Skip to main content

Non-Enzymatic Degradation Pathways of Lactose and Their Significance in Dairy Products

  • Chapter
  • First Online:
Advanced Dairy Chemistry

Abstract

Milk products are especially sensitive to the effects of heat treatment encountered under conventional process and storage conditions because of an abundance of reactive functional groups: aldehyde group of lactose, ε-amino group of lysine and other reactive N-containing groups (e.g. indolyl group of tryptophan, imidazole group of histidine, guanidino group of arginine and the α-amino group of proteins and free amino acids).

* The views expressed herein are those of the author and do not necessarily represent the policies of the Food Safety Authority of Ireland

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi, S. 1958. Formation of lactulose and tagatose from lactose in strongly heated milk. Nature 181, 840–841.

    Article  CAS  Google Scholar 

  • Adachi, S., Patton, S. 1961. Presence and significance of lactulose in milk products: A review. J. Dairy Sci. 44, 1375–1393.

    Article  CAS  Google Scholar 

  • Affertsholt-Allen, T. 2007. Market developments and industry challenges for lactose and derivatives, presentation at IDF Symposium. Lactose and its Derivatives, 14–16 May 2007, www.lactose.ru/present

  • Aider, M., de Halleux, D. 2007. Isomerization of lactose and lactulose production: Review. Trends Food Sci. Technol. 18, 356–364.

    Article  CAS  Google Scholar 

  • Als-Nielsen, B., Gluud, L.L., Gluud, C. 2004. Non-absorbable disaccharides for hepatic encephalopathy, www.cochrame.org/reviews/en/ab0033044.html.

  • Amaya, J., Lee, T-C., Chichester, C.O. 1976. Biological inactivation of proteins by the Maillard reaction. Effect of mild heat on the tertiary structure of insulin. J. Agric. Food Chem. 24, 465–467.

    Article  CAS  Google Scholar 

  • Anderson, T.R., Quicke, G.V. 1984. An isotopic method for determining chemically reactive lysine based on succinylation. J. Sci. Food Agric. 35, 472–480.

    Article  CAS  Google Scholar 

  • Andrews, G.R. 1984. Distinguishing pasteurized, UHT and sterilized milks by their lactulose content. J. Soc. Dairy Technol. 37, 92–96.

    Article  CAS  Google Scholar 

  • Andrews, G.R. 1986. Formation and occurrence of lactulose in heated milk. J. Dairy Res. 53, 665–680.

    Article  CAS  Google Scholar 

  • Andrews, G.R., Prasad, S.K. 1987. Effect of the protein, citrate and phosphate content of milk on formation of lactulose during heat treatment. J. Dairy Res. 54, 207–218.

    Article  CAS  Google Scholar 

  • Angyal, S.J. 1984. The composition of reducing sugars in solution. Adv. Carbohydr. Chem. Biochem. 42, 15–68.

    Article  CAS  Google Scholar 

  • Aoki, T., Matsumoto, T., Kako, Y., Kato, Y., Matsuda, T. 1994. Improvement of functional properties of β-lactoglobulin by glucose-6-phosphate conjugation. In: Maillard Reactions in Chemistry, Food and Health (T.P. Labuza, G.A. Reineccius, V.M. Monnier, J. O'Brien, J.W. Baynes, eds.), p. 409 (abstr.) Royal Society of Chemistry, Cambridge.

    Chapter  Google Scholar 

  • Armstrong, J.J., Hill, S.E., Mitchell, J.R. 1994. Enhancement of the gelation of food macromolecules using the Maillard reaction and elevated temperatures. In: Maillard Reactions in Chemistry, Food and Health (T.P. Labuza, G.A. Reineccius, V.M. Monnier, J. O'Brien, J.W. Baynes, eds.), pp. 159–163, Royal Society of Chemistry, Cambridge.

    Chapter  Google Scholar 

  • Ashoor, S.H., Zent, J.B. 1984. Maillard browning of common amino acids and sugars. J. Food Sci. 49, 1206–1207.

    Article  CAS  Google Scholar 

  • Assoumani, M.B., Nguyen, N.P., Lardinois, P.F., van Bree, J., Baudichau, A., Bruyer, D.C. 1990. Use of a lysine oxidase electrode for lysine determination in Maillard model reactions and in soybean meal hydrolysates. Lebensm. Wiss. Technol. 23, 322–327.

    CAS  Google Scholar 

  • Badoud, R., Hunston, F., Fay, L., Pratz, G. 1990. Oxidative degradation of protein-bound Amadori products: formation of N-ε-carboxymethyl lysine and N-carboxymethyl amino acids as indicators of the extent of non-enzymatic glycosylation. In: The Maillard Reaction in Food Processing, Human Nutrition and Physiology (P.A. Finot, H.U. Aeschbacher, R.F. Hurrell, R. Liardon eds.), pp. 79–84, Birkhäuser Verlag, Basel.

    Chapter  Google Scholar 

  • Beck, J., Ledl, F., Severin, T. 1988. Formation of 1-deoxy-d-erythro-2,3-hexodiulose from Amadori compounds. Carbohydr. Res. 177, 240–243.

    Article  CAS  Google Scholar 

  • Ben-Gera, I., Zimmerman, G. 1972. Changes in the nitrogenous constituents of staple foods and feeds during storage. I. Decrease in the chemical availability of lysine. J. Food Sci. Technol. India, 9, 113–118.

    CAS  Google Scholar 

  • Berg, H.E. 1993. Reactions of Lactose During Heat Treatment of Milk: A Quantitative Study, PhD Thesis, Wageningen Agricultural University.

    Google Scholar 

  • Berg, H.E., van Boekel, M.A.J.S., Jongen, W.M.F. 1990. Heating milk: A study of mutagenicity. J. Food Sci. 55, 1000–1003, 1017.

    Article  CAS  Google Scholar 

  • Berrens, L. 1996. Neoallergens in heated pecan nut: Products of Maillard type degradation? Allergy 51, 277–278.

    CAS  Google Scholar 

  • Birlouez-Aragon, I., Mas, P.A., Ait Ameur, L., Locquet, N., de St Louvent, E., Zude, M. 2004. Fluorescence fingerprints as a rapid predictor of the nutritional quality of processed and stored foods. Czech J. Food Sciences 22(Special Issue), 68–71.

    CAS  Google Scholar 

  • Blank, I. 2005. Current status of acrylamide research in food: Measurement, safety assessment, and formation. Ann. N.Y. Acad. Sci. 1043, 30–40.

    Article  CAS  Google Scholar 

  • Blank, I., Davidek, T., Pollien, P., Devaud, S. 2004. Flavour and vinylogous compounds generated by Maillard-type reactions. Czech J. Food Sciences 22(Special Issue), 50–53.

    CAS  Google Scholar 

  • Bleumink, E., Berrens, L. 1996. Synthetic approaches to the biological activity of beta-lactoglobulin in human allergy to cow’s milk. Nature 212, 514–543.

    Google Scholar 

  • Bobbio, F.O., Bobbio, P.A., Trevisan, L.M.V. 1973. Maillard reaction. II: catalytic effect of anions. Lebensm. Wiss. Technol. 6, 215–218.

    CAS  Google Scholar 

  • Bosch, L., Alegria, A., Farre, R., Clemente, G. 2007. Fluorescence and color as markers for the Maillard reaction in milk-cereal based infant foods during storage. Food Chem. 105, 1135–1143.

    Article  CAS  Google Scholar 

  • Buera, M.P., Chirife, J., Resnik, S.L. 1990. Browning reactions of Heyns rearrangement products. Kinetics of the Maillard reaction during processing and storage. Nahrung 34, 759–764.

    Article  Google Scholar 

  • Burton, H. 1984. Reviews of the progress of Dairy Science: the bacteriological, chemical, biochemical and physical changes that occur in milk at temperatures of 100–150°C. J. Dairy Res. 51, 341–363.

    Article  CAS  Google Scholar 

  • Burvall, A., Asp, N-G., Bosson, A., José, C.S., Dahlqvist, A. 1978. Storage of lactose-hydrolysed dried milk: effect of water activity on the protein nutritional value. J. Dairy Res. 45, 381–389.

    Article  CAS  Google Scholar 

  • Buser, W., Erbersdobler, H.F. 1985. Determination of furosine by gas-liquid chromatography. J. Chromatogr. 346, 363–368.

    Article  CAS  Google Scholar 

  • Cabodevila, O., Hill, S.E., Armstrong, H.J., De Sousa, I., Mitchel, J.R. 1994. Gelation enhancement of soy protein isolate using the Maillard reaction and high temperatures. J. Food Sci. 59, 872–875.

    Article  CAS  Google Scholar 

  • Calvo, M.M., de la Hoz, L. 1992. Flavour of heated milks. I. A review. Int. Dairy J. 2, 69–81.

    Article  Google Scholar 

  • Calvo, M.M., Olano, A. 1989. Formation of galactose during heat treatment of milk and model systems. J. Dairy Res. 56, 737–740.

    Article  Google Scholar 

  • Carpenter, K.J. 1960. The estimation of the available lysine in animal-protein foods. Biochem. J. 77, 604–610.

    CAS  Google Scholar 

  • Casal, E., Ramírez, P., Ibañez, E., Corzo, N., Olano, A. 2006. Effect of supercritical carbon dioxide treatment on the Maillard reaction in model food systems. Food Chem. 97(2), 272–276.

    Article  CAS  Google Scholar 

  • Cejpek, K., Jarolimova, L., Velisek, J. 2004. Antioxidant capacity of Maillard systems with carbonyl products of sugar fragmentation. Czech J. Food Sci. 22, 60–63.

    CAS  Google Scholar 

  • Chan, F., Reineccius, G.A. 1994. The reaction kinetics for the formation of isovaleraldehyde, 2-acetyl-1-pyrroline, di(H)di(OH)-6-methylpyranone, phenylacetaldehyde, 5-methyl-2-phenyl-2-hexenal and 2-acetyl furan in model systems. In: Maillard Reactions in Chemistry, Food and Health (T.P. Labuza, G.A. Reineccius, V.M. Monnier, J. O'Brien, J.W. Baynes, eds.), pp. 131–139, Royal Society of Chemistry, Cambridge.

    Chapter  Google Scholar 

  • Chavez-Servin, J.L., Castellote, A.I., Lopez-Sabater, M.C. 2004. Analysis of mono- and disaccharides in milk-based formulae by high-performance liquid chromatography with refractive index detection. J. Chromat. 1043, 211–215.

    Article  CAS  Google Scholar 

  • Chevalier, F., Chobert, J.-M., Popineau, Y., Nicolas, M.G., Haertlé, T. 2001. Improvement of functional properties of β-lactoglobulin glycated through the Maillard reaction is related to the nature of the sugar. Int. Dairy J. 11(3), 145–152.

    Article  CAS  Google Scholar 

  • Chevalier, F., Chobert, J.-M., Dalgalarrondo, M., Choiset, Y., Haertlé, T. 2002. Maillard glycation of β-lactoglobulin induces conformation changes. Nahrung 46(2), 58–63.

    Article  CAS  Google Scholar 

  • Chiang, G.H. 1983. A simple and rapid high performance liquid chromatographic procedure for determination of furosine, lysine-reducing sugar derivative. J. Agric. Food Chem. 31, 1373–1374.

    Article  CAS  Google Scholar 

  • Chiang, G.H. 1988. High performance liquid chromatographic determination of ε-pyrrole- lysine in processed food. J. Agric. Food Chem. 36, 506–509.

    Article  CAS  Google Scholar 

  • Claeys, W.L., van Loey, A.M., Hendrickx, M.E. 2003. Kinetics of hydroxymethylfurfural, lactulose and furosine formation in milk with different fat content. J. Dairy Res. 70(1), 85–90.

    Article  CAS  Google Scholar 

  • Clamp, J.R., Hough, L., Hickson, J.L., Whistler, R.L. 1961. Lactose. Adv. Carbohydr. Chem. 16, 159–206.

    Article  CAS  Google Scholar 

  • Crews, C., Castle, L. 2007. A review of the occurrence, formation and analysis of furan in heat-processed foods. Trends Food Sci. Technol. 18, 365–372.

    Article  CAS  Google Scholar 

  • Culver, C.A., Swaisgood, H.E. 1989. Changes in the digestibility of dried casein and glucose mixtures occurring during storage at different temperatures and water activities. J. Dairy Sci. 72, 2916–2920.

    Article  Google Scholar 

  • Czerwenka, C., Maier, I., Pittner, F., Linder, W. 2006. Investigation of the lactosylation of whey proteins by liquid chromatography-mass spectrometry. J. Agric. Food Chem. 54, 8874–8882.

    Article  CAS  Google Scholar 

  • Dalsgaard, T.K., Nielsen, J.H., Larsen, L.B. 2007. Proteolysis of milk proteins lactosylated in model systems. Molec. Nutr. Food Res. 51, 404–414.

    Article  CAS  Google Scholar 

  • Davis, P.J., Smales, C.M., James, D.C. 2001. How can thermal processing modify the antigenicity of proteins? Allergy 56, 56–60.

    Article  Google Scholar 

  • De Block, J., Merchiers, M., Mortier, L., Braekman, A., Ooghe, W., Van Renterghem, R. 2003. Monitoring nutritional quality of milk powders: capillary electrophoresis of the whey protein fraction compared with other methods. Int. Dairy J. 13, 87–94.

    Article  CAS  Google Scholar 

  • Desrosiers, T., Savoie, L., Bergeron, G., Parent, G. 1989. Estimation of lysine damage in heated whey proteins by furosine determinations in conjunction with the digestion cell technique. J. Agric. Food Chem. 37, 1385–1391.

    Article  CAS  Google Scholar 

  • Dutra, R.C., Tarassuk, N.P., Kleiber, M. 1958. Origin of the carbon dioxide produced in the browning reaction of evaporated milk. J. Dairy Sci. 41, 1017–1023.

    Article  CAS  Google Scholar 

  • Dworschak, E., Hegedüs, M. 1974. Effect of heat treatment on the nutritive value of proteins in milk powder. Acta Aliment. Acad. Scient. Hungaricae 6, 337–347.

    Google Scholar 

  • Earley, R.A., Hansen, A.P. 1982. Effect of process and temperature during storage on ultra-high temperature steam-injected milk. J. Dairy Sci. 65, 11–16.

    Article  CAS  Google Scholar 

  • Eichner, K., Ciner-Doruk, M. 1979. Formation and stability of Amadori compounds in low moisture model systems. Lebensm. Unters. Forsch. 168, 360–367.

    Article  CAS  Google Scholar 

  • Eichner, K., Karel, M. 1972. The influence of water content and water activity on the sugar-amino browning reaction in model systems under various conditions. J. Agric. Food Chem. 20, 218–223.

    Article  CAS  Google Scholar 

  • Elliott, A.J., Datta, N., Amenu, B., Deeth, H.C. 2005. Heat-induced and other chemical changes in commercial UHT milks. J. Dairy Res. 72, 442–446.

    Article  CAS  Google Scholar 

  • El-Shafei, M.M., Al-Amoudy, N.S., Said, A.K. 1988. Effect of the drying process on the nutritive value of milk, Part 2. Biological evaluation. Nahrung, 32, 559–564.

    Article  CAS  Google Scholar 

  • El Zeany, B-D. 1982. Oxidised lipids–proteins browning reaction. Part 7: effects of carbonyl group reactants. Rev. Ital. Sost. Grasse 59, 423–425.

    CAS  Google Scholar 

  • Erbersdobler, H.F., Dehn-Müller, B. 1989. Formation of early Maillard products during UHT treatment of milk. In: Heat-Induced Changes in Milk, Bulletin 238 (P.F. Fox, ed.), pp. 62–70, International Dairy Federation, Brussels.

    Google Scholar 

  • Erbersdobler, H.F., Dehn, B., Nangpal, A., Reuter, H. 1987. Determination of furosine in heated milk as a measure of heat intensity during processing. J. Dairy Res. 54, 147–151.

    Article  CAS  Google Scholar 

  • Evangelisti, F., Calcagno, C., Nardi, S., Zunin, P. 1999. Deterioration of protein fraction by Maillard reaction in dietetic milks. J. Dairy Res. 66, 237–243.

    Article  CAS  Google Scholar 

  • Evangelisti, F., Calcagno, C., Zunin, P. 1993. Changes induced by Maillard reaction in milk formulas. Riv. Sci. Aliment. 22, 77–82.

    CAS  Google Scholar 

  • Evangelisti, F., Calcagno, C., Zunin, P. 1994. Relationship between blocked lysine and carbohydrate composition of infant formulas. J. Food Sci. 59, 335–337.

    Article  CAS  Google Scholar 

  • Fayle, S.E., Gerrard, J.A. 2002. The Maillard Reaction, Royal Society of Chemistry, Cambridge, UK.

    Google Scholar 

  • FDA. 2007. Exploratory data on furan in food: Individual food products, http://www.cfsan.fda.gov/~dms/furandat.html (accessed 10/8/07).

  • Feather, M.S. 1970. The conversion of d-xylose and d-glucuronic acid to 2-furaldehyde. Tetrahedron Lett. 48, 4143–4145.

    Article  Google Scholar 

  • Feather, M.S. 1981. Amine-assisted sugar dehydration reactions. Prog. Food Nutr. Sci. 5, 37–45.

    CAS  Google Scholar 

  • Feather, M.S. 1989. The formation of deoxyglycosuloses (deoxyosones) and their reactions during the processing of food. In: Frontiers in Carbohydrate Research – 1 (R.P. Millane, J.N. Be Miller, R. Chandrasekaran, eds.), pp. 66–73, Elsevier Science Publishers, New York.

    Google Scholar 

  • Ferrer, E., Alegria, A., Farre, R., Abellan, P. Romero, F., Clemente, G. 2003. Evolution of available lysine and furosine contents in milk-based infant formulas throughout the shelf-life storage period. J. Sci. Food Agric. 83, 465–472.

    Article  CAS  Google Scholar 

  • Ferretti, A., Flanagan, V.P. 1971. The lactose-casein (Maillard) browning system: Volatile components. J. Agric. Food Chem. 19, 245–249.

    Article  CAS  Google Scholar 

  • Ferretti, A., Flanagan, V.P. 1972. Steam volatile constituents of stale non-fat dry milk. The role of the Maillard reaction in staling. J. Agric. Food Chem. 20, 695–698.

    Article  CAS  Google Scholar 

  • Finot, P.-A. 2005. The absorption and metabolism of modified amino acids in processed foods. J. AOAC Int. 88, 894–903.

    CAS  Google Scholar 

  • Finot, P.A., Deutsch, R., Bujard, E. 1981. The extent of the Maillard reaction during the processing of milk. Prog. Food Nutr. Sci. 5, 345–355.

    CAS  Google Scholar 

  • Fox, P.F. 1981. Heat-induced changes in milk preceding coagulation. J. Dairy Sci. 64, 2127–2137.

    Article  CAS  Google Scholar 

  • Franks, F. 1991. Water activity: A credible measure of food safety and quality? Trends Food Sci. Technol. 2, 68–72.

    Article  Google Scholar 

  • Franzen, K., Singh, R.K., Okos, M.R. 1990. Kinetics of non-enzymatic browning in dried skim milk. J. Food Eng. 11, 225–239.

    Article  Google Scholar 

  • French, S.J., Harper, W.J., Kleinholz, N.M., Jones, R.B., Green-Church, K.B. 2002. Maillard reaction induced lactose attachment to bovine β-lactoglobulin: Electrospray ionization and matrix-assisted laser desorption/ionization examination. J. Agric. Food Chem. 50(4), 820–823.

    Article  CAS  Google Scholar 

  • Friedman, M., Molnar-Perl, I. 1990. Inhibition of browning by sulphur amino acids. I. Heated amino acid–glucose systems. J. Agric. Food Chem. 38, 1642–1647.

    Article  CAS  Google Scholar 

  • Friedman, M., Mottram, D. (Eds.) 2004. Chemistry and Safety of Acrylamide in Food, Springer, New York.

    Google Scholar 

  • Furniss, D.E., Vuichoud, J., Finot, P.A., Hurrell, R.F. 1989. The effect of Maillard reaction products on zinc metabolism in the rat. Br. J. Nutr. 62, 639–649.

    Article  Google Scholar 

  • Geier, H., Klostermeyer, H. 1980. Enzymatic determination of lactulose. Z. Lebensm. Unters. Forsch. 171, 443–445.

    Article  CAS  Google Scholar 

  • Glatt, H., Sommer, Y. 2006. Health risks of 5-hydroxymethyl furfural (HMF) and related compounds. In: Acrylamide and Other Hazardous Compounds in Heat-Treated Foods (K. Skog, J. Alexander, eds.), pp. 328–357, CRC Press, Boca Raton, FL, USA.

    Chapter  Google Scholar 

  • Gliguem, H., Birlouez-Aragon, I. 2005. Effects of sterilization, packaging, and storage on vitamin C degradation, protein denaturation, and glycation in fortified milks. J. Dairy Sci. 88, 891–899.

    Article  CAS  Google Scholar 

  • Glomb, M., Lederer, M., Ledl, F. 1991. 5-Hydroxymethyl-3-(2H)-furanone, 5-(1,2- dihydroxyethyl)-3(2H)-furanone and 5-hydroxy-2H-pyran-3(6H)-one: reactive intermediates in the Maillard reaction of hexoses and pentoses. Z. Lebensm. Unters. Forsch. 193, 237–241.

    Article  CAS  Google Scholar 

  • Goldberg, T., Cai, W., Peppa, M., Dardaine, V., Baliga, B.S., Uribarri, J., Vlassara, H. 2004. Advanced glycoxidation end products in commonly consumed foods. J. Am Diet. Assoc. 104, 1287–1291.

    Article  CAS  Google Scholar 

  • Gopalan, S., Gracy, A.T., Srinivasan, A. 1994. Deamination of basic amino acids in protein using active carbonyl compounds produced by the Maillard reaction. In: Maillard Reactions in Chemistry, Food and Health (T.P. Labuza, G.A. Reineccius, V.M. Monnier, J.M. O'Brien, J.W. Baynes, eds.), p. 412 (abstr.), Royal Society of Chemistry, Cambridge.

    Chapter  Google Scholar 

  • Gothwal, P.P., Bhavadasan, M.K. 1991. Proteolytic hydrolysis of milk proteins as influenced by browning. Indian J. Dairy Sci. 44, 501–509.

    Google Scholar 

  • Ghiron, A.F., Quack, B., Mawhinney, T.P., Feather, M.S. 1988. Studies on the role of 3-deoxy-d-erythro-glucosulose (3-deoxyglucosone) in non-enzymatic browning. Evidence for involvement in a Strecker degradation. J. Agric. Food Chem. 36, 677–680.

    Article  CAS  Google Scholar 

  • Griffith, R., Hammond, E.G. 1989. Generation of Swiss cheese flavor components by the reaction of amino acids with carbonyl compounds. J. Dairy Sci. 72, 604–613.

    Article  CAS  Google Scholar 

  • Guerra-Hernandez, E., Gomez, C.L., Garcia-Villanova, B., Sanchez, N.C., Gomez, J.M.R. 2002. Effect of storage in non-enzymatic browning of liquid infant milk formulae. J. Sci. Food Agric. 82, 587–592.

    Article  CAS  Google Scholar 

  • Guyomarc'h, F., Warin, F., Muir, D.D., Leaver, J. 2000. Lactosylation of milk proteins during the manufacture and storage of skim milk powders. Int. Dairy J. 10, 863–872.

    Article  Google Scholar 

  • Hall, G., Andersson, J. 1985. Flavor changes in whole milk powder during storage. III. Relationships between flavor properties and volatile compounds. J. Food Quality. 7, 237–253.

    Article  CAS  Google Scholar 

  • Hartkopf, J., Erbersdobler, H.F. 1994. Model experiments on the formation of N-ε-carboxymethyl lysine in food products. Z. Lebensm. Unters. Forsch. 198, 15–19.

    Article  CAS  Google Scholar 

  • Hasnip, S., Crews, C., Castle, L. 2006. Some factors affecting the formation of furan in heated food. Food Add. Contam. 23(3), 219–227.

    Article  CAS  Google Scholar 

  • Hayase, F., Kato, H. 1986. Low-molecular Maillard reaction products and their formation mechanisms. In: Amino-Carbonyl Reactions in Food and Biological Systems (M. Fujimaki, M. Namiki, H. Kato, eds.), pp. 39–48, Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Hayashi, T., Hoshii, Y., Namiki, M. 1983. On the yellow product and browning of the reaction of dehydroascorbic acid with amino acids. Agric. Biol. Chem. 47, 1003–1009.

    Article  CAS  Google Scholar 

  • Hayashi, T., Namiki, M. 1981. On the mechanism of free radical formation during browning reaction of sugars and amino compounds. Agric. Biol. Chem. 45, 933–939.

    Article  CAS  Google Scholar 

  • Hayashi, T., Namiki, M. 1986. Roll of sugar fragmentation in the Maillard reaction, In: Amino-Carbonyl Reactions in Food and Biological Systems (M. Fujimaki, M. Namiki, H. Kato, eds.), pp. 29–38, Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Henle, R., Walter, H., Klostermeyer, H. 1991. Evaluation of the extent of the early Maillard reaction in milk products by direct measurement of the Amadori product lactuloselysine. Z. Lebensm. Unters. Forsch. 193, 119–122.

    Article  CAS  Google Scholar 

  • Henle, T., Walter, A.W., Klostermeyer, H. 1994. Simultaneous determination of protein-bound Maillard products by ion exchange chromatography and photodiode array detection. In: Maillard Reactions in Chemistry, Food and Health (T.P. Labuza, G.A. Reineccius, V.M. Monnier, J. O'Brien, J.W. Baynes, eds.), pp. 195–200, Royal Society of Chemistry, Cambridge.

    Chapter  Google Scholar 

  • Heusinger, H. 1986. Formation and polymerisation of malonaldehyde during irradiation of aqueous solutions of 1-glucose and lactose with ultrasound. Carbohydr. Res. 154, 37–48.

    Article  CAS  Google Scholar 

  • Hidalgo, F.J., Zamora, R. 1993. Non-enzymatic browning and fluorescence development in (E)-4, 5-epoxy-(E)-2-heptenal/lysine model system. J. Food Sci. 58, 667–670.

    Article  CAS  Google Scholar 

  • Hodge, J.E. 1967. Origin of flavor in foods. Non-enzymatic browning reactions. In: Chemistry and Physiology of Flavours (H.W. Schultz, E.A. Day, L.M. Libbey, eds.), pp. 465–490, Avi Publishing, Westport, CT, USA.

    Google Scholar 

  • Horton, B.S. 1995. Commercial utilization of minor milk components in the health and food industries. J. Dairy Sci. 78, 2584–2589.

    Article  CAS  Google Scholar 

  • Huh, K.T., Toba, T., Adachi, S. 1991. Oligosaccharide structures formed during acid hydrolysis of lactose. Food Chem. 39, 39–49.

    Article  CAS  Google Scholar 

  • Hultsch, C., Hellwig, M., Pawelke, B., Bergmann, R., Rode, K., Pietzsch, J., Krause, R. Henle, T. 2006. Biodistribution and catabolism of 18F-labelled N-ε-fructoselysine as a model of Amadori products. Nuc. Med.Biol. 33, 865–873.

    Article  CAS  Google Scholar 

  • Hurrell, R.F. 1990. Influence of the Maillard reaction on the nutritive value of foods. In: The Maillard Reaction in Food Processing, Human Nutrition and Physiology (P.A. Finot, H.U. Aeschbacher, R.F. Hurrell, R. Liardon, eds.), pp. 245–257, Birkhäuser Verlag, Basel.

    Chapter  Google Scholar 

  • Hurrell, R.F., Carpenter, K.J. 1974. Mechanisms of heat damage in proteins. 4. The reactive lysine content of heat-damaged material as measured in different ways. Br. J. Nutr. 32, 589–604.

    Article  CAS  Google Scholar 

  • Hurrell, R.F., Carpenter, K.J. 1975. The use of three dye-binding procedures for the assessment of heat damage to food proteins. Br. J. Nutr. 33, 101–115.

    Article  CAS  Google Scholar 

  • Hurrell, R.F., Lerman, P., Carpenter, K.J. 1979. Reactive lysine in foodstuffs as measured by a rapid dye-binding procedure. J. Food Sci. 44, 1221–1227, 1231.

    Article  CAS  Google Scholar 

  • Huss, V.W. 1974a. Temporal development of lysine damage during storage of dried skim-milk under various conditions. Landwirtsch. Forsch. 27, 199–210.

    CAS  Google Scholar 

  • Huss, V.W. 1974b. Amino acid damage during processing and storage of whey and whey powder. Z. Tier Physiol. Tiernahr. Futtermittelkde, 34, 60–67.

    Article  CAS  Google Scholar 

  • Igaki, N., Sakai, M., Hata, F., Yamada, H., Oimomi, M., Baba, S., Kato, H. 1990. The role of 3-deoxyglucosone in the Maillard reaction, In: The Maillard Reaction in Food Processing, Human Nutrition and Physiology (P.A. Finot, H.U. Aeschbacher, R.F. Hurrell, R. Liardon, eds.), pp. 103–108, Birkhäuser Verlag, Basel.

    Chapter  Google Scholar 

  • International Dairy Federation. 1991. Heat-Treated Milk - Determination of Lactulose Content, High Performance Liquid Chromatography (Reference Method), IDF Standard 147, International Dairy Federation, Brussesls.

    Google Scholar 

  • International Dairy Federation. 1993. Heat Treatment Definitions. Report of Group D35, D-Doc. 249, International Dairy Federation, Brussels.

    Google Scholar 

  • Isaacs, N.S. 1987. Physical Organic Chemistry, Longman Scientific and Technical, London.

    Google Scholar 

  • Izzo, H.V., Ho, C.-T. 1992. Peptide-specific Maillard reaction products: A new pathway for flavor chemistry. Trends Food Sci. Technol. 3, 253–257.

    Article  CAS  Google Scholar 

  • Jaddou, H.A., Pavey, J.A., Manning, D.J. 1978. Chemical analysis of flavour volatiles in heat-treated milks. J. Dairy Res. 45, 391–403.

    Article  CAS  Google Scholar 

  • Jimenez-Perez, S., Corzo, N., Morales, F.J., Delgado, T., Olano, A. 1992. Effect of storage temperatures on lactulose and 5-hydroxymethyl-furfural formation in UHT milk. J. Food Protect. 55, 304–306.

    CAS  Google Scholar 

  • Jones, A.D., Tier, C.M., Wilkins, J.P.G. 1998. Analysis of the Maillard reaction products of β-lactoglobulin and lactose in skimmed milk powder by capillary electrophoresis and electrospray mass spectrometry. J. Chromat. A 822, 147–154.

    Article  CAS  Google Scholar 

  • Kaanane, A., Labuza, T.P. 1989. The Maillard reaction in foods. In: The Maillard Reaction in Aging, Diabetes and Nutrition (J.W. Baynes, V.M. Monnier, eds.), pp. 301–327, Alan R. Liss Inc, New York, USA.

    Google Scholar 

  • Kakade, M.L., Liener, I.E. 1969. Determination of available lysine in proteins. Anal. Biochem. 27, 273–280.

    Article  CAS  Google Scholar 

  • Kaneko, S., Okitani, A., Hayase, F., Kato, H. 1991. Identification of an intermediate product and formation mechanisms of cross-linking compounds from N-α-acetyltryptophan and hexanal. Agric. Biol. Chem. 55, 723–730.

    Article  CAS  Google Scholar 

  • Kato, R. 1986. Metabolic activation of mutagenic heterocyclic aromatic amines from protein pyrolysates. Crit. Rev. Toxicol. 16, 307–348.

    Article  CAS  Google Scholar 

  • Kato, Y., Matsuda, T., Kato, N. and Nakamura, R. (1988). Browning and protein polymerization induced by amino-carbonyl reaction of ovalbumin with glucose and lactose. J. Agric. Food Chem. 36, 806–809.

    Article  CAS  Google Scholar 

  • Kato, Y., Matsuda, T., Kato, N., Nakamura, R. 1989. Maillard reaction of disaccharides with protein: Suppressive effect of non-reducing and pyranoside groups on browning and protein polymerization. J. Agric. Food Chem. 37, 1077–1081.

    Article  CAS  Google Scholar 

  • Kato, Y., Matsuda, T., Kato, N., Nakamura, R. 1990. Maillard reaction in sugar-protein systems. In: The Maillard Reaction in Food Processing, Human Nutrition and Physiology (P.A. Finot, H.U. Aeschbacher, R.F. Hurrell, R. Liardon, eds.), pp. 97–102, Birkhäuser Verlag, Basel.

    Chapter  Google Scholar 

  • Kato, Y., Matsuda, T., Kato, N., Nakamura, R. 1994. Analysis of lactose-protein Maillard complexes in commercial milk products by using specific monoclonal antibodies. In: Maillard Reactions in Chemistry, Food and Health (T.P. Labuza, G.A. Reineccius, V.M. Monnier, J. O'Brien, J.W. Baynes, eds.), pp. 188–194, Royal Society of Chemistry, Cambridge.

    Chapter  Google Scholar 

  • Kato, Y., Matsuda, T., Kato, N., Watanabe, K., Nakamura, R. 1986. Browning and insolubilization of ovalbumin by the Maillard reaction with some aldohexoses. J. Agric. Food Chem. 34, 351–355.

    Article  CAS  Google Scholar 

  • Kato, H., Matsumura, M., Hayase, F. 1981a. Chemical changes in casein heated with and without d-glucose in the powdered state or in an aqueous solution, Food Chem. 7, 159–168.

    CAS  Google Scholar 

  • Kato, Y., Watanabe, K., Sato, Y. 1981b. Effect of some metals on the Maillard reaction of ovalbumin. J. Agric. Food Chem. 29, 540–543.

    Article  CAS  Google Scholar 

  • Kato, Y., Watanabe, K., Sato, Y. 1981c. Effect of Maillard reaction on some physical properties of ovalbumin. J. Food Sci. 46, 1835–1839.

    Article  CAS  Google Scholar 

  • Kato, Y., Watanabe, K., Sato, Y. 1983. Conformational stability of ovalbumin reacted with glucose in a Maillard reaction. Agric. Biol. Chem. 47, 1925–1926.

    Article  CAS  Google Scholar 

  • Keeney, M., Bassette, R. 1959. Detection of intermediate compounds in the early stages of browning reaction in milk products. J. Dairy Sci. 42, 945–960.

    Article  CAS  Google Scholar 

  • King-Morris, M.J., Serianni, A.S. 1986. Hydroxide – catalyzed isomerization of d-[1-13C] Mannose : evidence for the involvement of 3, 4-enediols. Carbohydr. Res. 154, 29–36.

    Article  CAS  Google Scholar 

  • Kinsella, J.E., Whitehead, D.M., Brady, J., Bringe, N.A. 1989. Milk proteins: possible relationships of structure and function. In: Developments in Dairy Chemistry – 4. Functional Milk Proteins (P.F. Fox, ed.), pp. 55–95, Elsevier Applied Science, London.

    Google Scholar 

  • Klostermeyer, H., Geier, H. 1983. Heat treatment of milk: Characterization and control. Deutsche Milchwirtschaft 34, 1667–1673.

    Google Scholar 

  • Kowalewska, J., Zelazowska, H., Babuchowski, A., Hammond, E.G., Glatz, B.A., Ross, F. 1985. Isolation of aroma-bearing material from Lactobacillus helveticus culture and cheese. J. Dairy Sci. 68, 2165–2171.

    Article  CAS  Google Scholar 

  • Kulmyrzaev, A., Dufour, E. 2002. Determination of lactulose and furosine in milk using front-face fluorescence spectroscopy. Lait 82, 725–735.

    Article  CAS  Google Scholar 

  • Kumar, V., Banker, G.S. 1994. Maillard reaction and drug stability. In: Maillard Reactions in Chemistry, Food and Health (T.P. Labuza, G.A. Reineccius, V.M. Monnier, J. O'Brien, J.W. Baynes, eds.), pp. 164–169, Royal Society of Chemistry, Cambridge.

    Google Scholar 

  • Labuza, T.P. 1980. The effect of water activity on reaction kinetics of food deterioration. Food Technol. 34, 36–41.

    CAS  Google Scholar 

  • Labuza, T.P. 1994. Interpreting the complexity of the kinetics of the Maillard reaction. In: Maillard Reactions in Chemistry, Food and Health (T.P. Labuza, G.A. Reineccius, V.M. Monnier, J. O'Brien, J.W. Baynes, eds.), pp. 176–181, Royal Society of Chemistry, Cambridge.

    Chapter  Google Scholar 

  • Labuza, T.P., Massaro, S.A. 1990. Browning and amino acid loss in model total parenteral nutrition solutions. J. Food Sci. 55, 821–826.

    Article  CAS  Google Scholar 

  • Labuza, T.P., Tannenbaum, S.R., Karel, M. 1970. Water content and stability of low-moisture and intermediate moisture foods. Food Technol. 24, 543–550.

    Google Scholar 

  • Leahy, M.M., Warthesen, J.J. 1983. The influence of Maillard browning and other factors on the stability of free tryptophan. J. Food Process. Preserv. 7, 25–39.

    Article  CAS  Google Scholar 

  • Leclère, J., Birlouez-Aragon, I. 2001. The fluorescence of advanced Maillard products is a good indicator of lysine damage during the Maillard reaction. J. Agric. Food Chem. 49, 4682–4687.

    Article  CAS  Google Scholar 

  • Leclère, J., Birlouez-Aragon, I., Meli, M. 2002. Fortification of milk with iron-ascorbate promotes lysine glycation and tryptophan oxidation. Food Chem. 76, 491–499.

    Article  Google Scholar 

  • Ledl, F., Fritsch, G., Hiebl, J., Pachmayr, O., Severin, T. 1986. Degradation of Maillard products. In: Amino-Carbonyl Reactions in Food and Biological Systems (M. Fujimaki, M. Namiki, H. Kato, eds.), pp. 173–182, Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Ledl, F., Schleicher, E. 1990. New aspects of the Maillard reaction in foods and in the human body. Angew. Chem. Int. Ed. Engl. 29, 565–594.

    Article  Google Scholar 

  • Lee, H.S., Nagy, S. 1990. Relative reactivities of sugars in the formation of 5-hydroxymethylfurfural in sugar-catalyst model systems. J. Food Process. Preserv. 14, 171–178.

    Article  CAS  Google Scholar 

  • Lee, K.-G., Shibamoto, T. 2002. Toxicology and antioxidant activities of non-enzymatic browning reaction products: review. Food Rev. Int. 18, 151–175.

    Article  CAS  Google Scholar 

  • Leonil, J., Molle, D., Fauquant, J., Maubois, J.L., Pearce, R.J., Bouhallab, S. 1997. Characterization by ionization mass spectrometry of lactosyl β-lactoglobulin conjugates formed during heat treatment of milk and whey and identification of one lactose binding site. J. Dairy Sci. 80, 2270–2281.

    Article  CAS  Google Scholar 

  • Lievonen, S.M., Roos, Y.H. 2002. Nonenzymatic browning in amorphous food models: effects of glass transition and water. J. Food Sci. 67, 2100–2106.

    Article  CAS  Google Scholar 

  • Lindemann-Schneider, U., Fennema, O. 1989. Stability of lysine, methionine and tryptophan in dried whey concentrate during storage. J. Dairy Sci. 72, 1740–1747.

    Article  CAS  Google Scholar 

  • Loncin, M., Bimbenet, J.J., Lenges, J. 1968. Influence of the activity of water on the spoilage of foodstuffs. J. Food Technol. 3, 131–142.

    Article  Google Scholar 

  • Longenecker, J.B., Hause, N.L. 1959. Relationships between plasma amino acids and composition of the ingested protein. Arch. Biochem. Biophys. 84, 46–59.

    Article  CAS  Google Scholar 

  • Löscher, J., Kroh, L., Westphal, G., Vogel, J. 1991. l-Acorbic acid – a carbonyl component of non-enzymatic browning reactions, 2. Amino-carbonyl reactions of l-ascorbic acid. Z. Lebensm, Unters. Forsch. 192, 323–327.

    Article  Google Scholar 

  • Lüdemann, G., Erbersdobler, H.F. 1990. Model experiments on the formation of N-ε-carboxymethyllysine (CML) in foods. In: The Maillard Reaction in Food Processing, Human Nutrition and Physiology (P.A. Finot, H.U. Aeschbacher, R.F. Hurrell, R. Liardon, eds.), pp. 91–96, Birkhaüser Verlag, Basel.

    Chapter  Google Scholar 

  • Luzzana, M., Agnellini, D., Cremonesi, P., Caramenti, G., De Vita, S. 2003. Milk lactose and lactulose determination by the differential pH technique. Lait 83, 409–416.

    Article  CAS  Google Scholar 

  • Maga, J.A. 1979. Furans in foods. Crit. Rev. Food Sci. Nutr. 4, 355–400.

    Google Scholar 

  • Maleki, S.J., Hurlburt, B.K. 2004. Structural and functional alterations in major peanut allergens caused by thermal processing. J. AOAC Int. 87(6), 1475–1479.

    CAS  Google Scholar 

  • Manzocco, L., Calligaris, S., Mastrocola, D., Nicoli, M.C., Lerici, C.R. 2001. Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends Food Sci. Technol. 11, 340–346.

    Article  Google Scholar 

  • Marconi, E., Messia, M.C., Amine, A., Moscone, D., Vernazza, F., Stocchi, F., Palleschi, G. 2004. Heat-treated milk differentiation by a sensitive lactulose assay. Food Chem. 84, 447–450.

    Article  CAS  Google Scholar 

  • Martinez-Castro, I., Olano, A., Corzo, N. 1986. Modifications and interactions of lactose with mineral components of milk during heating processes. Food Chem. 21, 211–221.

    Article  CAS  Google Scholar 

  • Matsuda, T., Ishiguro, H., Okubo, I., Sasaki, M., Nakamura, R. 1990. Immunodominancy and antigenic structure of lactose-protein Maillard adduct. In: The Maillard Reaction in Food Processing, Human Nutrition and Physiology (P.A. Finot, H.U. Aeschbacher, R.F. Hurrell, R. Liardon, eds.), pp. 297–302, Birkhäuser Verlag, Basel.

    Chapter  Google Scholar 

  • Malec, L.S., Pereyra Gonzales, A.S., Naranjo, G.B., Vigo, M.S. 2002. Influence of water activity and storage temperature on lysine availability of a milk like system. Food Res. Int. 35, 849–853.

    Article  CAS  Google Scholar 

  • Märk, J., Pollien, P., Lindinger, C., Blank, I., Märk, T. 2006. Quantitation of furan and methylfuran formed in different precursor systems by proton transfer reaction mass spectrometry. J. Agric. Food Chem. 54, 2786–2793.

    Article  CAS  Google Scholar 

  • Matsuda, T., Kato, Y., Watanabe, K., Nakamura, R. 1985a. Direct evaluation of β-lactoglobulin in early Maillard reaction using an antibody specific to protein-bound lactose. J. Agric. Food Chem. 33, 1193–1196.

    Article  CAS  Google Scholar 

  • Matsuda, T., Kato, Y., Watanabe, K., Nakamura, R. 1985b. Immunochemical properties of proteins glycosylated through Maillard reaction: β-lactoglobulin–lactose and ovalbumin–glucose systems. J. Food Sci. 50, 618–621.

    Article  CAS  Google Scholar 

  • Matsuda, T., Kato, Y., Watanabe, K., Nakamura, R. 1986. Immunochemical analysis of protein lactosylation using antibody specific to ε-deoxylactulosyl lysine. In: Amino-Carbonyl Reactions in Food and Biological Systems (M. Fujimaki, M. Namiki, H. Kato, eds.), pp. 411–419, Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Matsuda, T., Kato, Y., Nakamura, R. 1991. Lysine loss and polymerization of bovine β-lactoglobulin by amino carbonyl reaction with lactulose (4-O-ß-d-galactopyranosyl-d-fructose). J. Agric. Food Chem. 39, 1201–1204.

    Article  CAS  Google Scholar 

  • Mauron, J. 1981. The Maillard reaction in food; a critical review from the nutritional stand point. Prog. Food Nutr. Sci. 5, 5–35.

    CAS  Google Scholar 

  • Mauron, J., Bujard, E. 1964. Guanidation, an alternative approach to the determination of available lysine in foods. In: Proc. 6th Int. Congr. Nutrition (C.F. Mills, R. Passmore, eds.), p. 489, E. & S. Livingstone Ltd, London.

    Google Scholar 

  • Mayer, J., Conrad, J., Klaiber, I., Lutz-Wahl, S., Beifuss, U., Fischer, L. 2004. Enzymatic production and complete nuclear magnetic resonance assignment of the sugar lactulose. J. Agric. Food Chem. 52, 6983–6990.

    Article  CAS  Google Scholar 

  • McGookin, B.J. 1991. Casein-sugar reaction products as antioxidants. Food Res. Quart. 51, 55–59.

    Google Scholar 

  • Mennella, C., Visciano, M., Napolitano, A., Del Castillo, M.D., Fogliano, V. 2006. Glycation of lysine-containing dipeptides. J. Peptide Sci. 12, 291–296.

    Article  CAS  Google Scholar 

  • Miao, S., Roos, Y. H. 2004. Comparison nonenzymatic browning kinetics in spray-dried and freeze-dried carbohydrate-based food model systems. J. Food Sci. 69, 322–331.

    Article  Google Scholar 

  • Mijares, R.M., Park, G.L., Nelson, D.B., McIver, R.C. 1986. HPLC analysis of HMF in orange juice. J. Food Sci. 55, 843–844.

    Article  Google Scholar 

  • Miller, R.E., Cantor, S.M. 1952. 2-Hydroxyacetylfuran from sugars. J. Am. Chem. Soc. 74, 5236–5237.

    Article  CAS  Google Scholar 

  • Minifie, B.W. 1989. Chocolate, Cocoa and Confectionery. Science and Technology, Third Edition, Van Nostrand Reinhold, New York, USA.

    Google Scholar 

  • Miyazawa, T., Oak, J-H., Nakagawa, K. 2005. A convenient method for preparation of high-purity, Amadori-glycated phosphatidylethanolamine and its prooxidant effect. Ann. N.Y. Acad. Sci. 1043, 276–279.

    Article  CAS  Google Scholar 

  • Mizota, T., Seki, N., Kobuko, S. 2004. Transformation of lactulose trihydrate into aqueous lactulose by fluidized bed drying and its characterization. Carbohyd. Res. 339, 1069–1075.

    Article  CAS  Google Scholar 

  • Mizota, T., Tamura, Y., Tomita, M., Okonogi, S. 1987. Lactulose as a sugar with physiological significance, Bulletin 212, International Dairy Federation, Brussels, pp. 69–76.

    Google Scholar 

  • Moll, N., Gross, B. 1981. Isolation and purification of Amadori compounds by semi- preparative reversed-phase high performance liquid chromatography. J. Chromatogr. 206, 186–192.

    Article  CAS  Google Scholar 

  • Moller, A.B. 1981. Chemical changes in ultra heat treated milk during storage. Prog. Food Nutr. Sci. 5, 357–368.

    Google Scholar 

  • Moller, A.B., Andrews, A.T., Cheeseman, G.C. 1977a. Chemical changes in ultra-heat-treated milk during storage. I. Hydrolysis of casein by incubation with pronase and a peptidase mixture. J. Dairy Res. 44, 259–266.

    Article  Google Scholar 

  • Moller, A.B., Andrews, A.T., Cheeseman, G.C. 1977b. Chemical changes in ultra-heat-treated milk during storage. II. Lactuloselysine and fructoselysine formation by the Maillard reaction. J. Dairy Res. 44, 267–275.

    Article  Google Scholar 

  • Molner-Perl, I., Friedman, M. 1990. Inhibition of browning by sulfur amino acids. 2. Fruit juices and protein-containing foods. J. Agric. Food Chem. 38, 1648–1651.

    Article  Google Scholar 

  • Montgomery, E.M., Hudson, C.S. 1930. Relations between rotatory power and structure in the sugar group. XXVII. Synthesis of a new disaccharide ketose (lactulose) from lactose. J. Am. Chem. Soc. 52, 2101–2106.

    Article  CAS  Google Scholar 

  • Montilla, A., del Castillo, M.D., Sanz, M.L., Olano, A. 2005a. Egg shell as catalyst of lactose isomerisation to lactulose. Food Chem. 90, 883–890.

    Article  CAS  Google Scholar 

  • Montilla, A., Moreno, F.J., Olano, A. 2005b. A reliable gas chromatographic determination of lactulose in dairy samples. Chromatographia 62, 311–314.

    Article  CAS  Google Scholar 

  • Morales, F.J., Jiménez-Pérez, S. 2001. Free radical scavenging capacity of Maillard reaction products as related to colour and fluorescence. Food Chem. 72(1), 119–125.

    Article  CAS  Google Scholar 

  • Morales, F.J., Romero, C., Jiménez-Pérez, S. 1996. Florescence associated with Maillard reaction in milk and milk-resembling systems. Food Chem. 57(3), 423–428.

    Article  CAS  Google Scholar 

  • Morales, F.J., Romero, C., Jimenez-Perez, S. 1997. Chromatographic determination of bound hydroxymethylfurfural as an index of milk protein glycosylation. J. Agric. Food Chem. 45, 1570–1573.

    Article  CAS  Google Scholar 

  • Morgan, F., Henry, G., Le Graet, Y., Molle, D., Leonil, J., Bouhallab, S. 1999a. Resistance of β-lactoglobulin-bound lactose to the hydrolysis by β-galactosidase. Int. Dairy J. 9, 813–816.

    Article  CAS  Google Scholar 

  • Morgan, F., Molle, D., Henry, G., Venien, A., Leonil, J., Peltre, G., Levieux, D., Maubois, J.-L., Bouhallab, S. 1999b. Glycation of bovine β-lactoglobulin: Effect on the protein structure. Int. J. Food Sci. Technol. 34, 429–435.

    Article  CAS  Google Scholar 

  • Mottu, F., Mauron, J. 1967. The differential determination of lysine in heated milk. II. Comparison of the in vitro methods with the biological evaluation. J. Sci. Food Agric. 18, 57–62.

    Article  CAS  Google Scholar 

  • Mu, M., Pan, X., Yao, P., Jiang, M. 2006. Acidic solution properties of β-casein-graft-dextran copolymer prepared through Maillard reaction. J. Colloid Interf. Sci. 301, 98–106.

    Article  CAS  Google Scholar 

  • Nakamura, S. Kato, A., Kobayashi, K. 1992. Enhanced antioxidative effect of ovalbumin due to covalent binding of polysaccharides. J. Agric. Food Chem. 40, 2033–2037.

    Article  CAS  Google Scholar 

  • Nakamura, S., Kobayashi, K., Kato, A. 1994. Role of positive charge of lysozyme in the excellent emulsifying properties of Maillard-type lysozyme–polysaccharide conjugate. J. Agric. Food Chem. 42, 2688–2691.

    Article  CAS  Google Scholar 

  • Namiki, M., Terao, A., Ueda, S., Hayashi, T. 1986. Deamination of lysine in protein by reaction with oxidized ascorbic acid or active carbonyl compounds produced by Maillard reaction. In: Amino-Carbonyl Reactions in Food and Biological Systems (M. Fujimaki, M. Namiki, H. Kato, eds.), pp. 105–114, Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Nielsen, H.K., Löliger, J., Hurrell, R.F. 1985a. Reactions of proteins with oxidizing lipids. 1. Analytical measurements of lipid oxidation and of amino acid losses in a whey protein- methyl linolenate model system. Br. J. Nutr. 53, 61–73.

    Article  CAS  Google Scholar 

  • Nielsen, H.K., De Weck, D., Finot, P.A., Liardon, R., Hurrell, R.F. 1985b. Stability of tryptophan during food processing and storage. 1. Comparative losses of tryptophan, lysine and methionine in different model systems. Br. J. Nutr. 53, 281–292.

    Article  CAS  Google Scholar 

  • Nielsen, H.K., Klein, A., Hurrell, R.F. 1985c. Stability of tryptophan during food processing and storage. 2. A comparison of methods used for the measurement of tryptophan losses in processed foods. Br. J. Nutr. 53, 293–300.

    Article  CAS  Google Scholar 

  • Nursten, H. 2005. The Maillard Reaction. Chemistry, Biochemistry and Implications, Royal Society of Chemistry, Cambridge, UK.

    Google Scholar 

  • Obretanov, T.D., Argirov, O.K., Rashkov, I.B. 1983. On melanoidin formation with furfural participation: Synthesis of melanoidins from furfural and glycine. J. Food Process. Preserv., 7, 105–113.

    Article  Google Scholar 

  • O'Brien, J., Morrissey, P.A. 1989. Nutritional and toxicological aspects of the Maillard browning reaction in foods. Crit. Rev. Food Sci. Nutr. 28, 211–248.

    Article  Google Scholar 

  • O’Brien, J., Morrissey, P.A. 1997. Metal ion complexation by products of the Maillard reaction. Food Chem. 58, 17–24.

    Article  Google Scholar 

  • Okitani, A., Kaneko, S., Tashiro, Y., Hayase, F., Kato, H. 1986. Polymerization of proteins and impairment of their amino acid residues due to vaporized hexanal. In: Amino-Carbonyl Reactions in Food and Biological Systems (M. Fujimaki, M. Namiki, H. Kato, eds.), pp. 125–134, Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Olano, A., Calvo, M.M., Corzo, N. 1989. Changes in the carbohydrate fraction of milk during heating processes, Food Chem. 31, 259–265.

    Article  CAS  Google Scholar 

  • Olano, A., Martinez-Castro, I. 1981. Formation of lactulose and epilactose from lactose in basic media. A quantitative study. Milchwissenschaft 36, 533–536.

    CAS  Google Scholar 

  • Öste, R.E., Brandon, D.L., Bates, A., Friedman, M. 1990. Antibody-binding to a Maillard reacted protein. In: The Maillard Reaction in Food Processing, Human Nutrition and Physiology (P.A. Finot, H.U. Aeschbacher, R.F. Hurrell, R. Liardon, eds.), pp. 303–308, Birkhäuser Verlag, Basel.

    Chapter  Google Scholar 

  • Pappas, C.P., Rothwell, J. 1991. The effects of heating, alone or in the presence of calcium or lactose, on calcium binding to milk proteins. Food Chem. 42, 183–201.

    Article  CAS  Google Scholar 

  • Park, Y.-H., Hong, Y.-H. 1991. Changes in undenatured whey protein and available lysine contents in heat treated market milks. J. Korean Soc. Food Nutr. 20, 546–550.

    CAS  Google Scholar 

  • Patton, S. 1950a. Studies of heated milk. I. Formation of 5-hydroxymethyl-2-furfural, J. Dairy Sci. 33, 324–328.

    Article  CAS  Google Scholar 

  • Patton, S. 1950b. Studies of heated milk. III. Mode of formation of certain furan compounds. J. Dairy Sci. 33, 904–910.

    Article  CAS  Google Scholar 

  • Patton, S. 1955. Browning and associated changes in milk and its products. J. Dairy Sci. 38, 457–478.

    Article  CAS  Google Scholar 

  • Pavlovic, S., Santos, R.C., Glória, M.B.A. 1994. Maillard reaction during the processing of ‘doce de leite'. J. Sci. Food Agric. 66, 129–132.

    Article  CAS  Google Scholar 

  • Pellegrino, L., de Noni, I., Resmini, P. 1995. Coupling of lactulose and furosine indices for quality evaluation of sterilized milk. Int. Dairy J. 5, 647–659.

    Article  CAS  Google Scholar 

  • Penndorf, I., Biedermann, D., Maurer, S.V., Henle, T. 2007. Studies on N-terminal glycation of peptides in hypoallergenic infant formulas: quantification of α-N-(2-furoylmethyl) amino acids. J. Agric. Food Chem. 55, 723–727.

    Article  CAS  Google Scholar 

  • Pereyra Gonzales, A.S., Naranjo, G.B., Malec, L.S., Vigo, M.S. 2003. Available lysine, protein digestibility and lactulose in commercial infant formula. Int. Dairy J. 13, 95–99.

    Article  CAS  Google Scholar 

  • Perez Locas, C., Yaylayan, V.A. 2004. Origin and mechanistic pathways of formation of the parent furan – a food toxicant. J. Agric. Food Chem. 52, 6830–6836.

    Article  CAS  Google Scholar 

  • Petersen, B.J., Tran, N. 2005. Exposure to acrylamide. Placing exposure in context. In: Chemistry and Safety of Acrylamide in Food (M. Friedman, D. Mottram, eds.), pp. 63–76, Springer, New York, USA.

    Chapter  Google Scholar 

  • Peterson, B.I., Tong, C.-H., Ho, C.-T., Welt, B.A. 1994. Effect of moisture content on Maillard browning kinetics of a model system during microwave heating. J. Agric. Food Chem. 42, 1884–1887.

    Article  CAS  Google Scholar 

  • Pham, C.B., Cheftel, J.C. 1990. Influence of salts, amino acids and urea on the non-enzymatic browning of the protein-sugar system. Food Chem. 37, 251–260.

    Article  CAS  Google Scholar 

  • Pilkova, L., Pokorny, J., Davidek, J. 1990. Browning reactions of Heyns rearrangement products. Kinetics of the Maillard reaction during processing and storage. Nahrung 34, 759–764.

    Article  CAS  Google Scholar 

  • Pischetsrieder, M., Severin. T. 1994. The Maillard reaction of disaccharides. In: Maillard Reactions in Chemistry, Food and Health (T.P. Labuza, G.A. Reineccius, V.M. Monnier, J. O'Brien, J.W. Baynes, eds.), pp. 37–42, Royal Society of Chemistry, Cambridge.

    Chapter  Google Scholar 

  • Pokorny, J., Pilkova, L., Davidek, J. and Valentova, H. (1988). Effect of Amadori rearrangement products on the non-enzymatic browning in model systems. Nahrung 32, 767–776.

    Article  CAS  Google Scholar 

  • Poretta, S., Sandei, L. 1991. Determination of 5-(hydroxymethyl) -2 furfural (HMF) in tomato products: proposal of a rapid HPLC method and its comparison with the colorimetric method. Food Chem. 39, 51–57.

    Article  Google Scholar 

  • Potman, R.P., van Wijk, T.A. 1989. Mechanistic studies of the Maillard reaction with emphasis on phosphate-mediated catalysis. In: Thermal Generation of Aromas (T.M. Parliment, R.J. McGorrin, C-T. Ho, eds.), pp. 182–195, American Chemical Society, Washington, DC, USA.

    Chapter  Google Scholar 

  • Powell, R.C.T., Spark, A.A. 1971. Effect of zirconium and aluminium compounds and pH on the Maillard reaction. J. Sci. Food Agric. 22, 596–599.

    Article  CAS  Google Scholar 

  • Puig, C., Perez, M.D., Ros, L., Sanchez, L., Calvo, M. 2003. Effect of processing on the composition of infant formulas. Milchwissenschaft 58, 476–480.

    Google Scholar 

  • Puscasu, C., Birlouez-Aragon, I. 2002. Intermediary and/or advanced Maillard products exhibit prooxidant activity on Trp: In vitro study on α-lactalbumin. Food Chem. 78(4), 399–406.

    Article  CAS  Google Scholar 

  • Qiu, Z., Stowell, J.G., Morris, K.R., Byrn, S.R., Pinal, R. 2005a. Kinetic study of the Maillard reaction between metoclopramide hydrochloride and lactose. Int. J. Pharmaceut. 303(1), 20–30.

    Google Scholar 

  • Qiu, Z., Stowell, J.G., Cao, W., Morris, K.R., Byrn, S.R., Carvajal, M.T. 2005b. Effect of milling and compression on the solid-state Maillard reaction. J. Pharmaceut. Sci. 94(11), 2568–2580.

    Google Scholar 

  • Rabasseda, J., Rauret, G., Galceran, M.T. 1988. Liquid chromatographic determination of available lysine in soybean and fish meal. J. Assoc. Off. Anal. Chem. 71, 350–357.

    CAS  Google Scholar 

  • Rada-Mendoza, M., Olano, A., Villamiel, M. 2005. Chemical indicators of heat treatment in fortified and special milks. J. Agric. Food Chem. 53, 2995–2999.

    Article  CAS  Google Scholar 

  • Ramshaw, E.H., Dunstone, E.A. 1969. Volatile compounds associated with the off-flavour in stored casein. J. Dairy Res. 36, 215–223.

    Article  CAS  Google Scholar 

  • Resmini, P., Pellegrino, L., Battelli, G. 1990. Accurate quantification of furosine in milk and dairy products by a direct HPLC method. Ital. J. Food Sci. 3, 173–183.

    Google Scholar 

  • Rendleman, J.A., Inglett, G.E. 1990. The influence of Cu2+ in the Maillard reaction. Carbohydrate Res. 201, 311–326.

    Article  CAS  Google Scholar 

  • Reutter, M., Eichner, K. 1989. Separation and determination of Amadori compounds by high pressure liquid chromatography and post column reaction. Z. Lebensm. Unters. Forsch. 188, 28–35.

    Article  CAS  Google Scholar 

  • Rizzi, G.P. 2003. Free radicals in the Maillard Reaction. Food Rev. Int. 19, 375–395.

    Article  CAS  Google Scholar 

  • Rogers, A., Shibamoto, T. 1982. Mutagenicity of the products obtained from heated milk systems. Food Chem. Toxicol. 20, 259–263.

    Article  CAS  Google Scholar 

  • Roscic, M., Horvat, S. 2006. Transformations of bioactive peptides in the presence of sugars- characterization and stability studies of the adducts generated via the Maillard reaction. Bioorgan. Med. Chem. 14, 4933–4943.

    Article  CAS  Google Scholar 

  • Rowan, A.M., Moughan, P.J., Wilson, M.N. 1992. Effect of hydrolysis time on the determination of the amino acid composition of diet, ileal digesta and feces samples and on the determination of dietary amino acid digestibility coefficients. J. Agric. Food Chem. 40, 981–985.

    Article  CAS  Google Scholar 

  • Sarriá, B., Lòpez-Fandiño, R., Vaquero, M.P. 2001. Does processing of a powder or in-bottle-sterilized liquid infant formula affect calcium bioavailability? Nutrition 17, 326–331.

    Article  Google Scholar 

  • Sarria, B., Vaquero, M.P. 2006. Heat processing inn infant formulas induces changes in copper tissue levels in suckling and weanling rats. Ann. Nutr. Metab. 50, 25–30.

    Article  CAS  Google Scholar 

  • Scanlan, R.A., Lindsay, R.C., Libbey, L.M., Day, E.A. 1968. Heat-induced volatile compounds in milk. J. Dairy Sci. 51, 1001–1007.

    Article  CAS  Google Scholar 

  • Schwenger, V., Morath, C., Schonfelder, K., Klein, W., Weigel, K., Deppisch, R., Henle, T., Ritz, E., Zeier, M. 2005. An oral load of the early glycation compound lactuloselysine fails to accumulate in the serum of uremic patients. Nephrol. Dial. Transplant. 21, 382–388.

    Article  Google Scholar 

  • Seiquer, I., Diaz-Alguacil, J., Delgado-Andrade, C., Lopez-Frias, M., Hoyos, A.M., Galdo, G., Navarro, M.P. 2006. Diets rich in Maillard reaction products affect protein digestibility in adolescent males aged 11–14 y. Am. J. Clin. Nutr. 83, 1082–1088.

    CAS  Google Scholar 

  • Seiquer, I., Valverde, A., Delgado-Andrade, C., Navarro, M.P. 2000. Influence of heat treatment of casein in presence of reducing sugars on Zn solubility and Zn uptake by Caco-2 cells after in vitro digestion. J. Physiol. Biochem. 56, 237–246.

    Article  CAS  Google Scholar 

  • Sekizawa, J., Shibamoto, T. 1986. Salmonella/microsome mutagenicity tests of heat-processed milk samples. Food Chem. Toxicol. 24, 987–988.

    Article  CAS  Google Scholar 

  • Shallenberger, R.S. 1984. Nature of the amino acid catalysis of the glucose mutarotation reaction. Food Chem. 15, 1–7.

    Article  CAS  Google Scholar 

  • Sheldon, S.A., Russell, G.F., Shibamoto, T. 1986. Photochemical and thermal activitation of model Maillard reaction systems. In: Amino-Carbonyl Reactions in Food and Biological Systems (M. Fujimaki, M. Namiki, H. Kato, eds.), pp.145–154, Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Shibamoto, T., Yeo, H. 1992. Flavour compounds formed from lipids by heat treatment. In: Flavor Precursors. Thermal and Enzymatic Conversions (R. Teranishi, G.R. Takeoka, M. Güntert, eds.), pp.175–182, American Chemical Society, Washington, DC, USA.

    Chapter  Google Scholar 

  • Shipe, W.F., Bassette, R., Deane, D.D., Dunkley, W.L., Hammon, E.G., Harper, W.J., Kleyn, D.H., Morgan, M.E., Nelson, J.H., Scanlan, R.A. 1978. Off-flavours of milk: nomenclature, standards and bibliography. J. Dairy Sci. 61, 855–869.

    Article  CAS  Google Scholar 

  • Shiratsuchi, H., Shimoda, M., Imayoshi, K., Noda, K., Osajima, Y. 1994. Volatile flavour compounds in spray-dried skim milk powder. J. Agric. Food Chem. 42, 984–988.

    Article  CAS  Google Scholar 

  • Siciliano, R., Rega, B., Amoresano, A., Pucci, P. 2000. Modern mass spectrometric methodologies in monitoring milk quality. Anal. Chem. 72, 408–415.

    Article  CAS  Google Scholar 

  • Silvan, J.M., van de Lagemaat, J., Olano, A., del Castillo, M.D. 2006. Analysis and biological properties of amino acid derivates [sic] formed by Maillard reaction in foods. J. Pharm. Biomed. Anal. 41, 1543–1551.

    Article  CAS  Google Scholar 

  • Skog, K., Alexander, J. (Eds.). 2006. Acrylamide and Other Hazardous Compounds in Heat-treated Foods, CRC Press, Boca Raton, FL, USA.

    Book  Google Scholar 

  • Smith, G.A., Friedman, M. 1984. Effect of carbohydrate and heat on the amino acid composition and chemically available lysine content of casein. J. Food Sci. 49, 817–820, 843.

    Article  CAS  Google Scholar 

  • Smith, J.L., Yada, R.Y. 1991. Chemical modification of amino groups in Mucor miehei aspartyl proteinase, porcine pepsin and chymosin. II. Conformational stability. Agric. Biol. Chem. 55, 2017–2024.

    Article  CAS  Google Scholar 

  • Smith, J.L., Billings, G.E., Yada, R.Y. 1991. Chemical modification of amino groups in Mucor miehei aspartyl proteinase, porcine pepsin and chymosin. I. Structure and function. Agric. Biol. Chem. 55, 2009–2016.

    Article  CAS  Google Scholar 

  • Speck, J.C. 1958. The Lobrey de Bruyn – Alberda van Ekenstein transformation. Adv. Carbohydr. Chem. 13, 63–103.

    Article  CAS  Google Scholar 

  • Srinivasan, A., Gopalan, S. 1994. Influence and impact of non-enzymatic browning reaction on protein in milk and in indigenous dairy products of India. In: Maillard Reactions in Chemistry, Food and Health (T.P. Labuza, G.A. Reineccius, V.M. Monnier, J. O'Brien, J.W. Baynes, eds.), p. 419 (abstr.), Royal Society of Chemistry, Cambridge.

    Chapter  Google Scholar 

  • Stadler, R.H., Robert, F., Riediker, S., Varga, N., Davidek, T., Devaud, S., Goldman, T., Hau, J., Blank, I. 2004. In-depth mechanistic study on the formation of acrylamide and other vinylogous compounds by the Maillard reaction. J. Agric. Food Chem. 52, 5550–5558.

    Article  CAS  Google Scholar 

  • Sweetsur, A.W.M., White, J.C.D. 1975. Studies on the heat stability of milk protein. III. Effect of heat-induced acidity in milk. J. Dairy Res. 42, 73–88.

    Article  CAS  Google Scholar 

  • Tamura, Y., Mizota, T., Shimamura, S., Tomita, M. 1993. Lactulose and its Application to the Food and Pharmaceutical Industries, Bulletin 289, International Dairy Federation, Brussels, pp. 43–53.

    Google Scholar 

  • Thomas, M.E.C., Scher, J., Desobry-Banon, S., Desobry, S. 2004. Milk powdered ageing: effect on physical and functional properties. Critical Rev. Food Sci. Nutrition 44, 297–322.

    Article  CAS  Google Scholar 

  • Troyano, E., Olano, A., Jimeno, M.L., Sanz, J., Martinez-Castro, I. 1992a. Isolation and characterization of 3-deoxypentosulose and its determination in heated milk. J. Dairy Res. 59, 507–515.

    Google Scholar 

  • Troyano, E., Martinez-Castro, I., Olano, A. 1992b. Kinetics of galactose and tagatose formation during heat-treatment of milk. Food Chem. 45, 41–43.

    Google Scholar 

  • Troyano, E., Olano, A., Martinez-Casto, I. 1994. Changes on free monosaccharides during storage of dried milk. J. Agric. Food Chem. 42, 1543–1545.

    Article  CAS  Google Scholar 

  • Tsuchiya, S., Sakurai, T., Sekiguchi, S.-I. 1984. Non-enzymatic glucosylation of human serum albumin and its influence on binding capacity on sulfonylureas. Biochem. Pharmacol. 33, 2967–2971.

    Article  CAS  Google Scholar 

  • Tu, D., Xue, S., Meng, C., Espinosa-Mansilla, A., de la Peña, A.M., Lopez, F.S. 1992. Simultaneous determination of 2-furfuraldehyde and 5-(hydroxymethyl)-2-furfuraldehyde by derivative spectrophotometry. J. Agric. Food Chem. 40, 1022–1025.

    Article  CAS  Google Scholar 

  • Turner, L.G., Swaisgood, H.E., Hansen, A.P. 1978. Interaction of lactose and proteins of skim milk during ultra-high temperature processing. J. Dairy Sci. 61, 384–392.

    Article  CAS  Google Scholar 

  • Urashima, T., Suyema, K., Adachi, S. 1988. The condensation of 5-(hydroxymethyl)-2-furaldehyde with some aldoses on heating. Food Chem. 29, 7–17.

    Article  CAS  Google Scholar 

  • van Boekel, M.A.J.S., Rehman, Z. 1987. Determination of hydroxymethylfurfural in heated milk by high performance liquid chromatography. Neth. Milk Dairy J. 41, 297–306.

    Google Scholar 

  • Verhaar, L.A.Th., van der Aalst, M.J.M., Beenackers, J.A.W.M., Kuster, B.F.M. 1979. Ion-exchange chromatography of lactose–lactulose isomerization mixtures using a boric acid–borate eluent. J. Chromatogr. 170, 363–370.

    Article  CAS  Google Scholar 

  • Venkatachalam, N., McMahon, D.J., Savello, P.A. 1993. Role of protein and lactose interactions in the age gelation of ultra-high temperature processed concentrated skim milk. J. Dairy Sci. 76, 1882–1894.

    Article  CAS  Google Scholar 

  • Vinale, F., Monti, S. M., Panunzi, B., Fogliano, V. (1999). Convenient synthesis of lactuloselysine and its use for LC-MS analysis in milk-like model systems. J. Agric. Food Chem. 47, 4700–4706.

    Article  CAS  Google Scholar 

  • Vogel, J., Westphal, G., Pippig, C. 1988. Mutarotation of d-glucose in dependence on the reaction environment. Nahrung 32, 709–714.

    Article  CAS  Google Scholar 

  • Warmbier, H.C., Schnickels, R.A., Labuza, T.P. 1976. Effect of glycerol on non-enzymatic browning in a solid intermediate moisture model food system. J. Food Sci. 41, 528–531.

    Article  CAS  Google Scholar 

  • Weenan, H., Tjan, S.B. 1992. Analysis structure and reactivity of 3-deoxyglucosone. In: Flavor Precursors. Thermal and Enzymatic Conversions (R. Teranishi, G.R. Takeoka, M. Guntert, eds.), pp. 217–231, American Chemical Society, Washington, DC, USA.

    Chapter  Google Scholar 

  • Wertheim, J.H., Procter, B.E., Goldblith, S.A. 1956. Radiation preservation of milk and milk products. IV. Radiation-induced browning and some related chemical changes in milk. J. Dairy Sci. 39, 1236–1246.

    Article  CAS  Google Scholar 

  • Westphal, G., Kroh, L., Follmer, U. 1988. Investigations on the Maillard reaction. Part 16. The reactivity of Amadori compounds in dependence on the reaction medium. Nahrung 32, 117–120.

    Article  CAS  Google Scholar 

  • Wolf, J.C., Thompson, D.R., Reineccius, G.A. 1977. Initial losses of available lysine in model systems. J. Food Sci. 42, 1540–1544.

    Article  Google Scholar 

  • Wolff, N., Cogan, U., Zuckerman, H., Karin, N., Levy, Y., Krasik, Y.E., Felsteiner, J., Reifen, R., Yannai, S. 2004. Decrease of the allergenic activity of foods by shock waves. Czech J. Food Sci. 22(Special Issue), 36–39.

    Google Scholar 

  • Wu, H., Govindarajan, S., Smith, T., Rosen, J.D., Ho, C.-T. 1990. Glucose-lysozyme reactions in a restricted water environment. In: The Maillard Reaction in Food Processing, Human Nutrition and Physiology (P.A Finot, H.U. Aeschbacher, R.F. Hurrell, R. Liardon, eds.), pp. 85–90, Birkhäuser Verlag, Basel.

    Chapter  Google Scholar 

  • Yang, R., Shin, D.B. 1980. Study on the amino-carbonyl reaction. Korean J. Food Sci. Technol. 12, 88–96.

    CAS  Google Scholar 

  • Yaylayan, V. 1990. In search of alternative mechanisms for the Maillard reaction. Trends Food Sci. Technol. 1, 20–22.

    Article  CAS  Google Scholar 

  • Yaylayan, V.A., Forage, N.G. 1991. Determination of the kinetics and mechanism of decomposition of tryptophan Amadori rearrangement product by RP-HPLC analysis. J. Agric. Food Chem. 39, 364–369.

    Article  CAS  Google Scholar 

  • Yaylayan, V.A., Forage, N.G. 1992. A kinetic model for the reaction of tryptophan with glucose and mannose – the role of diglycation in the Maillard reaction, Food Chem. 44, 201–208.

    Article  CAS  Google Scholar 

  • Yaylayan, V.A., Huyghues-Despointes, A. 1994. Chemistry of Amadori rearrangement products: analysis, synthesis, kinetics, reactions, and spectroscopic properties. Crit. Rev. Food Sci. Nutr. 34, 321–369.

    Article  CAS  Google Scholar 

  • Yaylayan, V.A., Lachambre, S. 1990. Pyrylium betaines as reactive intermediates in Maillard reaction. J. Food Sci. 55, 1124–1126.

    Article  CAS  Google Scholar 

  • Yaylayan, V.A., Mandeville, S. 1994. Mechanistic pathway for the formation of maltoxazine from intact 1-[(2′-carboxyl)pyrrolidinyl]-1-deoxy-d-fructose (Amadori-Proline). J. Agric. Food. Chem. 42, 1841–1844.

    Article  CAS  Google Scholar 

  • Yen, G.C., Lee, T-C. 1986. Mutagen formation in the reaction of Maillard browning products, 2-acetylpyrrole and its analogues, with nitrite. Food Chem. Toxicol. 24, 1303–1308.

    Article  CAS  Google Scholar 

  • Yoshimura, J., Funabashi, M., Simon, H. 1969. On the catalysis of the Amadori rearrangement. Carbohydr. Res. 11, 276–281.

    Article  CAS  Google Scholar 

  • Zamora, R., Hidalgo, F.J. 2005. Coordinate contribution of lipid oxidation and Maillard reaction to the nonenzymatic food browning. Critical Rev. Food Sci. Nutr. 45, 49–59.

    Article  CAS  Google Scholar 

  • Zyzak, D.V., Wells-Knecht, K.J., Blackledge, J.A., Litchfield, J.E., Wells-Knecht, M.C., Fu, M.- X., Feather, M.S., Baynes J.W. 1994. Pathways of the Maillard reaction in vitro and in vivo. In: Maillard Reactions in Chemistry, Food and Health (T.P. Labuza, G.A. Reineccius, V.M. Monnier, J. O'Brien, J.W. Baynes, eds.), pp.274–280, Royal Society of Chemistry, Cambridge.

    Chapter  Google Scholar 

Download references

Acknowledgement

The author wishes to thank Dr Judith O’Connor for assistance with the references.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

O’Brien*, J. (2009). Non-Enzymatic Degradation Pathways of Lactose and Their Significance in Dairy Products. In: McSweeney, P., Fox, P. (eds) Advanced Dairy Chemistry. Springer, New York, NY. https://doi.org/10.1007/978-0-387-84865-5_7

Download citation

Publish with us

Policies and ethics