EPR Studies of the Chemical Dynamics of NO and Hemoglobin Interactions

  • Benjamin P. Luchsinger
  • Eric D. Walter
  • Lisa J. Lee
  • Jonathan S. Stamler
  • David J. Singel
Part of the Biological Magnetic Resonance book series (BIMR, volume 28)

The field of NO biology began two decades ago with the identification of nitric oxide, NO, as the endothelium-derived vascular relaxing factor (EDRF) discovered by Furchgott [1]. Since then, the scope of the field has dramatically expanded to view the NO moiety as a ubiquitous signaling agent [2] that can modulate effector function through a variety of chemistries, most prevalently reactions with oxygen, thiols, and metal centers [3]. The seminal work of identifying EDRF with nitric oxide (NO) was based in significant part on such chemistry, specifically the reaction with oxygen or metal centers in hemoglobin (Hb); these reactions had the same inactivating effect on both NO and EDRF [4].


Nitric Oxide Electron Paramagnetic Resonance Spectral Component Physiol Heart Circ Chemical Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Furchgott R, Zawadzki JV. 1980. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288(5789):373–376.PubMedCrossRefGoogle Scholar
  2. 2.
    Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS. 2005. Protein Snitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6(2):150–166.PubMedCrossRefGoogle Scholar
  3. 3.
    Stamler JS, Singel DJ, Loscalzo J. 1992. Biochemistry of nitric oxide and its redoxactivated forms. Science 258(5090):1898–1902.PubMedCrossRefGoogle Scholar
  4. 4.
    Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. 1987. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84:9265–9269.PubMedCrossRefGoogle Scholar
  5. 5.
    Gibson QH, Roughton FJW. 1957. The Kinetics and equilibria of the reactions of nitric oxide with sheep haemoglobin. J Physiol 136:507–526.PubMedGoogle Scholar
  6. 6.
    Doyle MP, Hoekstra JW. 1981. Oxidation of nitrogen oxides by bound dioxygen in hemoproteins. J Inorg Biochem 14(4):351–358.PubMedCrossRefGoogle Scholar
  7. 7.
    Singel DJ, Lancaster JR. 1996 Electron Paramagnetic resonance spectroscopy and nitric oxide biology. In Methods in nitric oxide research, pp. 341–356. Ed M Feelisch, JS Stamler. West Sussex: John Wiley & Sons.Google Scholar
  8. 8.
    Henry YA, Singel DJ. 1996 Metal–nitrosyl interactions in nitric oxide biology probed by electron paramagnetic resonance spectroscopy. In Methods in nitric oxide research, pp. 357–372. Ed M Feelisch, JS Stamler. West Sussex: John Wiley & Sons.Google Scholar
  9. 9.
    Lancaster Jr JR 1994. Simulation of the diffusion and reaction of endogenously produced nitric oxide. Proc Natl Acad Sci USA 91(17):8137–8141.PubMedCrossRefGoogle Scholar
  10. 10.
    Jia L, Bonaventura C, Bonaventura J, Stamler JS. 1996. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control [see comments]. Nature 380(6571):221–226.PubMedCrossRefGoogle Scholar
  11. 11.
    Singel DJ, Stamler JS. 2005. Chemical physiology of blood flow regulation by red blood cells: the role of nitric oxide and S-nitrosohemoglobin. Annu Rev Physiol 67:99– 145.PubMedCrossRefGoogle Scholar
  12. 12.
    Singel DJ, Stamler JS. 2004. Blood traffic control. Nature 430(6997):297.PubMedCrossRefGoogle Scholar
  13. 13.
    Liu X, Miller MJ, Joshi MS, Sadowska-Krowicka H, Clark DA, Lancaster Jr JR. 1998. Diffusion-limited reaction of free nitric oxide with erythrocytes. J Biol Chem 273(30):18709–18713.PubMedCrossRefGoogle Scholar
  14. 14.
    Liao JC, Hein TW, Vaughn MW, Huang KT, Kuo L. 1999. Intravascular flow decreases erythrocyte consumption of nitric oxide. Proc Natl Acad Sci USA 96(15):8757– 8761.PubMedCrossRefGoogle Scholar
  15. 15.
    Vaughn MW, Huang KT, Kuo L, Liao JC. 2000. Erythrocytes possess an intrinsic barrier to nitric oxide consumption. J Biol Chem 275(4):2342–2348.PubMedCrossRefGoogle Scholar
  16. 16.
    Liu X, Samouilov A, Lancaster Jr JR, Zweier JL. 2002. Nitric oxide uptake by erythrocytes is primarily limited by extracellular diffusion not membrane resistance. J Biol Chem 277(29):26194–2619.PubMedCrossRefGoogle Scholar
  17. 17.
    Tsoukias NM, Popel AS. 2002. Erythrocyte consumption of nitric oxide in presence and absence of plasma-based hemoglobin. Am J Physiol Heart Circ Physiol 282(6):H2265–H2277.PubMedGoogle Scholar
  18. 18.
    Tsoukias NM, Popel AS. 2003. A model of nitric oxide capillary exchange. Microcirculation 10(6):479–495.PubMedCrossRefGoogle Scholar
  19. 19.
    El-Farra NH, Christofides PD, Liao JC. 2003. Analysis of nitric oxide consumption by erythrocytes in blood vessels using a distributed multicellular model. Ann Biomed Eng 31(3):294–309.PubMedCrossRefGoogle Scholar
  20. 20.
    Tsoukias NM, Kavdia M, Popel AS. 2004. A theoretical model of nitric oxide transport in arterioles: frequency- vs. amplitude-dependent control of cGMP formation. Am J Physiol Heart Circ Physiol 286(3):H1043–H1056.PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang Y, Hogg N. 2005. S-nitrosothiols: cellular formation and transport. Free Radic Biol Med 38(7):831–838.PubMedCrossRefGoogle Scholar
  22. 22.
    Hyduke DR, Liao JC. 2005. Analysis of nitric oxide donor effectiveness in resistance vessels. Am J Physiol Heart Circ Physiol 288(5):H2390–H2399.PubMedCrossRefGoogle Scholar
  23. 23.
    Stamler JS, Simon DI, Osborne JA, Mullins ME, Jaraki O, Michel T, Singel DJ, Loscalzo J. 1992. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci USA 89(1):444–448.PubMedCrossRefGoogle Scholar
  24. 24.
    Luchsinger BP, Rich EN, Gow AJ, Williams EM, Stamler JS, Singel DJ. 2003. Routes to S-nitroso-hemoglobin formation with heme redox and preferential reactivity in the beta subunits. Proc Natl Acad Sci USA 100(2):461–466.PubMedCrossRefGoogle Scholar
  25. 25.
    Luchsinger BP, Rich EN, Yan Y, Williams EM, Stamler JS, Singel DJ. 2005. Assessments of the chemistry and vasodilatory activity of nitrite with hemoglobin under physiologically relevant conditions. J Inorg Biochem 99(4):912–921.PubMedCrossRefGoogle Scholar
  26. 26.
    Bates JN, Harrison DG, Myers PR, Minor RL. 1991. EDRF: nitrosylated compound or authentic nitric oxide. Basic Res Cardiol 86(Suppl 2):17–26.PubMedGoogle Scholar
  27. 27.
    Myers PR, Minor Jr RL, Guerra Jr R, Bates JN, Harrison DG. 1990. Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble Snitrosocysteine than nitric oxide. Nature 345(6271):161–163.PubMedCrossRefGoogle Scholar
  28. 28.
    Gaston B, Drazen JM, Jansen A, Sugarbaker DA, Loscalzo J, Richards W, Stamler JS. 1994. Relaxation of human bronchial smooth muscle by S-nitrosothiols in vitro. J Pharmacol Exp Ther 268(2):978–984.PubMedGoogle Scholar
  29. 29.
    Foster MW, McMahon TJ, Stamler JS. 2003. S-nitrosylation in health and disease. Trends Mol Med 9(4):160–168.PubMedCrossRefGoogle Scholar
  30. 30.
    Stamler JS. 1995. S-nitrosothiols and the bioregulatory actions of nitrogen oxides through reactions with thiol groups. Curr Top Microbiol Immunol 196:19–36.PubMedGoogle Scholar
  31. 31.
    Jackson WF. 1987. Arteriolar oxygen reactivity: where is the sensor? Am J Physiol 253(5 Pt 2):H1120–H1126.PubMedGoogle Scholar
  32. 32.
    Gonzalez-Alonso J, Richardson RS, Saltin B. 2001. Exercising skeletal muscle blood flow in humans responds to reduction in arterial oxyhaemoglobin, but not to altered free oxygen. J Physiol 530(Pt 2):331–341.PubMedCrossRefGoogle Scholar
  33. 33.
    Gorczynski RJ, Duling BR. 1978. Role of oxygen in arteriolar functional vasodilation in hamster striated muscle. Am J Physiol 235(5):H505–H515.PubMedGoogle Scholar
  34. 34.
    Duling BR, Berne RM. 1970. Longitudinal gradients in periarteriolar oxygen tension: a possible mechanism for the participation of oxygen in local regulation of blood flow. Circ Res 27(5):669–678.PubMedGoogle Scholar
  35. 35.
    Guyton AC, Ross JM, Carrier Jr O, Walker JR. 1964. Evidence for tissue oxygen demand as the major factor causing autoregulation. Circ Res 15(Suppl):60–69.PubMedGoogle Scholar
  36. 36.
    Ferranti P, Malorni A, Mamone G, Sannolo N, Marino G. 1997. Characterisation of Snitrosohaemoglobin by mass spectrometry. FEBS Lett 400(1):19–24.PubMedCrossRefGoogle Scholar
  37. 37.
    Chan NL, Rogers PH, Arnone A. 1998. Crystal structure of the S-nitroso form of liganded human hemoglobin. Biochemistry 37(47):16459–16464.PubMedCrossRefGoogle Scholar
  38. 38.
    Chan NL, Kavanaugh JS, Rogers PH, Arnone A. 2004. Crystallographic analysis of the interaction of nitric oxide with quaternary-T human hemoglobin. Biochemistry 43(1):118–132.PubMedCrossRefGoogle Scholar
  39. 39.
    Stamler JS, Jia L, Eu JP, McMahon TJ, Demchenko IT, Bonaventura J, Gernert K, Piantadosi CA. 1997. Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science 276(5321):2034–2037.PubMedCrossRefGoogle Scholar
  40. 40.
    McMahon TJ, Moon RE, Luchsinger BP, Carraway MS, Stone AE, Stolp BW, Gow AJ, Pawloski JR, Watke P, Singel DJ, Piantadosi CA, Stamler JS. 2002. Nitric oxide in the human respiratory cycle. Nat Med 8(7):711–717.PubMedGoogle Scholar
  41. 41.
    Imai K. 1982. Allosteric eflects in haemoglobin. Cambridge: Cambridge UP.Google Scholar
  42. 42.
    Kosaka H, Sawai Y, Sakaguchi H, Kumura E, Harada N, Watanabe M, Shiga T. 1994. ESR spectral transition by arteriovenous cycle in nitric oxide hemoglobin of cytokinetreated rats. Am J Physiol 266(5 Pt 1):C1400–C1405.PubMedGoogle Scholar
  43. 43.
    McMahon TJ, Stamler JS. 1999. Concerted nitric oxide/oxygen delivery by hemoglobin. Methods Enzymol 301:99–114.PubMedCrossRefGoogle Scholar
  44. 44.
    Gow AJ, Singel D. 2006. NO, SNO, and hemoglobin: Lessons in complexity. Blood 108(9):3224–3225; author reply 3226–3227.PubMedCrossRefGoogle Scholar
  45. 45.
    Taketa F, Antholine WE, Chen JY. 1978. Chain nonequivalence in binding of nitric oxide to hemoglobin. J Biol Chem 253(15):5448–5451.PubMedGoogle Scholar
  46. 46.
    Yonetani T, Tsuneshige A, Zhou Y, Chen X. 1998. Electron paramagnetic resonance and oxygen binding studies of alpha-nitrosyl hemoglobin: a novel oxygen carrier having NO-assisted allosteric functions. J Biol Chem 273(32):20323–20333.PubMedCrossRefGoogle Scholar
  47. 47.
    Jaszewski AR, Fann YC, Chen YR, Sato K, Corbett J, Mason RP. 2003. EPR spectroscopy studies on the structural transition of nitrosyl hemoglobin in the arterial-venous cycle of DEANO-treated rats as it relates to the proposed nitrosyl hemoglobin/ nitrosothiol hemoglobin exchange. Free Radic Biol Med 35(4):444–451.PubMedCrossRefGoogle Scholar
  48. 48.
    Luchsinger BP. 2004. Chemical interaction of nitric oxide and human hemoglobin. PhD dissertation, Montana State University, Bozeman.Google Scholar
  49. 49.
    Gow AJ, Luchsinger BP, Pawloski JR, Singel DJ, Stamler JS. 1999. The oxyhemoglobin reaction of nitric oxide [see comments]. Proc Natl Acad Sci USA 96(16):9027–9032.PubMedCrossRefGoogle Scholar
  50. 50.
    Gow AJ, Stamler JS. 1998. Reactions between nitric oxide and haemoglobin under physiological conditions. Nature 391(6663):169–173.PubMedCrossRefGoogle Scholar
  51. 51.
    Herold S, Rock G. 2003. Reactions of deoxy-, oxy-, and methemoglobin with nitrogen monoxide: mechanistic studies of the S-nitrosothiol formation under different mixing conditions. J Biol Chem 278(9):6623–6634.PubMedCrossRefGoogle Scholar
  52. 52.
    Angelo RM, Singel DJ, Stamler JS. 2006. An S-nitrosothiol (SNO) synthase function of hemoglobin that employs nitrite as a substrate. Proc Natl Acad Sci USA 103(22):8366–8371.PubMedCrossRefGoogle Scholar
  53. 53.
    Weinberg JB, Gilkeson GS, Mason RP, Chamulitrat W. 1998. Nitrosylation of blood hemoglobin and renal nonheme proteins in autoimmune MRL-lpr/lpr mice. Free Radic Biol Med 24(1):191–196.PubMedCrossRefGoogle Scholar
  54. 54.
    Piknova B, Gladwin MT, Schechter AN, Hogg N. 2005. Electron paramagnetic resonance analysis of nitrosylhemoglobin in humans during NO inhalation. J Biol Chem 280(49):40583–40588.PubMedCrossRefGoogle Scholar
  55. 55.
    Kirima K, Tsuchiya K, Sei H, Hasegawa T, Shikishima M, Motobayashi Y, Morita K, Yoshizumi M, Tamaki T. 2003. Evaluation of systemic blood NO dynamics by EPR spectroscopy: HbNO as an endogenous index of NO. Am J Physiol Heart Circ Physiol 285(2):H589–H596.PubMedGoogle Scholar
  56. 56.
    Tsuchiya K, Kanematsu Y, Yoshizumi M, Ohnishi H, Kirima K, Izawa Y, Shikishima M, Ishida T, Kondo S, Kagami S, Takiguchi Y, Tamaki T. 2005. Nitrite is an alternative source of NO in vivo. Am J Physiol Heart Circ Physiol 288(5):H2163–H2170.PubMedCrossRefGoogle Scholar
  57. 57.
    Kon H. 1968. Paramagnetic resonance study of Nitric Oxide hemoglobin. J Biol Chem 243(16):4350–4357.PubMedGoogle Scholar
  58. 58.
    Wayland BB, Olson LW. 1974. Spectroscopic studies and bonding model for nitric oxide complexes of iron porphyrins. J Am Chem Soc 96(19):6037–6041.PubMedCrossRefGoogle Scholar
  59. 59.
    Trittelvitz E, Sick H, Gersonde K. 1972. Conformational isomers of nitrosylhaemoglobin: an electron-spin-resonance study. Eur J Biochem 31(3):578–584.PubMedCrossRefGoogle Scholar
  60. 60.
    Rein H, Ristau O, Scheler W. 1972. On the influence of allosteric effectors on the electron paramagnetic spectrum of nitric oxide hemoglobin. FEBS Lett 24(1):24–26.PubMedCrossRefGoogle Scholar
  61. 61.
    Trittelvitz E, Gersonde K, Winterhalter KH. 1975. Electron-spin resonance of nitrosyl haemoglobins: normal alpha and beta chains and mutants Hb M Iwate and Hb Zurich. Eur J Biochem 51(1):33–42.PubMedCrossRefGoogle Scholar
  62. 62.
    Szabo A, Perutz MF. 1976. Equilibrium between six- and five-coordinated hemes in nitrosylhemoglobin: interpretation of electron spin resonance spectra. Biochemistry 15(20):4427–4428.PubMedCrossRefGoogle Scholar
  63. 63.
    Shulman RG, Ogawa S, Hopfield JJ. 1972. An allosteric model of hemoglobin, II: the assumption of independent binding. Arch Biochem Biophys 151(1):68–74.PubMedCrossRefGoogle Scholar
  64. 64.
    Shiga T, Hwang KJ, Tyuma I. 1968. An electron paramagnetic resonance study of nitric oxide hemoglobin derivatives. Arch Biochem Biophys 123(1):203–205.PubMedCrossRefGoogle Scholar
  65. 65.
    Henry Y, Banerjee R. 1973. Electron paramagnetic studies of nitric oxide haemoglobin derivatives: isolated subunits and nitric oxide hybrids. J Mol Biol 73(4):469–482.PubMedCrossRefGoogle Scholar
  66. 66.
    Nagai K, Hori H, Yoshida S, Sakamoto H, Morimoto H. 1978. The effect of quaternary structure on the state of the alpha and beta subunits within nitrosyl haemoglobin: low temperature photodissociation and the ESR spectra. Biochim Biophys Acta 532(1):17– 28.PubMedGoogle Scholar
  67. 67.
    Henry Y, Cassoly R. 1973. Chain non-equivalence in nitric oxide binding to hemoglobin. Biochem Biophys Res Commun 51(3):659–665.PubMedCrossRefGoogle Scholar
  68. 68.
    Reisberg P, Olson JS, Palmer G. 1976. Kinetic resolution of ligand binding to the alpha and beta chains within human hemoglobin. J Biol Chem 251(14):4379–4383.PubMedGoogle Scholar
  69. 69.
    Hille R, Palmer G, Olson JS. 1977. Chain equivalence in reaction of nitric oxide with hemoglobin. J Biol Chem 252:403–405.PubMedGoogle Scholar
  70. 70.
    Hille R, Olson JS, Palmer G. 1979. Spectral transitions of nitrosyl hemes during ligand binding to hemoglobin. J Biol Chem 254(23):12110–12120.PubMedGoogle Scholar
  71. 71.
    Louro SR, Ribeiro PC, Bemski G. 1981. EPR spectral changes of nitrosyl hemes and their relation to the hemoglobin T-R transition. Biochim Biophys Acta 670(1):56–63.PubMedGoogle Scholar
  72. 72.
    Gow AJ, Luchsinger BP, Pawloski JR, Singel DJ, Stamler JS. 1999. The oxyhemoglobin reaction of nitric oxide. Proc Natl Acad Sci USA 96(16):9027–9032.PubMedCrossRefGoogle Scholar
  73. 73.
    Yonetani T, Yamamoto H, Erman JE, Leigh Jr JS, Reed GH. 1972. Electromagnetic properties of hemoproteins, V: optical and electron paramagnetic resonance characteristics of nitric oxide derivatives of metalloporphyrin–apohemoprotein complexes. J Biol Chem 247(8):2447–2455.PubMedGoogle Scholar
  74. 74.
    Morse RH, Chan SI. 1980. Electron paramagnetic resonance studies of nitrosyl ferrous heme complexes: determination of an equilibrium between two conformations. J Biol Chem 255(16):7876–7882.PubMedGoogle Scholar
  75. 75.
    Wajnberg E, Linhares MP, el-Jaick LJ, Bemski G. 1992. Nitrosyl hemoglobin: EPR components at low temperatures. Eur Biophys J 21(1):57–61.PubMedCrossRefGoogle Scholar
  76. 76.
    Wajnberg E, Bemski G, el-Jaick LJ, Alves OC. 1996. Nitrosyl hemoglobins: EPR above 80 K. Int J Biol Macromol 18(3):231–235.PubMedCrossRefGoogle Scholar
  77. 77.
    Flores M, Wajnberg E, Bemski G. 1997. Temperature dependence of Q-band electron paramagnetic resonance spectra of nitrosyl heme proteins. Biophys J 73(6):3225–3229.PubMedCrossRefGoogle Scholar
  78. 78.
    Hüttermann J, Burgard C, Kappl R. 1994. Proton ENDOR from randomly oriented NOligated haemoglobin: approaching the structural basis for the R-T transition. J Chem Soc Faraday Trans 90:3077–3087.CrossRefGoogle Scholar
  79. 79.
    Perrella M, Di Cera E. 1999. CO ligation intermediates and the mechanism of hemoglobin cooperativity. J Biol Chem 274(5):2605–2608.PubMedCrossRefGoogle Scholar
  80. 80.
    Kon H. 1975. An interpretation of the three line EPR spectrum of nitric oxide hemeproteins and related model systems: the effect of the heme environment. Biochim Biophys Acta 379(1):103–113.PubMedGoogle Scholar
  81. 81.
    Huang Z, Louderback JG, Goyal M, Azizi F, King SB, Kim-Shapiro DB. 2001. Nitric oxide binding to oxygenated hemoglobin under physiological conditions. Biochim Biophys Acta 1568(3):252–260.PubMedGoogle Scholar
  82. 82.
    Kruszyna R, Kruszyna H, Smith RP, Thron CD, Wilcox DE. 1987. Nitrite conversion to nitric oxide in red cells and its stabilization as a nitrosylated valency hybrid of hemoglobin. J Pharmacol Exp Ther 241(1):307–313.PubMedGoogle Scholar
  83. 83.
    Schwartz DA, Walter ED, McIlwain SJ, Krymov VN, Singel DJ. 1999. High-frequency (94.9 GHz) EPR spectroscopy of paramagnetic centers in a neutron-irradiated sapphire single-crystal fiber. Appl Magn Reson 16(2):223–236.CrossRefGoogle Scholar
  84. 84.
    Romeo AA, Filosa A, Capobianco JA, English AM. 2001. Metal chelators inhibit Snitrosation of Cys beta 93 in oxyhemoglobin. J Am Chem Soc 123(8):1782–1783.PubMedCrossRefGoogle Scholar
  85. 85.
    Romeo AA, Capobianco JA, English AM. 2003. Superoxide dismutase targets NO from GSNO to Cysbeta93 of oxyhemoglobin in concentrated but not dilute solutions of the protein. J Am Chem Soc 125(47):14370–14378.PubMedCrossRefGoogle Scholar
  86. 86.
    Pezacki JP, Ship NJ, Kluger R. 2001. Release of nitric oxide from Snitrosohemoglobin: electron transfer as a response to deoxygenation. J Am Chem Soc 123(19):4615–4616.PubMedCrossRefGoogle Scholar
  87. 87.
    Ship N, Pezacki JP, Kluger R. 2003. Rates of release of nitric oxide from HbSNO and internal electron transfer. Bioorg Chem 31(1):3–10.PubMedCrossRefGoogle Scholar
  88. 88.
    Freitas TA, Hou S, Dioum EM, Saito JA, Newhouse J, Gonzalez G, Gilles-Gonzalez MA, Alam M. 2004. Ancestral hemoglobins in Archaea. Proc Natl Acad Sci USA 101(17):6675–6680.PubMedCrossRefGoogle Scholar
  89. 89.
    Vinogradov SN, Hoogewijs D, Bailly X, Arredondo-Peter R, Guertin M, Gough J, Dewilde S, Moens L, Vanfleteren JR. 2005. Three globin lineages belonging to two structural classes in genomes from the three kingdoms of life. Proc Natl Acad Sci USA 102(32):11385–11389.PubMedCrossRefGoogle Scholar
  90. 90.
    Hausladen A, Gow A, Stamler JS. 2001. Flavohemoglobin denitrosylase catalyzes the reaction of a nitroxyl equivalent with molecular oxygen. Proc Natl Acad Sci USA 98(18):10108–10112.PubMedCrossRefGoogle Scholar
  91. 91.
    Liu L, Zeng M, Hausladen A, Heitman J, Stamler JS. 2000. Protection from nitrosative stress by yeast flavohemoglobin. Proc Natl Acad Sci USA 97(9):4672–4676.PubMedCrossRefGoogle Scholar
  92. 92.
    Minning DM, Gow AJ, Bonaventura J, Braun R, Dewhirst M, Goldberg DE, Stamler JS. 1999. Ascaris haemoglobin is a nitric oxide-activated "deoxygenase." Nature 401(6752):497–502.PubMedCrossRefGoogle Scholar
  93. 93.
    Perazzolli M, Dominici P, Romero-Puertas MC, Zago E, Zeier J, Sonoda M, Lamb C, Delledonne M. 2004. Arabidopsis nonsymbiotic hemoglobin AHb1 modulates nitric oxide bioactivity. Plant Cell 16(10):2785–2794.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  • Benjamin P. Luchsinger
    • 1
  • Eric D. Walter
    • 1
  • Lisa J. Lee
    • 1
  • Jonathan S. Stamler
    • 2
  • David J. Singel
    • 1
  1. 1.Department of Chemistry and BiochemistryMontana State UniversityBozemanUSA
  2. 2.Department of Biochemistry Department of MedicineDuke University Medical CenterDurhamUSA

Personalised recommendations