30. Burvall, A., Asp, N-G., Bosson, A., José, C.S., Dahlqvist, A. 1978. Storage of lactose-hydrolysed dried milk: effect of water activity on the protein nutritional value. J. Dairy Res. 45, 381–389.CrossRefGoogle Scholar
  31. Buser, W., Erbersdobler, H.F. 1985. Determination of furosine by gas-liquid chromatography. J. Chromatogr. 346, 363–368.CrossRefGoogle Scholar
  32. Cabodevila, O., Hill, S.E., Armstrong, H.J., De Sousa, I., Mitchel, J.R. 1994. Gelation enhancement of soy protein isolate using the Maillard reaction and high temperatures. J. Food Sci. 59, 872–875.CrossRefGoogle Scholar
  33. Calvo, M.M., de la Hoz, L. 1992. Flavour of heated milks. I. A review. Int. Dairy J. 2, 69–81.CrossRefGoogle Scholar
  34. Calvo, M.M., Olano, A. 1989. Formation of galactose during heat treatment of milk and model systems. J. Dairy Res. 56, 737–740.CrossRefGoogle Scholar
  35. Carpenter, K.J. 1960. The estimation of the available lysine in animal-protein foods. Biochem. J. 77, 604–610.Google Scholar
  36. Casal, E., Ramírez, P., Ibañez, E., Corzo, N., Olano, A. 2006. Effect of supercritical carbon dioxide treatment on the Maillard reaction in model food systems. Food Chem. 97(2), 272–276.CrossRefGoogle Scholar
  37. Cejpek, K., Jarolimova, L., Velisek, J. 2004. Antioxidant capacity of Maillard systems with carbonyl products of sugar fragmentation. Czech J. Food Sci. 22, 60–63.Google Scholar
  38. Chan, F., Reineccius, G.A. 1994. The reaction kinetics for the formation of isovaleraldehyde, 2-acetyl-1-pyrroline, di(H)di(OH)-6-methylpyranone, phenylacetaldehyde, 5-methyl-2-phenyl-2-hexenal and 2-acetyl furan in model systems. In: Maillard Reactions in Chemistry, Food and Health (T.P. Labuza, G.A. Reineccius, V.M. Monnier, J. O'Brien, J.W. Baynes, eds.), pp. 131–139, Royal Society of Chemistry, Cambridge.CrossRefGoogle Scholar
  39. Chavez-Servin, J.L., Castellote, A.I., Lopez-Sabater, M.C. 2004. Analysis of mono- and disaccharides in milk-based formulae by high-performance liquid chromatography with refractive index detection. J. Chromat. 1043, 211–215.CrossRefGoogle Scholar
  40. Chevalier, F., Chobert, J.-M., Popineau, Y., Nicolas, M.G., Haertlé, T. 2001. Improvement of functional properties of β-lactoglobulin glycated through the Maillard reaction is related to the nature of the sugar. Int. Dairy J. 11(3), 145–152.CrossRefGoogle Scholar
  41. Chevalier, F., Chobert, J.-M., Dalgalarrondo, M., Choiset, Y., Haertlé, T. 2002. Maillard glycation of β-lactoglobulin induces conformation changes. Nahrung 46(2), 58–63.CrossRefGoogle Scholar
  42. Chiang, G.H. 1983. A simple and rapid high performance liquid chromatographic procedure for determination of furosine, lysine-reducing sugar derivative. J. Agric. Food Chem. 31, 1373–1374.CrossRefGoogle Scholar
  43. Chiang, G.H. 1988. High performance liquid chromatographic determination of ε-pyrrole- lysine in processed food. J. Agric. Food Chem. 36, 506–509.CrossRefGoogle Scholar
  44. Claeys, W.L., van Loey, A.M., Hendrickx, M.E. 2003. Kinetics of hydroxymethylfurfural, lactulose and furosine formation in milk with different fat content. J. Dairy Res. 70(1), 85–90.CrossRefGoogle Scholar
  45. Clamp, J.R., Hough, L., Hickson, J.L., Whistler, R.L. 1961. Lactose. Adv. Carbohydr. Chem. 16, 159–206.CrossRefGoogle Scholar
  46. Crews, C., Castle, L. 2007. A review of the occurrence, formation and analysis of furan in heat-processed foods. Trends Food Sci. Technol. 18, 365–372.CrossRefGoogle Scholar
  47. Culver, C.A., Swaisgood, H.E. 1989. Changes in the digestibility of dried casein and glucose mixtures occurring during storage at different temperatures and water activities. J. Dairy Sci. 72, 2916–2920.CrossRefGoogle Scholar
  48. Czerwenka, C., Maier, I., Pittner, F., Linder, W. 2006. Investigation of the lactosylation of whey proteins by liquid chromatography-mass spectrometry. J. Agric. Food Chem. 54, 8874–8882.CrossRefGoogle Scholar
  49. Dalsgaard, T.K., Nielsen, J.H., Larsen, L.B. 2007. Proteolysis of milk proteins lactosylated in model systems. Molec. Nutr. Food Res. 51, 404–414.CrossRefGoogle Scholar
  50. Davis, P.J., Smales, C.M., James, D.C. 2001. How can thermal processing modify the antigenicity of proteins? Allergy 56, 56–60.CrossRefGoogle Scholar
  51. De Block, J., Merchiers, M., Mortier, L., Braekman, A., Ooghe, W., Van Renterghem, R. 2003. Monitoring nutritional quality of milk powders: capillary electrophoresis of the whey protein fraction compared with other methods. Int. Dairy J. 13, 87–94.CrossRefGoogle Scholar
  52. Desrosiers, T., Savoie, L., Bergeron, G., Parent, G. 1989. Estimation of lysine damage in heated whey proteins by furosine determinations in conjunction with the digestion cell technique. J. Agric. Food Chem. 37, 1385–1391.CrossRefGoogle Scholar
  53. Dutra, R.C., Tarassuk, N.P., Kleiber, M. 1958. Origin of the carbon dioxide produced in the browning reaction of evaporated milk. J. Dairy Sci. 41, 1017–1023.CrossRefGoogle Scholar
  54. Dworschak, E., Hegedüs, M. 1974. Effect of heat treatment on the nutritive value of proteins in milk powder. Acta Aliment. Acad. Scient. Hungaricae 6, 337–347.Google Scholar
  55. Earley, R.A., Hansen, A.P. 1982. Effect of process and temperature during storage on ultra-high temperature steam-injected milk. J. Dairy Sci. 65, 11–16.CrossRefGoogle Scholar
  56. Eichner, K., Ciner-Doruk, M. 1979. Formation and stability of Amadori compounds in low moisture model systems. Lebensm. Unters. Forsch. 168, 360–367.CrossRefGoogle Scholar
  57. Eichner, K., Karel, M. 1972. The influence of water content and water activity on the sugar-amino browning reaction in model systems under various conditions. J. Agric. Food Chem. 20, 218–223.CrossRefGoogle Scholar
  58. Elliott, A.J., Datta, N., Amenu, B., Deeth, H.C. 2005. Heat-induced and other chemical changes in commercial UHT milks. J. Dairy Res. 72, 442–446.CrossRefGoogle Scholar
  59. El-Shafei, M.M., Al-Amoudy, N.S., Said, A.K. 1988. Effect of the drying process on the nutritive value of milk, Part 2. Biological evaluation. Nahrung, 32, 559–564.CrossRefGoogle Scholar
  60. El Zeany, B-D. 1982. Oxidised lipids–proteins browning reaction. Part 7: effects of carbonyl group reactants. Rev. Ital. Sost. Grasse 59, 423–425.Google Scholar
  61. Erbersdobler, H.F., Dehn-Müller, B. 1989. Formation of early Maillard products during UHT treatment of milk. In: Heat-Induced Changes in Milk, Bulletin 238 (P.F. Fox, ed.), pp. 62–70, International Dairy Federation, Brussels.Google Scholar
  62. Erbersdobler, H.F., Dehn, B., Nangpal, A., Reuter, H. 1987. Determination of furosine in heated milk as a measure of heat intensity during processing. J. Dairy Res. 54, 147–151.CrossRefGoogle Scholar
  63. Evangelisti, F., Calcagno, C., Nardi, S., Zunin, P. 1999. Deterioration of protein fraction by Maillard reaction in dietetic milks. J. Dairy Res. 66, 237–243.CrossRefGoogle Scholar
  64. Evangelisti, F., Calcagno, C., Zunin, P. 1993. Changes induced by Maillard reaction in milk formulas. Riv. Sci. Aliment. 22, 77–82.Google Scholar
  65. Evangelisti, F., Calcagno, C., Zunin, P. 1994. Relationship between blocked lysine and carbohydrate composition of infant formulas. J. Food Sci. 59, 335–337.CrossRefGoogle Scholar
  66. Fayle, S.E., Gerrard, J.A. 2002. The Maillard Reaction, Royal Society of Chemistry, Cambridge, UK.Google Scholar
  67. FDA. 2007. Exploratory data on furan in food: Individual food products, (accessed 10/8/07).
  68. Feather, M.S. 1970. The conversion of d-xylose and d-glucuronic acid to 2-furaldehyde. Tetrahedron Lett. 48, 4143–4145.CrossRefGoogle Scholar
  69. Feather, M.S. 1981. Amine-assisted sugar dehydration reactions. Prog. Food Nutr. Sci. 5, 37–45.Google Scholar
  70. Feather, M.S. 1989. The formation of deoxyglycosuloses (deoxyosones) and their reactions during the processing of food. In: Frontiers in Carbohydrate Research – 1 (R.P. Millane, J.N. Be Miller, R. Chandrasekaran, eds.), pp. 66–73, Elsevier Science Publishers, New York.Google Scholar
  71. Ferrer, E., Alegria, A., Farre, R., Abellan, P. Romero, F., Clemente, G. 2003. Evolution of available lysine and furosine contents in milk-based infant formulas throughout the shelf-life storage period. J. Sci. Food Agric. 83, 465–472.CrossRefGoogle Scholar
  72. Ferretti, A., Flanagan, V.P. 1971. The lactose-casein (Maillard) browning system: Volatile components. J. Agric. Food Chem. 19, 245–249.CrossRefGoogle Scholar
  73. Ferretti, A., Flanagan, V.P. 1972. Steam volatile constituents of stale non-fat dry milk. The role of the Maillard reaction in staling. J. Agric. Food Chem. 20, 695–698.CrossRefGoogle Scholar
  74. Finot, P.-A. 2005. The absorption and metabolism of modified amino acids in processed foods. J. AOAC Int. 88, 894–903.Google Scholar
  75. Finot, P.A., Deutsch, R., Bujard, E. 1981. The extent of the Maillard reaction during the processing of milk. Prog. Food Nutr. Sci. 5, 345–355.Google Scholar
  76. Fox, P.F. 1981. Heat-induced changes in milk preceding coagulation. J. Dairy Sci. 64, 2127–2137.CrossRefGoogle Scholar
  77. Franks, F. 1991. Water activity: A credible measure of food safety and quality? Trends Food Sci. Technol. 2, 68–72.CrossRefGoogle Scholar
  78. Franzen, K., Singh, R.K., Okos, M.R. 1990. Kinetics of non-enzymatic browning in dried skim milk. J. Food Eng. 11, 225–239.CrossRefGoogle Scholar
  79. French, S.J., Harper, W.J., Kleinholz, N.M., Jones, R.B., Green-Church, K.B. 2002. Maillard reaction induced lactose attachment to bovine β-lactoglobulin: Electrospray ionization and matrix-assisted laser desorption/ionization examination. J. Agric. Food Chem. 50(4), 820–823.CrossRefGoogle Scholar
  80. Friedman, M., Molnar-Perl, I. 1990. Inhibition of browning by sulphur amino acids. I. Heated amino acid–glucose systems. J. Agric. Food Chem. 38, 1642–1647.CrossRefGoogle Scholar
  81. Friedman, M., Mottram, D. (Eds.) 2004. Chemistry and Safety of Acrylamide in Food, Springer, New York.Google Scholar
  82. Furniss, D.E., Vuichoud, J., Finot, P.A., Hurrell, R.F. 1989. The effect of Maillard reaction products on zinc metabolism in the rat. Br. J. Nutr. 62, 639–649.CrossRefGoogle Scholar
  83. Geier, H., Klostermeyer, H. 1980. Enzymatic determination of lactulose. Z. Lebensm. Unters. Forsch. 171, 443–445.CrossRefGoogle Scholar
  84. Glatt, H., Sommer, Y. 2006. Health risks of 5-hydroxymethyl furfural (HMF) and related compounds. In: Acrylamide and Other Hazardous Compounds in Heat-Treated Foods (K. Skog, J. Alexander, eds.), pp. 328–357, CRC Press, Boca Raton, FL, USA.CrossRefGoogle Scholar
  85. Gliguem, H., Birlouez-Aragon, I. 2005. Effects of sterilization, packaging, and storage on vitamin C degradation, protein denaturation, and glycation in fortified milks. J. Dairy Sci. 88, 891–899.CrossRefGoogle Scholar
  86. Glomb, M., Lederer, M., Ledl, F. 1991. 5-Hydroxymethyl-3-(2H)-furanone, 5-(1,2- dihydroxyethyl)-3(2H)-furanone and 5-hydroxy-2H-pyran-3(6H)-one: reactive intermediates in the Maillard reaction of hexoses and pentoses. Z. Lebensm. Unters. Forsch. 193, 237–241.CrossRefGoogle Scholar
  87. Goldberg, T., Cai, W., Peppa, M., Dardaine, V., Baliga, B.S., Uribarri, J., Vlassara, H. 2004. Advanced glycoxidation end products in commonly consumed foods. J. Am Diet. Assoc. 104, 1287–1291.CrossRefGoogle Scholar
  88. Gopalan, S., Gracy, A.T., Srinivasan, A. 1994. Deamination of basic amino acids in protein using active carbonyl compounds produced by the Maillard reaction. In: Maillard Reactions in Chemistry, Food and Health (T.P. Labuza, G.A. Reineccius, V.M. Monnier, J.M. O'Brien, J.W. Baynes, eds.), p. 412 (abstr.), Royal Society of Chemistry, Cambridge.CrossRefGoogle Scholar
  89. Gothwal, P.P., Bhavadasan, M.K. 1991. Proteolytic hydrolysis of milk proteins as influenced by browning. Indian J. Dairy Sci. 44, 501–509.Google Scholar
  90. Ghiron, A.F., Quack, B., Mawhinney, T.P., Feather, M.S. 1988. Studies on the role of 3-deoxy-d-erythro-glucosulose (3-deoxyglucosone) in non-enzymatic browning. Evidence for involvement in a Strecker degradation. J. Agric. Food Chem. 36, 677–680.CrossRefGoogle Scholar
  91. Griffith, R., Hammond, E.G. 1989. Generation of Swiss cheese flavor components by the reaction of amino acids with carbonyl compounds. J. Dairy Sci. 72, 604–613.CrossRefGoogle Scholar
  92. Guerra-Hernandez, E., Gomez, C.L., Garcia-Villanova, B., Sanchez, N.C., Gomez, J.M.R. 2002. Effect of storage in non-enzymatic browning of liquid infant milk formulae. J. Sci. Food Agric. 82, 587–592.CrossRefGoogle Scholar
  93. Guyomarc'h, F., Warin, F., Muir, D.D., Leaver, J. 2000. Lactosylation of milk proteins during the manufacture and storage of skim milk powders. Int. Dairy J. 10, 863–872.CrossRefGoogle Scholar
  94. Hall, G., Andersson, J. 1985. Flavor changes in whole milk powder during storage. III. Relationships between flavor properties and volatile compounds. J. Food Quality. 7, 237–253.CrossRefGoogle Scholar
  95. Hartkopf, J., Erbersdobler, H.F. 1994. Model experiments on the formation of N-ε-carboxymethyl lysine in food products. Z. Lebensm. Unters. Forsch. 198, 15–19.CrossRefGoogle Scholar
  96. Hasnip, S., Crews, C., Castle, L. 2006. Some factors affecting the formation of furan in heated food. Food Add. Contam. 23(3), 219–227.CrossRefGoogle Scholar
  97. Hayase, F., Kato, H. 1986. Low-molecular Maillard reaction products and their formation mechanisms. In: Amino-Carbonyl Reactions in Food and Biological Systems (M. Fujimaki, M. Namiki, H. Kato, eds.), pp. 39–48, Elsevier Science Publishers, Amsterdam.Google Scholar
  98. Hayashi, T., Hoshii, Y., Namiki, M. 1983. On the yellow product and browning of the reaction of dehydroascorbic acid with amino acids. Agric. Biol. Chem. 47, 1003–1009.CrossRefGoogle Scholar
  99. Hayashi, T., Namiki, M. 1981. On the mechanism of free radical formation during browning reaction of sugars and amino compounds. Agric. Biol. Chem. 45, 933–939.CrossRefGoogle Scholar
  100. Hayashi, T., Namiki, M. 1986. Roll of sugar fragmentation in the Maillard reaction, In: Amino-Carbonyl Reactions in Food and Biological Systems (M. Fujimaki, M. Namiki, H. Kato, eds.), pp. 29–38, Elsevier Science Publishers, Amsterdam.Google Scholar
  101. Henle, R., Walter, H., Klostermeyer, H. 1991. Evaluation of the extent of the early Maillard reaction in milk products by direct measurement of the Amadori product lactuloselysine. Z. Lebensm. Unters. Forsch. 193, 119–122.CrossRefGoogle Scholar
  102. Henle, T., Walter, A.W., Klostermeyer, H. 1994. Simultaneous determination of protein-bound Maillard products by ion exchange chromatography and photodiode array detection. In: Maillard Reactions in Chemistry, Food and Health (T.P. Labuza, G.A. Reineccius, V.M. Monnier, J. O'Brien, J.W. Baynes, eds.), pp. 195–200, Royal Society of Chemistry, Cambridge.CrossRefGoogle Scholar
  103. Heusinger, H. 1986. Formation and polymerisation of malonaldehyde during irradiation of aqueous solutions of 1-glucose and lactose with ultrasound. Carbohydr. Res. 154, 37–48.CrossRefGoogle Scholar
  104. Hidalgo, F.J., Zamora, R. 1993. Non-enzymatic browning and fluorescence development in (E)-4, 5-epoxy-(E)-2-heptenal/lysine model system. J. Food Sci. 58, 667–670.CrossRefGoogle Scholar
  105. Hodge, J.E. 1967. Origin of flavor in foods. Non-enzymatic browning reactions. In: Chemistry and Physiology of Flavours (H.W. Schultz, E.A. Day, L.M. Libbey, eds.), pp. 465–490, Avi Publishing, Westport, CT, USA.Google Scholar
  106. Horton, B.S. 1995. Commercial utilization of minor milk components in the health and food industries. J. Dairy Sci. 78, 2584–2589.CrossRefGoogle Scholar
  107. Huh, K.T., Toba, T., Adachi, S. 1991. Oligosaccharide structures formed during acid hydrolysis of lactose. Food Chem. 39, 39–49.CrossRefGoogle Scholar
  108. Hultsch, C., Hellwig, M., Pawelke, B., Bergmann, R., Rode, K., Pietzsch, J., Krause, R. Henle, T. 2006. Biodistribution and catabolism of 18F-labelled N-ε-fructoselysine as a model of Amadori products. Nuc. Med.Biol. 33, 865–873.CrossRefGoogle Scholar
  109. Hurrell, R.F. 1990. Influence of the Maillard reaction on the nutritive value of foods. In: The Maillard Reaction in Food Processing, Human Nutrition and Physiology (P.A. Finot, H.U. Aeschbacher, R.F. Hurrell, R. Liardon, eds.), pp. 245–257, Birkhäuser Verlag, Basel.CrossRefGoogle Scholar
  110. Hurrell, R.F., Carpenter, K.J. 1974. Mechanisms of heat damage in proteins. 4. The reactive lysine content of heat-damaged material as measured in different ways. Br. J. Nutr. 32, 589–604.CrossRefGoogle Scholar
  111. Hurrell, R.F., Carpenter, K.J. 1975. The use of three dye-binding procedures for the assessment of heat damage to food proteins. Br. J. Nutr. 33, 101–115.CrossRefGoogle Scholar
  112. Hurrell, R.F., Lerman, P., Carpenter, K.J. 1979. Reactive lysine in foodstuffs as measured by a rapid dye-binding procedure. J. Food Sci. 44, 1221–1227, 1231.CrossRefGoogle Scholar
  113. Huss, V.W. 1974a. Temporal development of lysine damage during storage of dried skim-milk under various conditions. Landwirtsch. Forsch. 27, 199–210.Google Scholar
  114. Huss, V.W. 1974b. Amino acid damage during processing and storage of whey and whey powder. Z. Tier Physiol. Tiernahr. Futtermittelkde, 34, 60–67.CrossRefGoogle Scholar
  115. Igaki, N., Sakai, M., Hata, F., Yamada, H., Oimomi, M., Baba, S., Kato, H. 1990. The role of 3-deoxyglucosone in the Maillard reaction, In: The Maillard Reaction in Food Processing, Human Nutrition and Physiology (P.A. Finot, H.U. Aeschbacher, R.F. Hurrell, R. Liardon, eds.), pp. 103–108, Birkhäuser Verlag, Basel.CrossRefGoogle Scholar
  116. International Dairy Federation. 1991. Heat-Treated Milk - Determination of Lactulose Content, High Performance Liquid Chromatography (Reference Method), IDF Standard 147, International Dairy Federation, Brussesls.Google Scholar
  117. International Dairy Federation. 1993. Heat Treatment Definitions. Report of Group D35, D-Doc. 249, International Dairy Federation, Brussels.Google Scholar
  118. Isaacs, N.S. 1987. Physical Organic Chemistry, Longman Scientific and Technical, London.Google Scholar
  119. Izzo, H.V., Ho, C.-T. 1992. Peptide-specific Maillard reaction products: A new pathway for flavor chemistry. Trends Food Sci. Technol. 3, 253–257.CrossRefGoogle Scholar
  120. Jaddou, H.A., Pavey, J.A., Manning, D.J. 1978. Chemical analysis of flavour volatiles in heat-treated milks. J. Dairy Res. 45, 391–403.CrossRefGoogle Scholar
  121. Jimenez-Perez, S., Corzo, N., Morales, F.J., Delgado, T., Olano, A. 1992. Effect of storage temperatures on lactulose and 5-hydroxymethyl-furfural formation in UHT milk. J. Food Protect. 55, 304–306.Google Scholar
  122. Jones, A.D., Tier, C.M., Wilkins, J.P.G. 1998. Analysis of the Maillard reaction products of β-lactoglobulin and lactose in skimmed milk powder by capillary electrophoresis and electrospray mass spectrometry. J. Chromat. A 822, 147–154.CrossRefGoogle Scholar
  123. Kaanane, A., Labuza, T.P. 1989. The Maillard reaction in foods. In: The Maillard Reaction in Aging, Diabetes and Nutrition (J.W. Baynes, V.M. Monnier, eds.), pp. 301–327, Alan R. Liss Inc, New York, USA.Google Scholar
  124. Kakade, M.L., Liener, I.E. 1969. Determination of available lysine in proteins. Anal. Biochem. 27, 273–280.CrossRefGoogle Scholar
  125. Kaneko, S., Okitani, A., Hayase, F., Kato, H. 1991. Identification of an intermediate product and formation mechanisms of cross-linking compounds from N-α-acetyltryptophan and hexanal. Agric. Biol. Chem. 55, 723–730.CrossRefGoogle Scholar
  126. Kato, R. 1986. Metabolic activation of mutagenic heterocyclic aromatic amines from protein pyrolysates. Crit. Rev. Toxicol. 16, 307–348.CrossRefGoogle Scholar
  127. Kato, Y., Matsuda, T., Kato, N. and Nakamura, R. (1988). Browning and protein polymerization induced by amino-carbonyl reaction of ovalbumin with glucose and lactose. J. Agric. Food Chem. 36, 806–809.CrossRefGoogle Scholar
  128. Kato, Y., Matsuda, T., Kato, N., Nakamura, R. 1989. Maillard reaction of disaccharides with protein: Suppressive effect of non-reducing and pyranoside groups on browning and protein polymerization. J. Agric. Food Chem. 37, 1077–1081.CrossRefGoogle Scholar
  129. Kato, Y., Matsuda, T., Kato, N., Nakamura, R. 1990. Maillard reaction in sugar-protein systems. In: The Maillard Reaction in Food Processing, Human Nutrition and Physiology (P.A. Finot, H.U. Aeschbacher, R.F. Hurrell, R. Liardon, eds.), pp. 97–102, Birkhäuser Verlag, Basel.CrossRefGoogle Scholar
  130. Kato, Y., Matsuda, T., Kato, N., Nakamura, R. 1994. Analysis of lactose-protein Maillard complexes in commercial milk products by using specific monoclonal antibodies. In: Maillard Reactions in Chemistry, Food and Health (T.P. Labuza, G.A. Reineccius, V.M. Monnier, J. O'Brien, J.W. Baynes, eds.), pp. 188–194, Royal Society of Chemistry, Cambridge.CrossRefGoogle Scholar
  131. Kato, Y., Matsuda, T., Kato, N., Watanabe, K., Nakamura, R. 1986. Browning and insolubilization of ovalbumin by the Maillard reaction with some aldohexoses. J. Agric. Food Chem. 34, 351–355.CrossRefGoogle Scholar
  132. Kato, H., Matsumura, M., Hayase, F. 1981a. Chemical changes in casein heated with and without d-glucose in the powdered state or in an aqueous solution, Food Chem. 7, 159–168.Google Scholar
  133. Kato, Y., Watanabe, K., Sato, Y. 1981b. Effect of some metals on the Maillard reaction of ovalbumin. J. Agric. Food Chem. 29, 540–543.CrossRefGoogle Scholar
  134. Kato, Y., Watanabe, K., Sato, Y. 1981c. Effect of Maillard reaction on some physical properties of ovalbumin. J. Food Sci. 46, 1835–1839.CrossRefGoogle Scholar
  135. Kato, Y., Watanabe, K., Sato, Y. 1983. Conformational stability of ovalbumin reacted with glucose in a Maillard reaction. Agric. Biol. Chem. 47, 1925–1926.CrossRefGoogle Scholar
  136. Keeney, M., Bassette, R. 1959. Detection of intermediate compounds in the early stages of browning reaction in milk products. J. Dairy Sci. 42, 945–960.CrossRefGoogle Scholar
  137. King-Morris, M.J., Serianni, A.S. 1986. Hydroxide – catalyzed isomerization of d-[1-13C] Mannose : evidence for the involvement of 3, 4-enediols. Carbohydr. Res. 154, 29–36.CrossRefGoogle Scholar
  138. Kinsella, J.E., Whitehead, D.M., Brady, J., Bringe, N.A. 1989. Milk proteins: possible relationships of structure and function. In: Developments in Dairy Chemistry – 4. Functional Milk Proteins (P.F. Fox, ed.), pp. 55–95, Elsevier Applied Science, London.Google Scholar
  139. Klostermeyer, H., Geier, H. 1983. Heat treatment of milk: Characterization and control. Deutsche Milchwirtschaft 34, 1667–1673.Google Scholar
  140. Kowalewska, J., Zelazowska, H., Babuchowski, A., Hammond, E.G., Glatz, B.A., Ross, F. 1985. Isolation of aroma-bearing material from Lactobacillus helveticus culture and cheese. J. Dairy Sci. 68, 2165–2171.CrossRefGoogle Scholar
  141. Kulmyrzaev, A., Dufour, E. 2002. Determination of lactulose and furosine in milk using front-face fluorescence spectroscopy. Lait 82, 725–735.CrossRefGoogle Scholar
  142. Kumar, V., Banker, G.S. 1994. Maillard reaction and drug stability. In: Maillard Reactions in Chemistry, Food and Health (T.P. Labuza, G.A. Reineccius, V.M. Monnier, J. O'Brien, J.W. Baynes, eds.), pp. 164–169, Royal Society of Chemistry, Cambridge.Google Scholar
  143. Labuza, T.P. 1980. The effect of water activity on reaction kinetics of food deterioration. Food Technol. 34, 36–41.Google Scholar
  144. Labuza, T.P. 1994. Interpreting the complexity of the kinetics of the Maillard reaction. In: Maillard Reactions in Chemistry, Food and Health (T.P. Labuza, G.A. Reineccius, V.M. Monnier, J. O'Brien, J.W. Baynes, eds.), pp. 176–181, Royal Society of Chemistry, Cambridge.CrossRefGoogle Scholar
  145. Labuza, T.P., Massaro, S.A. 1990. Browning and amino acid loss in model total parenteral nutrition solutions. J. Food Sci. 55, 821–826.CrossRefGoogle Scholar
  146. Labuza, T.P., Tannenbaum, S.R., Karel, M. 1970. Water content and stability of low-moisture and intermediate moisture foods. Food Technol. 24, 543–550.Google Scholar
  147. Leahy, M.M., Warthesen, J.J. 1983. The influence of Maillard browning and other factors on the stability of free tryptophan. J. Food Process. Preserv. 7, 25–39.CrossRefGoogle Scholar
  148. Leclère, J., Birlouez-Aragon, I. 2001. The fluorescence of advanced Maillard products is a good indicator of lysine damage during the Maillard reaction. J. Agric. Food Chem. 49, 4682–4687.CrossRefGoogle Scholar
  149. Leclère, J., Birlouez-Aragon, I., Meli, M. 2002. Fortification of milk with iron-ascorbate promotes lysine glycation and tryptophan oxidation. Food Chem. 76, 491–499.CrossRefGoogle Scholar
  150. Ledl, F., Fritsch, G., Hiebl, J., Pachmayr, O., Severin, T. 1986. Degradation of Maillard products. In: Amino-Carbonyl Reactions in Food and Biological Systems (M. Fujimaki, M. Namiki, H. Kato, eds.), pp. 173–182, Elsevier Science Publishers, Amsterdam.Google Scholar
  151. Ledl, F., Schleicher, E. 1990. New aspects of the Maillard reaction in foods and in the human body. Angew. Chem. Int. Ed. Engl. 29, 565–594.CrossRefGoogle Scholar
  152. Lee, H.S., Nagy, S. 1990. Relative reactivities of sugars in the formation of 5-hydroxymethylfurfural in sugar-catalyst model systems. J. Food Process. Preserv. 14, 171–178.CrossRefGoogle Scholar
  153. Lee, K.-G., Shibamoto, T. 2002. Toxicology and antioxidant activities of non-enzymatic browning reaction products: review. Food Rev. Int. 18, 151–175.CrossRefGoogle Scholar
  154. Leonil, J., Molle, D., Fauquant, J., Maubois, J.L., Pearce, R.J., Bouhallab, S. 1997. Characterization by ionization mass spectrometry of lactosyl β-lactoglobulin conjugates formed during heat treatment of milk and whey and identification of one lactose binding site. J. Dairy Sci. 80, 2270–2281.CrossRefGoogle Scholar
  155. Lievonen, S.M., Roos, Y.H. 2002. Nonenzymatic browning in amorphous food models: effects of glass transition and water. J. Food Sci. 67, 2100–2106.CrossRefGoogle Scholar
  156. Lindemann-Schneider, U., Fennema, O. 1989. Stability of lysine, methionine and tryptophan in dried whey concentrate during storage. J. Dairy Sci. 72, 1740–1747.CrossRefGoogle Scholar
  157. Loncin, M., Bimbenet, J.J., Lenges, J. 1968. Influence of the activity of water on the spoilage of foodstuffs. J. Food Technol. 3, 131–142.CrossRefGoogle Scholar
  158. Longenecker, J.B., Hause, N.L. 1959. Relationships between plasma amino acids and composition of the ingested protein. Arch. Biochem. Biophys. 84, 46–59.CrossRefGoogle Scholar
  159. Löscher, J., Kroh, L., Westphal, G., Vogel, J. 1991. l-Acorbic acid – a carbonyl component of non-enzymatic browning reactions, 2. Amino-carbonyl reactions of l-ascorbic acid. Z. Lebensm, Unters. Forsch. 192, 323–327.CrossRefGoogle Scholar
  160. Lüdemann, G., Erbersdobler, H.F. 1990. Model experiments on the formation of N-ε-carboxymethyllysine (CML) in foods. In: The Maillard Reaction in Food Processing, Human Nutrition and Physiology (P.A. Finot, H.U. Aeschbacher, R.F. Hurrell, R. Liardon, eds.), pp. 91–96, Birkhaüser Verlag, Basel.CrossRefGoogle Scholar
  161. Luzzana, M., Agnellini, D., Cremonesi, P., Caramenti, G., De Vita, S. 2003. Milk lactose and lactulose determination by the differential pH technique. Lait 83, 409–416.CrossRefGoogle Scholar
  162. Maga, J.A. 1979. Furans in foods. Crit. Rev. Food Sci. Nutr. 4, 355–400.Google Scholar
  163. Maleki, S.J., Hurlburt, B.K. 2004. Structural and functional alterations in major peanut allergens caused by thermal processing. J. AOAC Int. 87(6), 1475–1479.Google Scholar
  164. Manzocco, L., Calligaris, S., Mastrocola, D., Nicoli, M.C., Lerici, C.R. 2001. Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends Food Sci. Technol. 11, 340–346.CrossRefGoogle Scholar
  165. Marconi, E., Messia, M.C., Amine, A., Moscone, D., Vernazza, F., Stocchi, F., Palleschi, G. 2004. Heat-treated milk differentiation by a sensitive lactulose assay. Food Chem. 84, 447–450.CrossRefGoogle Scholar
  166. Martinez-Castro, I., Olano, A., Corzo, N. 1986. Modifications and interactions of lactose with mineral components of milk during heating processes. Food Chem. 21, 211–221.CrossRefGoogle Scholar
  167. Matsuda, T., Ishiguro, H., Okubo, I., Sasaki, M., Nakamura, R. 1990. Immunodominancy and antigenic structure of lactose-protein Maillard adduct. In: The Maillard Reaction in Food Processing, Human Nutrition and Physiology (P.A. Finot, H.U. Aeschbacher, R.F. Hurrell, R. Liardon, eds.), pp. 297–302, Birkhäuser Verlag, Basel.CrossRefGoogle Scholar
  168. Malec, L.S., Pereyra Gonzales, A.S., Naranjo, G.B., Vigo, M.S. 2002. Influence of water activity and storage temperature on lysine availability of a milk like system. Food Res. Int. 35, 849–853.CrossRefGoogle Scholar
  169. Märk, J., Pollien, P., Lindinger, C., Blank, I., Märk, T. 2006. Quantitation of furan and methylfuran formed in different precursor systems by proton transfer reaction mass spectrometry. J. Agric. Food Chem. 54, 2786–2793.CrossRefGoogle Scholar
  170. Matsuda, T., Kato, Y., Watanabe, K., Nakamura, R. 1985a. Direct evaluation of β-lactoglobulin in early Maillard reaction using an antibody specific to protein-bound lactose. J. Agric. Food Chem. 33, 1193–1196.CrossRefGoogle Scholar
  171. Matsuda, T., Kato, Y., Watanabe, K., Nakamura, R. 1985b. Immunochemical properties of proteins glycosylated through Maillard reaction: β-lactoglobulin–lactose and ovalbumin–glucose systems. J. Food Sci. 50, 618–621.CrossRefGoogle Scholar
  172. Matsuda, T., Kato, Y., Watanabe, K., Nakamura, R. 1986. Immunochemical analysis of protein lactosylation using antibody specific to ε-deoxylactulosyl lysine. In: Amino-Carbonyl Reactions in Food and Biological Systems (M. Fujimaki, M. Namiki, H. Kato, eds.), pp. 411–419, Elsevier Science Publishers, Amsterdam.Google Scholar
  173. Matsuda, T., Kato, Y., Nakamura, R. 1991. Lysine loss and polymerization of bovine β-lactoglobulin by amino carbonyl reaction with lactulose (4-O-ß-d-galactopyranosyl-d-fructose). J. Agric. Food Chem. 39, 1201–1204.CrossRefGoogle Scholar
  174. Mauron, J. 1981. The Maillard reaction in food; a critical review from the nutritional stand point. Prog. Food Nutr. Sci. 5, 5–35.Google Scholar
  175. Mauron, J., Bujard, E. 1964. Guanidation, an alternative approach to the determination of available lysine in foods. In: Proc. 6th Int. Congr. Nutrition (C.F. Mills, R. Passmore, eds.), p. 489, E. & S. Livingstone Ltd, London.Google Scholar
  176. Mayer, J., Conrad, J., Klaiber, I., Lutz-Wahl, S., Beifuss, U., Fischer, L. 2004. Enzymatic production and complete nuclear magnetic resonance assignment of the sugar lactulose. J. Agric. Food Chem. 52, 6983–6990.CrossRefGoogle Scholar
  177. McGookin, B.J. 1991. Casein-sugar reaction products as antioxidants. Food Res. Quart. 51, 55–59.Google Scholar
  178. Mennella, C., Visciano, M., Napolitano, A., Del Castillo, M.D., Fogliano, V. 2006. Glycation of lysine-containing dipeptides. J. Peptide Sci. 12, 291–296.CrossRefGoogle Scholar
  179. Miao, S., Roos, Y. H. 2004. Comparison nonenzymatic browning kinetics in spray-dried and freeze-dried carbohydrate-based food model systems. J. Food Sci. 69, 322–331.CrossRefGoogle Scholar
  180. Mijares, R.M., Park, G.L., Nelson, D.B., McIver, R.C. 1986. HPLC analysis of HMF in orange juice. J. Food Sci. 55, 843–844.CrossRefGoogle Scholar
  181. Miller, R.E., Cantor, S.M. 1952. 2-Hydroxyacetylfuran from sugars. J. Am. Chem. Soc. 74, 5236–5237.CrossRefGoogle Scholar
  182. Minifie, B.W. 1989. Chocolate, Cocoa and Confectionery. Science and Technology, Third Edition, Van Nostrand Reinhold, New York, USA.Google Scholar
  183. Miyazawa, T., Oak, J-H., Nakagawa, K. 2005. A convenient method for preparation of high-purity, Amadori-glycated phosphatidylethanolamine and its prooxidant effect. Ann. N.Y. Acad. Sci. 1043, 276–279.CrossRefGoogle Scholar
  184. Mizota, T., Seki, N., Kobuko, S. 2004. Transformation of lactulose trihydrate into aqueous lactulose by fluidized bed drying and its characterization. Carbohyd. Res. 339, 1069–1075.CrossRefGoogle Scholar
  185. Mizota, T., Tamura, Y., Tomita, M., Okonogi, S. 1987. Lactulose as a sugar with physiological significance, Bulletin 212, International Dairy Federation, Brussels, pp. 69–76.Google Scholar
  186. Moll, N., Gross, B. 1981. Isolation and purification of Amadori compounds by semi- preparative reversed-phase high performance liquid chromatography. J. Chromatogr. 206, 186–192.CrossRefGoogle Scholar
  187. Moller, A.B. 1981. Chemical changes in ultra heat treated milk during storage. Prog. Food Nutr. Sci. 5, 357–368.Google Scholar
  188. Moller, A.B., Andrews, A.T., Cheeseman, G.C. 1977a. Chemical changes in ultra-heat-treated milk during storage. I. Hydrolysis of casein by incubation with pronase and a peptidase mixture. J. Dairy Res. 44, 259–266.CrossRefGoogle Scholar
  189. Moller, A.B., Andrews, A.T., Cheeseman, G.C. 1977b. Chemical changes in ultra-heat-treated milk during storage. II. Lactuloselysine and fructoselysine formation by the Maillard reaction. J. Dairy Res. 44, 267–275.CrossRefGoogle Scholar
  190. Molner-Perl, I., Friedman, M. 1990. Inhibition of browning by sulfur amino acids. 2. Fruit juices and protein-containing foods. J. Agric. Food Chem. 38, 1648–1651.CrossRefGoogle Scholar
  191. Montgomery, E.M., Hudson, C.S. 1930. Relations between rotatory power and structure in the sugar group. XXVII. Synthesis of a new disaccharide ketose (lactulose) from lactose. J. Am. Chem. Soc. 52, 2101–2106.CrossRefGoogle Scholar
  192. Montilla, A., del Castillo, M.D., Sanz, M.L., Olano, A. 2005a. Egg shell as catalyst of lactose isomerisation to lactulose. Food Chem. 90, 883–890.CrossRefGoogle Scholar
  193. Montilla, A., Moreno, F.J., Olano, A. 2005b. A reliable gas chromatographic determination of lactulose in dairy samples. Chromatographia 62, 311–314.CrossRefGoogle Scholar
  194. Morales, F.J., Jiménez-Pérez, S. 2001. Free radical scavenging capacity of Maillard reaction products as related to colour and fluorescence. Food Chem. 72(1), 119–125.CrossRefGoogle Scholar
  195. Morales, F.J., Romero, C., Jiménez-Pérez, S. 1996. Florescence associated with Maillard reaction in milk and milk-resembling systems. Food Chem. 57(3), 423–428.CrossRefGoogle Scholar
  196. Morales, F.J., Romero, C., Jimenez-Perez, S. 1997. Chromatographic determination of bound hydroxymethylfurfural as an index of milk protein glycosylation. J. Agric. Food Chem. 45, 1570–1573.CrossRefGoogle Scholar
  197. Morgan, F., Henry, G., Le Graet, Y., Molle, D., Leonil, J., Bouhallab, S. 1999a. Resistance of β-lactoglobulin-bound lactose to the hydrolysis by β-galactosidase. Int. Dairy J. 9, 813–816.CrossRefGoogle Scholar
  198. Morgan, F., Molle, D., Henry, G., Venien, A., Leonil, J., Peltre, G., Levieux, D., Maubois, J.-L., Bouhallab, S. 1999b. Glycation of bovine β-lactoglobulin: Effect on the protein structure. Int. J. Food Sci. Technol. 34, 429–435.CrossRefGoogle Scholar
  199. Mottu, F., Mauron, J. 1967. The differential determination of lysine in heated milk. II. Comparison of the in vitro methods with the biological evaluation. J. Sci. Food Agric. 18, 57–62.CrossRefGoogle Scholar
  200. Mu, M., Pan, X., Yao, P., Jiang, M. 2006. Acidic solution properties of β-casein-graft-dextran copolymer prepared through Maillard reaction. J. Colloid Interf. Sci. 301, 98–106.CrossRefGoogle Scholar
  201. Nakamura, S. Kato, A., Kobayashi, K. 1992. Enhanced antioxidative effect of ovalbumin due to covalent binding of polysaccharides. J. Agric. Food Chem. 40, 2033–2037.CrossRefGoogle Scholar
  202. Nakamura, S., Kobayashi, K., Kato, A. 1994. Role of positive charge of lysozyme in the excellent emulsifying properties of Maillard-type lysozyme–polysaccharide conjugate. J. Agric. Food Chem. 42, 2688–2691.CrossRefGoogle Scholar
  203. Namiki, M., Terao, A., Ueda, S., Hayashi, T. 1986. Deamination of lysine in protein by reaction with oxidized ascorbic acid or active carbonyl compounds produced by Maillard reaction. In: Amino-Carbonyl Reactions in Food and Biological Systems (M. Fujimaki, M. Namiki, H. Kato, eds.), pp. 105–114, Elsevier Science Publishers, Amsterdam.Google Scholar
  204. Nielsen, H.K., Löliger, J., Hurrell, R.F. 1985a. Reactions of proteins with oxidizing lipids. 1. Analytical measurements of lipid oxidation and of amino acid losses in a whey protein- methyl linolenate model system. Br. J. Nutr. 53, 61–73.CrossRefGoogle Scholar
  205. Nielsen, H.K., De Weck, D., Finot, P.A., Liardon, R., Hurrell, R.F. 1985b. Stability of tryptophan during food processing and storage. 1. Comparative losses of tryptophan, lysine and methionine in different model systems. Br. J. Nutr. 53, 281–292.CrossRefGoogle Scholar
  206. Nielsen, H.K., Klein, A., Hurrell, R.F. 1985c. Stability of tryptophan during food processing and storage. 2. A comparison of methods used for the measurement of tryptophan losses in processed foods. Br. J. Nutr. 53, 293–300.CrossRefGoogle Scholar
  207. Nursten, H. 2005. The Maillard Reaction. Chemistry, Biochemistry and Implications, Royal Society of Chemistry, Cambridge, UK.Google Scholar
  208. Obretanov, T.D., Argirov, O.K., Rashkov, I.B. 1983. On melanoidin formation with furfural participation: Synthesis of melanoidins from furfural and glycine. J. Food Process. Preserv., 7, 105–113.CrossRefGoogle Scholar
  209. O'Brien, J., Morrissey, P.A. 1989. Nutritional and toxicological aspects of the Maillard browning reaction in foods. Crit. Rev. Food Sci. Nutr. 28, 211–248.CrossRefGoogle Scholar
  210. O’Brien, J., Morrissey, P.A. 1997. Metal ion complexation by products of the Maillard reaction. Food Chem. 58, 17–24.CrossRefGoogle Scholar
  211. Okitani, A., Kaneko, S., Tashiro, Y., Hayase, F., Kato, H. 1986. Polymerization of proteins and impairment of their amino acid residues due to vaporized hexanal. In: Amino-Carbonyl Reactions in Food and Biological Systems (M. Fujimaki, M. Namiki, H. Kato, eds.), pp. 125–134, Elsevier Science Publishers, Amsterdam.Google Scholar
  212. Olano, A., Calvo, M.M., Corzo, N. 1989. Changes in the carbohydrate fraction of milk during heating processes, Food Chem. 31, 259–265.CrossRefGoogle Scholar
  213. Olano, A., Martinez-Castro, I. 1981. Formation of lactulose and epilactose from lactose in basic media. A quantitative study. Milchwissenschaft 36, 533–536.Google Scholar
  214. Öste, R.E., Brandon, D.L., Bates, A., Friedman, M. 1990. Antibody-binding to a Maillard reacted protein. In: The Maillard Reaction in Food Processing, Human Nutrition and Physiology (P.A. Finot, H.U. Aeschbacher, R.F. Hurrell, R. Liardon, eds.), pp. 303–308, Birkhäuser Verlag, Basel.CrossRefGoogle Scholar
  215. Pappas, C.P., Rothwell, J. 1991. The effects of heating, alone or in the presence of calcium or lactose, on calcium binding to milk proteins. Food Chem. 42, 183–201.CrossRefGoogle Scholar
  216. Park, Y.-H., Hong, Y.-H. 1991. Changes in undenatured whey protein and available lysine contents in heat treated market milks. J. Korean Soc. Food Nutr. 20, 546–550.Google Scholar
  217. Patton, S. 1950a. Studies of heated milk. I. Formation of 5-hydroxymethyl-2-furfural, J. Dairy Sci. 33, 324–328.CrossRefGoogle Scholar
  218. Patton, S. 1950b. Studies of heated milk. III. Mode of formation of certain furan compounds. J. Dairy Sci. 33, 904–910.CrossRefGoogle Scholar
  219. Patton, S. 1955. Browning and associated changes in milk and its products. J. Dairy Sci. 38, 457–478.CrossRefGoogle Scholar
  220. Pavlovic, S., Santos, R.C., Glória, M.B.A. 1994. Maillard reaction during the processing of ‘doce de leite'. J. Sci. Food Agric. 66, 129–132.CrossRefGoogle Scholar
  221. Pellegrino, L., de Noni, I., Resmini, P. 1995. Coupling of lactulose and furosine indices for quality evaluation of sterilized milk. Int. Dairy J. 5, 647–659.CrossRefGoogle Scholar
  222. Penndorf, I., Biedermann, D., Maurer, S.V., Henle, T. 2007. Studies on N-terminal glycation of peptides in hypoallergenic infant formulas: quantification of α-N-(2-furoylmethyl) amino acids. J. Agric. Food Chem. 55, 723–727.CrossRefGoogle Scholar
  223. Pereyra Gonzales, A.S., Naranjo, G.B., Malec, L.S., Vigo, M.S. 2003. Available lysine, protein digestibility and lactulose in commercial infant formula. Int. Dairy J. 13, 95–99.CrossRefGoogle Scholar
  224. Perez Locas, C., Yaylayan, V.A. 2004. Origin and mechanistic pathways of formation of the parent furan – a food toxicant. J. Agric. Food Chem. 52, 6830–6836.CrossRefGoogle Scholar
  225. Petersen, B.J., Tran, N. 2005. Exposure to acrylamide. Placing exposure in context. In: Chemistry and Safety of Acrylamide in Food (M. Friedman, D. Mottram, eds.), pp. 63–76, Springer, New York, USA.CrossRefGoogle Scholar
  226. Peterson, B.I., Tong, C.-H., Ho, C.-T., Welt, B.A. 1994. Effect of moisture content on Maillard browning kinetics of a model system during microwave heating. J. Agric. Food Chem. 42, 1884–1887.CrossRefGoogle Scholar
  227. Pham, C.B., Cheftel, J.C. 1990. Influence of salts, amino acids and urea on the non-enzymatic browning of the protein-sugar system. Food Chem. 37, 251–260.CrossRefGoogle Scholar
  228. Pilkova, L., Pokorny, J., Davidek, J. 1990. Browning reactions of Heyns rearrangement products. Kinetics of the Maillard reaction during processing and storage. Nahrung 34, 759–764.CrossRefGoogle Scholar
  229. Pischetsrieder, M., Severin. T. 1994. The Maillard reaction of disaccharides. In: Maillard Reactions in Chemistry, Food and Health (T.P. Labuza, G.A. Reineccius, V.M. Monnier, J. O'Brien, J.W. Baynes, eds.), pp. 37–42, Royal Society of Chemistry, Cambridge.CrossRefGoogle Scholar
  230. Pokorny, J., Pilkova, L., Davidek, J. and Valentova, H. (1988). Effect of Amadori rearrangement products on the non-enzymatic browning in model systems. Nahrung 32, 767–776.CrossRefGoogle Scholar
  231. Poretta, S., Sandei, L. 1991. Determination of 5-(hydroxymethyl) -2 furfural (HMF) in tomato products: proposal of a rapid HPLC method and its comparison with the colorimetric method. Food Chem. 39, 51–57.CrossRefGoogle Scholar
  232. Potman, R.P., van Wijk, T.A. 1989. Mechanistic studies of the Maillard reaction with emphasis on phosphate-mediated catalysis. In: Thermal Generation of Aromas (T.M. Parliment, R.J. McGorrin, C-T. Ho, eds.), pp. 182–195, American Chemical Society, Washington, DC, USA.CrossRefGoogle Scholar
  233. Powell, R.C.T., Spark, A.A. 1971. Effect of zirconium and aluminium compounds and pH on the Maillard reaction. J. Sci. Food Agric. 22, 596–599.CrossRefGoogle Scholar
  234. Puig, C., Perez, M.D., Ros, L., Sanchez, L., Calvo, M. 2003. Effect of processing on the composition of infant formulas. Milchwissenschaft 58, 476–480.Google Scholar
  235. Puscasu, C., Birlouez-Aragon, I. 2002. Intermediary and/or advanced Maillard products exhibit prooxidant activity on Trp: In vitro study on α-lactalbumin. Food Chem. 78(4), 399–406.CrossRefGoogle Scholar
  236. Qiu, Z., Stowell, J.G., Morris, K.R., Byrn, S.R., Pinal, R. 2005a. Kinetic study of the Maillard reaction between metoclopramide hydrochloride and lactose. Int. J. Pharmaceut. 303(1), 20–30.Google Scholar
  237. Qiu, Z., Stowell, J.G., Cao, W., Morris, K.R., Byrn, S.R., Carvajal, M.T. 2005b. Effect of milling and compression on the solid-state Maillard reaction. J. Pharmaceut. Sci. 94(11), 2568–2580.Google Scholar
  238. Rabasseda, J., Rauret, G., Galceran, M.T. 1988. Liquid chromatographic determination of available lysine in soybean and fish meal. J. Assoc. Off. Anal. Chem. 71, 350–357.Google Scholar
  239. Rada-Mendoza, M., Olano, A., Villamiel, M. 2005. Chemical indicators of heat treatment in fortified and special milks. J. Agric. Food Chem. 53, 2995–2999.CrossRefGoogle Scholar
  240. Ramshaw, E.H., Dunstone, E.A. 1969. Volatile compounds associated with the off-flavour in stored casein. J. Dairy Res. 36, 215–223.CrossRefGoogle Scholar
  241. Resmini, P., Pellegrino, L., Battelli, G. 1990. Accurate quantification of furosine in milk and dairy products by a direct HPLC method. Ital. J. Food Sci. 3, 173–183.Google Scholar
  242. Rendleman, J.A., Inglett, G.E. 1990. The influence of Cu2+ in the Maillard reaction. Carbohydrate Res. 201, 311–326.CrossRefGoogle Scholar
  243. Reutter, M., Eichner, K. 1989. Separation and determination of Amadori compounds by high pressure liquid chromatography and post column reaction. Z. Lebensm. Unters. Forsch. 188, 28–35.CrossRefGoogle Scholar
  244. Rizzi, G.P. 2003. Free radicals in the Maillard Reaction. Food Rev. Int. 19, 375–395.CrossRefGoogle Scholar
  245. Rogers, A., Shibamoto, T. 1982. Mutagenicity of the products obtained from heated milk systems. Food Chem. Toxicol. 20, 259–263.CrossRefGoogle Scholar
  246. Roscic, M., Horvat, S. 2006. Transformations of bioactive peptides in the presence of sugars- characterization and stability studies of the adducts generated via the Maillard reaction. Bioorgan. Med. Chem. 14, 4933–4943.CrossRefGoogle Scholar
  247. Rowan, A.M., Moughan, P.J., Wilson, M.N. 1992. Effect of hydrolysis time on the determination of the amino acid composition of diet, ileal digesta and feces samples and on the determination of dietary amino acid digestibility coefficients. J. Agric. Food Chem. 40, 981–985.CrossRefGoogle Scholar
  248. Sarriá, B., Lòpez-Fandiño, R., Vaquero, M.P. 2001. Does processing of a powder or in-bottle-sterilized liquid infant formula affect calcium bioavailability? Nutrition 17, 326–331.CrossRefGoogle Scholar
  249. Sarria, B., Vaquero, M.P. 2006. Heat processing inn infant formulas induces changes in copper tissue levels in suckling and weanling rats. Ann. Nutr. Metab. 50, 25–30.CrossRefGoogle Scholar
  250. Scanlan, R.A., Lindsay, R.C., Libbey, L.M., Day, E.A. 1968. Heat-induced volatile compounds in milk. J. Dairy Sci. 51, 1001–1007.CrossRefGoogle Scholar
  251. Schwenger, V., Morath, C., Schonfelder, K., Klein, W., Weigel, K., Deppisch, R., Henle, T., Ritz, E., Zeier, M. 2005. An oral load of the early glycation compound lactuloselysine fails to accumulate in the serum of uremic patients. Nephrol. Dial. Transplant. 21, 382–388.CrossRefGoogle Scholar
  252. Seiquer, I., Diaz-Alguacil, J., Delgado-Andrade, C., Lopez-Frias, M., Hoyos, A.M., Galdo, G., Navarro, M.P. 2006. Diets rich in Maillard reaction products affect protein digestibility in adolescent males aged 11–14 y. Am. J. Clin. Nutr. 83, 1082–1088.Google Scholar
  253. Seiquer, I., Valverde, A., Delgado-Andrade, C., Navarro, M.P. 2000. Influence of heat treatment of casein in presence of reducing sugars on Zn solubility and Zn uptake by Caco-2 cells after in vitro digestion. J. Physiol. Biochem. 56, 237–246.CrossRefGoogle Scholar
  254. Sekizawa, J., Shibamoto, T. 1986. Salmonella/microsome mutagenicity tests of heat-processed milk samples. Food Chem. Toxicol. 24, 987–988.CrossRefGoogle Scholar
  255. Shallenberger, R.S. 1984. Nature of the amino acid catalysis of the glucose mutarotation reaction. Food Chem. 15, 1–7.CrossRefGoogle Scholar
  256. Sheldon, S.A., Russell, G.F., Shibamoto, T. 1986. Photochemical and thermal activitation of model Maillard reaction systems. In: Amino-Carbonyl Reactions in Food and Biological Systems (M. Fujimaki, M. Namiki, H. Kato, eds.), pp.145–154, Elsevier Science Publishers, Amsterdam.Google Scholar
  257. Shibamoto, T., Yeo, H. 1992. Flavour compounds formed from lipids by heat treatment. In: Flavor Precursors. Thermal and Enzymatic Conversions (R. Teranishi, G.R. Takeoka, M. Güntert, eds.), pp.175–182, American Chemical Society, Washington, DC, USA.CrossRefGoogle Scholar
  258. Shipe, W.F., Bassette, R., Deane, D.D., Dunkley, W.L., Hammon, E.G., Harper, W.J., Kleyn, D.H., Morgan, M.E., Nelson, J.H., Scanlan, R.A. 1978. Off-flavours of milk: nomenclature, standards and bibliography. J. Dairy Sci. 61, 855–869.CrossRefGoogle Scholar
  259. Shiratsuchi, H., Shimoda, M., Imayoshi, K., Noda, K., Osajima, Y. 1994. Volatile flavour compounds in spray-dried skim milk powder. J. Agric. Food Chem. 42, 984–988.CrossRefGoogle Scholar
  260. Siciliano, R., Rega, B., Amoresano, A., Pucci, P. 2000. Modern mass spectrometric methodologies in monitoring milk quality. Anal. Chem. 72, 408–415.CrossRefGoogle Scholar
  261. Silvan, J.M., van de Lagemaat, J., Olano, A., del Castillo, M.D. 2006. Analysis and biological properties of amino acid derivates [sic] formed by Maillard reaction in foods. J. Pharm. Biomed. Anal. 41, 1543–1551.CrossRefGoogle Scholar
  262. Skog, K., Alexander, J. (Eds.). 2006. Acrylamide and Other Hazardous Compounds in Heat-treated Foods, CRC Press, Boca Raton, FL, USA.CrossRefGoogle Scholar
  263. Smith, G.A., Friedman, M. 1984. Effect of carbohydrate and heat on the amino acid composition and chemically available lysine content of casein. J. Food Sci. 49, 817–820, 843.CrossRefGoogle Scholar
  264. Smith, J.L., Yada, R.Y. 1991. Chemical modification of amino groups in Mucor miehei aspartyl proteinase, porcine pepsin and chymosin. II. Conformational stability. Agric. Biol. Chem. 55, 2017–2024.CrossRefGoogle Scholar
  265. Smith, J.L., Billings, G.E., Yada, R.Y. 1991. Chemical modification of amino groups in Mucor miehei aspartyl proteinase, porcine pepsin and chymosin. I. Structure and function. Agric. Biol. Chem. 55, 2009–2016.CrossRefGoogle Scholar
  266. Speck, J.C. 1958. The Lobrey de Bruyn – Alberda van Ekenstein transformation. Adv. Carbohydr. Chem. 13, 63–103.CrossRefGoogle Scholar
  267. Srinivasan, A., Gopalan, S. 1994. Influence and impact of non-enzymatic browning reaction on protein in milk and in indigenous dairy products of India. In: Maillard Reactions in Chemistry, Food and Health (T.P. Labuza, G.A. Reineccius, V.M. Monnier, J. O'Brien, J.W. Baynes, eds.), p. 419 (abstr.), Royal Society of Chemistry, Cambridge.CrossRefGoogle Scholar
  268. Stadler, R.H., Robert, F., Riediker, S., Varga, N., Davidek, T., Devaud, S., Goldman, T., Hau, J., Blank, I. 2004. In-depth mechanistic study on the formation of acrylamide and other vinylogous compounds by the Maillard reaction. J. Agric. Food Chem. 52, 5550–5558.CrossRefGoogle Scholar
  269. Sweetsur, A.W.M., White, J.C.D. 1975. Studies on the heat stability of milk protein. III. Effect of heat-induced acidity in milk. J. Dairy Res. 42, 73–88.CrossRefGoogle Scholar
  270. Tamura, Y., Mizota, T., Shimamura, S., Tomita, M. 1993. Lactulose and its Application to the Food and Pharmaceutical Industries, Bulletin 289, International Dairy Federation, Brussels, pp. 43–53.Google Scholar
  271. Thomas, M.E.C., Scher, J., Desobry-Banon, S., Desobry, S. 2004. Milk powdered ageing: effect on physical and functional properties. Critical Rev. Food Sci. Nutrition 44, 297–322.CrossRefGoogle Scholar
  272. Troyano, E., Olano, A., Jimeno, M.L., Sanz, J., Martinez-Castro, I. 1992a. Isolation and characterization of 3-deoxypentosulose and its determination in heated milk. J. Dairy Res. 59, 507–515.Google Scholar
  273. Troyano, E., Martinez-Castro, I., Olano, A. 1992b. Kinetics of galactose and tagatose formation during heat-treatment of milk. Food Chem. 45, 41–43.Google Scholar
  274. Troyano, E., Olano, A., Martinez-Casto, I. 1994. Changes on free monosaccharides during storage of dried milk. J. Agric. Food Chem. 42, 1543–1545.CrossRefGoogle Scholar
  275. Tsuchiya, S., Sakurai, T., Sekiguchi, S.-I. 1984. Non-enzymatic glucosylation of human serum albumin and its influence on binding capacity on sulfonylureas. Biochem. Pharmacol. 33, 2967–2971.CrossRefGoogle Scholar
  276. Tu, D., Xue, S., Meng, C., Espinosa-Mansilla, A., de la Peña, A.M., Lopez, F.S. 1992. Simultaneous determination of 2-furfuraldehyde and 5-(hydroxymethyl)-2-furfuraldehyde by derivative spectrophotometry. J. Agric. Food Chem. 40, 1022–1025.CrossRefGoogle Scholar
  277. Turner, L.G., Swaisgood, H.E., Hansen, A.P. 1978. Interaction of lactose and proteins of skim milk during ultra-high temperature processing. J. Dairy Sci. 61, 384–392.CrossRefGoogle Scholar
  278. Urashima, T., Suyema, K., Adachi, S. 1988. The condensation of 5-(hydroxymethyl)-2-furaldehyde with some aldoses on heating. Food Chem. 29, 7–17.CrossRefGoogle Scholar
  279. van Boekel, M.A.J.S., Rehman, Z. 1987. Determination of hydroxymethylfurfural in heated milk by high performance liquid chromatography. Neth. Milk Dairy J. 41, 297–306.Google Scholar
  280. Verhaar, L.A.Th., van der Aalst, M.J.M., Beenackers, J.A.W.M., Kuster, B.F.M. 1979. Ion-exchange chromatography of lactose–lactulose isomerization mixtures using a boric acid–borate eluent. J. Chromatogr. 170, 363–370.CrossRefGoogle Scholar
  281. Venkatachalam, N., McMahon, D.J., Savello, P.A. 1993. Role of protein and lactose interactions in the age gelation of ultra-high temperature processed concentrated skim milk. J. Dairy Sci. 76, 1882–1894.CrossRefGoogle Scholar
  282. Vinale, F., Monti, S. M., Panunzi, B., Fogliano, V. (1999). Convenient synthesis of lactuloselysine and its use for LC-MS analysis in milk-like model systems. J. Agric. Food Chem. 47, 4700–4706.CrossRefGoogle Scholar
  283. Vogel, J., Westphal, G., Pippig, C. 1988. Mutarotation of d-glucose in dependence on the reaction environment. Nahrung 32, 709–714.CrossRefGoogle Scholar
  284. Warmbier, H.C., Schnickels, R.A., Labuza, T.P. 1976. Effect of glycerol on non-enzymatic browning in a solid intermediate moisture model food system. J. Food Sci. 41, 528–531.CrossRefGoogle Scholar
  285. Weenan, H., Tjan, S.B. 1992. Analysis structure and reactivity of 3-deoxyglucosone. In: Flavor Precursors. Thermal and Enzymatic Conversions (R. Teranishi, G.R. Takeoka, M. Guntert, eds.), pp. 217–231, American Chemical Society, Washington, DC, USA.CrossRefGoogle Scholar
  286. Wertheim, J.H., Procter, B.E., Goldblith, S.A. 1956. Radiation preservation of milk and milk products. IV. Radiation-induced browning and some related chemical changes in milk. J. Dairy Sci. 39, 1236–1246.CrossRefGoogle Scholar
  287. Westphal, G., Kroh, L., Follmer, U. 1988. Investigations on the Maillard reaction. Part 16. The reactivity of Amadori compounds in dependence on the reaction medium. Nahrung 32, 117–120.CrossRefGoogle Scholar
  288. Wolf, J.C., Thompson, D.R., Reineccius, G.A. 1977. Initial losses of available lysine in model systems. J. Food Sci. 42, 1540–1544.CrossRefGoogle Scholar
  289. Wolff, N., Cogan, U., Zuckerman, H., Karin, N., Levy, Y., Krasik, Y.E., Felsteiner, J., Reifen, R., Yannai, S. 2004. Decrease of the allergenic activity of foods by shock waves. Czech J. Food Sci. 22(Special Issue), 36–39.Google Scholar
  290. Wu, H., Govindarajan, S., Smith, T., Rosen, J.D., Ho, C.-T. 1990. Glucose-lysozyme reactions in a restricted water environment. In: The Maillard Reaction in Food Processing, Human Nutrition and Physiology (P.A Finot, H.U. Aeschbacher, R.F. Hurrell, R. Liardon, eds.), pp. 85–90, Birkhäuser Verlag, Basel.CrossRefGoogle Scholar
  291. Yang, R., Shin, D.B. 1980. Study on the amino-carbonyl reaction. Korean J. Food Sci. Technol. 12, 88–96.Google Scholar
  292. Yaylayan, V. 1990. In search of alternative mechanisms for the Maillard reaction. Trends Food Sci. Technol. 1, 20–22.CrossRefGoogle Scholar
  293. Yaylayan, V.A., Forage, N.G. 1991. Determination of the kinetics and mechanism of decomposition of tryptophan Amadori rearrangement product by RP-HPLC analysis. J. Agric. Food Chem. 39, 364–369.CrossRefGoogle Scholar
  294. Yaylayan, V.A., Forage, N.G. 1992. A kinetic model for the reaction of tryptophan with glucose and mannose – the role of diglycation in the Maillard reaction, Food Chem. 44, 201–208.CrossRefGoogle Scholar
  295. Yaylayan, V.A., Huyghues-Despointes, A. 1994. Chemistry of Amadori rearrangement products: analysis, synthesis, kinetics, reactions, and spectroscopic properties. Crit. Rev. Food Sci. Nutr. 34, 321–369.CrossRefGoogle Scholar
  296. Yaylayan, V.A., Lachambre, S. 1990. Pyrylium betaines as reactive intermediates in Maillard reaction. J. Food Sci. 55, 1124–1126.CrossRefGoogle Scholar
  297. Yaylayan, V.A., Mandeville, S. 1994. Mechanistic pathway for the formation of maltoxazine from intact 1-[(2′-carboxyl)pyrrolidinyl]-1-deoxy-d-fructose (Amadori-Proline). J. Agric. Food. Chem. 42, 1841–1844.CrossRefGoogle Scholar
  298. Yen, G.C., Lee, T-C. 1986. Mutagen formation in the reaction of Maillard browning products, 2-acetylpyrrole and its analogues, with nitrite. Food Chem. Toxicol. 24, 1303–1308.CrossRefGoogle Scholar
  299. Yoshimura, J., Funabashi, M., Simon, H. 1969. On the catalysis of the Amadori rearrangement. Carbohydr. Res. 11, 276–281.CrossRefGoogle Scholar
  300. Zamora, R., Hidalgo, F.J. 2005. Coordinate contribution of lipid oxidation and Maillard reaction to the nonenzymatic food browning. Critical Rev. Food Sci. Nutr. 45, 49–59.CrossRefGoogle Scholar
  301. Zyzak, D.V., Wells-Knecht, K.J., Blackledge, J.A., Litchfield, J.E., Wells-Knecht, M.C., Fu, M.- X., Feather, M.S., Baynes J.W. 1994. Pathways of the Maillard reaction in vitro and in vivo. In: Maillard Reactions in Chemistry, Food and Health (T.P. Labuza, G.A. Reineccius, V.M. Monnier, J. O'Brien, J.W. Baynes, eds.), pp.274–280, Royal Society of Chemistry, Cambridge.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • John O’Brien*
    • 1
  1. 1.Food Safety Authority of IrelandAbbey CourtDublin 1Ireland

Personalised recommendations