Skip to main content

Molecular Biology of West Nile Virus

  • Chapter
West Nile Encephalitis Virus Infection

Abstract

The single-stranded, positive-sense West Nile virus (WNV) RNA genome is about 11 kb in length and encodes a single polyprotein that is processed during and after translation into three structural (C, prM/M, and E) and seven nonstructural (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) proteins. Recently obtained crystal structures of two structural and two nonstructural proteins of WNV provide new insights about the functions of these proteins. Although there are still many questions to be answered, a significant amount of data on the molecular biology of WNV and other flaviviruses has already been obtained. In this chapter, molecular aspects of virion and genome structure, the stages of the viral replication cycle in the cytoplasm of infected cells, viral protein function, conserved genomic elements, host factors involved in viral RNA replication, virus remodeling of cells, host genetic resistance, and virus virulence are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann, M., and Padmanabhan, R. 2001. De novo synthesis of RNA by the dengue virus RNA-dependent RNA polymerase exhibits temperature dependence at the initiation but not elongation phase. J Biol Chem 276:39926–39937.

    PubMed  CAS  Google Scholar 

  • Adams, S. C., Broom, A. K., Sammels, L. M., Hartnett, A. C., Howard, M. J., Coelen, R. J., Mackenzie, J. S., and Hall, R. A. 1995. Glycosylation and antigenic variation among Kunjin virus isolates. Virology 206:49–56.

    PubMed  CAS  Google Scholar 

  • Aleshin, A. E., Shiryaev, S. A., Strongin, A. Y., and Liddington, R. C. 2007. Structural evidence for regulation and specificity of flaviviral proteases and evolution of the Flaviviridae fold. Protein Sci 16:795–806.

    PubMed  CAS  Google Scholar 

  • Allison, S. L., Schalich, J., Stiasny, K., Mandl, C. W., Kunz, C., and Heinz, F. X. 1995. Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH. J Virol 69:695–700.

    PubMed  CAS  Google Scholar 

  • Allison, S. L., Tao, Y. J., O'Riordain, G., Mandl, C. W., Harrison, S. C., and Heinz, F. X. 2003. Two distinct size classes of immature and mature subviral particles from tick-borne encephalitis virus. J Virol 77:11357–11366.

    PubMed  CAS  Google Scholar 

  • Alvarez, D. E., Lodeiro, M. F., Luduena, S. J., Pietrasanta, L. I., and Gamarnik, A. V. 2005. Longrange RNA-RNA interactions circularize the dengue virus genome. J Virol 79:6631–6643.

    PubMed  CAS  Google Scholar 

  • Bazan, J. F., and Fletterick, R. J. 1989. Detection of a trypsin-like serine protease domain in flaviviruses and pestiviruses. Virology 171:637–639.

    PubMed  CAS  Google Scholar 

  • Beasley, D. W., Li, L., Suderman, M. T., and Barrett, A. D. 2001. West Nile virus strains differ in mouse neurovirulence and binding to mouse or human brain membrane receptor preparations. Ann NY Acad Sci 951:332–335.

    PubMed  CAS  Google Scholar 

  • Beasley, D. W., Li, L., Suderman, M. T., and Barrett, A. D. 2002. Mouse neuroinvasive phenotype of West Nile virus strains varies depending upon virus genotype. Virology 296:17–23.

    PubMed  CAS  Google Scholar 

  • Beasley, D. W., Whiteman, M. C., Zhang, S., Huang, C. Y., Schneider, B. S., Smith, D. R., Gromowski, G. D., Higgs, S., Kinney, R. M., and Barrett, A. D. 2005. Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. J Virol 79:8339–8347.

    PubMed  CAS  Google Scholar 

  • Benarroch, D., Egloff, M. P., Mulard, L., Guerreiro, C., Romette, J. L., and Canard, B. 2004a. A structural basis for the inhibition of the NS5 dengue virus mRNA 2′-O-methyltransferase domain by ribavirin 5′-triphosphate. J Biol Chem 279:35638–35643.

    CAS  Google Scholar 

  • Benarroch, D., Selisko, B., Locatelli, G. A., Maga, G., Romette, J. L., and Canard, B. 2004b. The RNA helicase, nucleotide 5′-triphosphatase, and RNA 5 -triphosphatase activities of Dengue virus protein NS3 are Mg2+-dependent and require a functional Walker B motif in the helicase catalytic core. Virology 328:208–218.

    CAS  Google Scholar 

  • Berthet, F. X., Zeller, H. G., Drouet, M. T., Rauzier, J., Digoutte, J. P., and Deubel, V. 1997. Extensive nucleotide changes and deletions within the envelope glycoprotein gene of Euro-African West Nile viruses. J Gen Virol 78 (Pt 9):2293–2297.

    PubMed  CAS  Google Scholar 

  • Best, S. M., Morris, K. L., Shannon, J. G., Robertson, S. J., Mitzel, D. N., Park, G. S., Boer, E., Wolfinbarger, J. B., and Bloom, M. E. 2005. Inhibition of interferon-stimulated JAK-STAT signaling by a tick-borne flavivirus and identification of NS5 as an interferon antagonist. J Virol 79:12828–12839.

    PubMed  CAS  Google Scholar 

  • Blackwell, J. L., and Brinton, M. A. 1995. BHK cell proteins that bind to the 3′ stem-loop structure of the West Nile virus genome RNA. J Virol 69:5650–5658.

    PubMed  CAS  Google Scholar 

  • Blackwell, J. L., and Brinton, M. A. 1997. Translation elongation factor-1 alpha interacts with the 3 stem-loop region of West Nile virus genomic RNA. J Virol 71:6433–6444.

    PubMed  CAS  Google Scholar 

  • Blitvich, B. J., Scanlon, D., Shiell, B. J., Mackenzie, J. S., and Hall, R. A. 1999. Identification and analysis of truncated and elongated species of the flavivirus NS1 protein. Virus Res 60:67–79.

    PubMed  CAS  Google Scholar 

  • Blitvich, B. J., Scanlon, D., Shiell, B. J., Mackenzie, J. S., Pham, K., and Hall, R. A. 2001. Determination of the intramolecular disulfide bond arrangement and biochemical identification of the glycosylation sites of the nonstructural protein NS1 of Murray Valley encephalitis virus. J Gen Virol 82:2251–2256.

    PubMed  CAS  Google Scholar 

  • Borisevich, V., Seregin, A., Nistler, R., Mutabazi, D., and Yamshchikov, V. 2006. Biological properties of chimeric West Nile viruses. Virology 349:371–381.

    PubMed  CAS  Google Scholar 

  • Brault, A. C., Huang, C. Y., Langevin, S. A., Kinney, R. M., Bowen, R. A., Ramey, W. N., Panella, N. A., Holmes, E. C., Powers, A. M., and Miller, B. R. 2007. A single positively selected West Nile viral mutation confers increased virogenesis in American crows. Nat Genet 39:1162–1166.

    PubMed  CAS  Google Scholar 

  • Brinton, M. A. 1986. Replication of flaviviruses. In Togaviridae and Flaviviridae, The viruses. (Schlesinger, S. and Schlesinger, M., eds.), Plenum, New York. 329–376.

    Google Scholar 

  • Brinton, M. A., and Dispoto, J. H. 1988. Sequence and secondary structure analysis of the 5′-terminal region of flavivirus genome RNA. Virology 162:290–299.

    PubMed  CAS  Google Scholar 

  • Brinton, M. A., and Perelygin, A. A. 2003. Genetic resistance to flaviviruses. Adv Virus Res 60:43–85.

    PubMed  CAS  Google Scholar 

  • Brinton, M. A., Fernandez, A. V., and Dispoto, J. H. 1986. The 3′-nucleotides of flavivirus genomic RNA form a conserved secondary structure. Virology 153:113–121.

    PubMed  CAS  Google Scholar 

  • Brooks, A. J., Johansson, M., John, A. V., Xu, Y., Jans, D. A., and Vasudevan, S. G. 2002. The interdomain region of dengue NS5 protein that binds to the viral helicase NS3 contains independently functional importin beta 1 and importin alpha/beta-recognized nuclear localization signals. J Biol Chem 277:36399–36407.

    PubMed  Google Scholar 

  • Cahour, A., Pletnev, A., Vazielle-Falcoz, M., Rosen, L., and Lai, C. J. 1995. Growth-restricted dengue virus mutants containing deletions in the 5′ noncoding region of the RNA genome. Virology 207:68–76.

    PubMed  CAS  Google Scholar 

  • Chambers, T. J., McCourt, D. W., and Rice, C. M. 1990. Production of yellow fever virus proteins in infected cells: identification of discrete polyprotein species and analysis of cleavage kinetics using region-specific polyclonal antisera. Virology 177:159–174.

    PubMed  CAS  Google Scholar 

  • Chen, C. J., Kuo, M. D., Chien, L. J., Hsu, S. L., Wang, Y. M., and Lin, J. H. 1997. RNA-protein interactions: involvement of NS3, NS5, and 3′ noncoding regions of Japanese encephalitis virus genomic RNA. J Virol 71:3466–3473.

    PubMed  CAS  Google Scholar 

  • Chen, Y. C., Wang, S. Y., and King, C. C. 1999. Bacterial lipopolysaccharide inhibits dengue virus infection of primary human monocytes/macrophages by blockade of virus entry via a CD14-dependent mechanism. J Virol 73:2650–2657.

    PubMed  CAS  Google Scholar 

  • Chu, J. J., and Ng, M. L. 2004. Infectious entry of West Nile virus occurs through a clathrin-mediated endocytic pathway. J Virol 78:10543–10555.

    PubMed  CAS  Google Scholar 

  • Chu, P. W., and Westaway, E. G. 1987. Characterization of Kunjin virus RNA-dependent RNA polymerase: reinitiation of synthesis in vitro. Virology 157:330–337.

    PubMed  CAS  Google Scholar 

  • Chu, P. W., and Westaway, E. G. 1992. Molecular and ultrastructural analysis of heavy membrane fractions associated with the replication of Kunjin virus RNA. Arch Virol 125:177–191.

    PubMed  CAS  Google Scholar 

  • Chu, J. J., Leong, P. W., and Ng, M. L. 2006. Analysis of the endocytic pathway mediating the infectious entry of mosquito-borne flavivirus West Nile into Aedes albopictus mosquito (C6/36) cells. Virology 349:463–475.

    PubMed  CAS  Google Scholar 

  • Chua, J. J., Bhuvanakantham, R., Chow, V. T., and Ng, M. L. 2005. Recombinant non-structural 1 (NS1) protein of dengue-2 virus interacts with human STAT3beta protein. Virus Res 112:85–94.

    PubMed  CAS  Google Scholar 

  • Chung, K. M., Liszewski, M. K., Nybakken, G., Davis, A. E., Townsend, R. R., Fremont, D. H., Atkinson, J. P., and Diamond, M. S. 2006. West Nile virus nonstructural protein NS1 inhibits complement activation by binding the regulatory protein factor H. Proc Natl Acad Sci USA 103:19111–19116.

    PubMed  CAS  Google Scholar 

  • Cleaves, G. R., and Dubin, D. T. 1979. Methylation status of intracellular dengue type 2 40 S RNA. Virology 96:159–165.

    PubMed  CAS  Google Scholar 

  • Cleaves, G. R., Ryan, T. E., and Schlesinger, R. W. 1981. Identification and characterization of type 2 dengue virus replicative intermediate and replicative form RNAs. Virology 111:73–83.

    PubMed  CAS  Google Scholar 

  • Cok, S. J., Acton, S. J., Sexton, A. E., and Morrison, A. R. 2004. Identification of RNA-binding proteins in RAW 264.7 cells that recognize a lipopolysaccharide-responsive element in the 3-untranslated region of the murine cyclooxygenase-2 mRNA. J Biol Chem 279: 8196–8205.

    PubMed  CAS  Google Scholar 

  • Cui, T., Sugrue, R. J., Xu, Q., Lee, A. K., Chan, Y. C., and Fu, J. 1998. Recombinant dengue virus type 1 NS3 protein exhibits specific viral RNA binding and NTPase activity regulated by the NS5 protein. Virology 246:409–417.

    PubMed  CAS  Google Scholar 

  • Davis, C. W., Nguyen, H. Y., Hanna, S. L., Sanchez, M. D., Doms, R. W., and Pierson, T. C. 2006. West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection. J Virol 80:1290–1301.

    PubMed  CAS  Google Scholar 

  • Davis, W. G., Blackwell, J. L., Shi, P. Y., and Brinton, M. A. 2007a. Interaction between the cellular protein eEF1A and the 3′-terminal stem-loop of West Nile virus genomic RNA facilitates viral minus-strand RNA synthesis. J Virol 81:10172–10187.

    CAS  Google Scholar 

  • Davis, C. T., Galbraith, S. E., Zhang, S., Whiteman, M. C., Li, L., Kinney, R. M., and Barrett, A.D. 2007b. A combination of naturally occurring mutations in North American West Nile virus nonstructural protein genes and in the 3′ untranslated region alters virus phenotype. J. Virol. 81:6111–6116.

    CAS  Google Scholar 

  • Dember, L. M., Kim, N. D., Liu, K. Q., and Anderson, P. 1996. Individual RNA recognition motifs of TIA-1 and TIAR have different RNA binding specificities. J Biol Chem 271:2783–2788.

    PubMed  CAS  Google Scholar 

  • De Nova-Ocampo, M., Villegas-Sepulveda, N., and del Angel, R. M. 2002. Translation Elongation Factor-1[alpha], La, and PTB Interact with the 3′ Untranslated Region of Dengue 4 Virus RNA. Virology 295:337–347.

    PubMed  Google Scholar 

  • Dixon, D. A., Balch, G. C., Kedersha, N., Anderson, P., Zimmerman, G. A., Beauchamp, R. D., and Prescott, S. M. 2003. Regulation of cyclooxygenase-2 expression by the translational silencer TIA-1. J Exp Med 198:475–481.

    PubMed  CAS  Google Scholar 

  • Dokland, T., Walsh, M., Mackenzie, J. M., Khromykh, A. A., Ee, K. H., and Wang, S. 2004. West Nile virus core protein; tetramer structure and ribbon formation. Structure 12:1157–1163.

    PubMed  CAS  Google Scholar 

  • Dong, H., Ray, D., Ren, S., Zhang, B., Puig-Basagoiti, F., Takagi, Y., Ho, C. K., Li, H., and Shi, P. Y. 2007. Distinct RNA elements confer specificity to flavivirus RNA cap methylation events. J Virol 81:4412–4421.

    PubMed  CAS  Google Scholar 

  • Egloff, M. P., Benarroch, D., Selisko, B., Romette, J. L., and Canard, B. 2002. An RNA cap (nucleoside-2′-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J 21:2757–2768.

    PubMed  CAS  Google Scholar 

  • Egloff, M. P., Decroly, E., Malet, H., Selisko, B., Benarroch, D., Ferron, F., and Canard, B. 2007. Structural and functional analysis of methylation and 5 -RNA sequence requirements of short capped RNAs by the methyltransferase domain of dengue virus NS5. J Mol Biol 372:723–736.

    PubMed  CAS  Google Scholar 

  • Elghonemy, S., Davis, W. G., and Brinton, M. A. 2005. The majority of the nucleotides in the top loop of the genomic 3′ terminal stem loop structure are cis-acting in a West Nile virus infectious clone. Virology 331:238–246.

    PubMed  CAS  Google Scholar 

  • Emara, M. M., and Brinton, M. A. 2007. Interaction of TIA-1/TIAR with West Nile and dengue virus products in infected cells interferes with stress granule formation and processing body assembly. Proc Natl Acad Sci USA 104:9041–9046.

    PubMed  CAS  Google Scholar 

  • Emara, M. M., and Brinton, M. A. 2008. Mutation of mapped TIA-1/TIAR binding sites within the West Nile virus 3′ terminal minus-strand RNA sequence in an infectious clone negatively affects viral plus-strand synthesis. J Virol, in press.

    Google Scholar 

  • Erbel, P., Schiering, N., D'Arcy, A., Renatus, M., Kroemer, M., Lim, S. P., Yin, Z., Keller, T. H., Vasudevan, S. G., and Hommel, U. 2006. Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nat Struct Mol Biol 13:372–373.

    PubMed  CAS  Google Scholar 

  • Falgout, B., and Markoff, L. 1995. Evidence that flavivirus NS1-NS2A cleavage is mediated by a membrane-bound host protease in the endoplasmic reticulum. J Virol 69:7232–7243.

    PubMed  CAS  Google Scholar 

  • Falgout, B., Chanock, R., and Lai, C. J. 1989. Proper processing of dengue virus nonstructural glycoprotein NS1 requires the N-terminal hydrophobic signal sequence and the downstream nonstructural protein NS2a. J Virol 63:1852–1860.

    PubMed  CAS  Google Scholar 

  • Ferron, F., Bussetta, C., Dutartre, H., and Canard, B. 2005. The modeled structure of the RNA dependent RNA polymerase of GBV-C virus suggests a role for motif E in Flaviviridae RNA polymerases. BMC Bioinformatics 6: 255.

    PubMed  Google Scholar 

  • Flamand, M., Megret, F., Mathieu, M., Lepault, J., Rey, F. A., and Deubel, V. 1999. Dengue virus type 1 nonstructural glycoprotein NS1 is secreted from mammalian cells as a soluble hexamer in a glycosylation-dependent fashion. J Virol 73:6104–6110.

    PubMed  CAS  Google Scholar 

  • Frick, D. N., Banik, S., and Rypma, R. S. 2007. Role of divalent metal cations in ATP hydrolysis catalyzed by the hepatitis C virus NS3 helicase: magnesium provides a bridge for ATP to fuel unwinding. J Mol Biol 365:1017–1032.

    PubMed  CAS  Google Scholar 

  • Glass, W. G., McDermott, D. H., Lim, J. K., Lekhong, S., Yu, S. F., Frank, W. A., Pape, J., Cheshier, R. C., and Murphy, P. M. 2006. CCR5 deficiency increases risk of symptomatic West Nile virus infection. J Exp Med 203:35–40.

    PubMed  CAS  Google Scholar 

  • Gorbalenya, A. E., Donchenko, A. P., Koonin, E. V., and Blinov, V. M. 1989a. N-terminal domains of putative helicases of flavi- and pestiviruses may be serine proteases. Nucleic Acids Res 17:3889–3897.

    CAS  Google Scholar 

  • Gorbalenya, A. E., Koonin, E. V., Donchenko, A. P., and Blinov, V. M. 1989b. Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res 17:4713–4730.

    CAS  Google Scholar 

  • Gould, E. A., Buckley, A., Barrett, A. D., and Cammack, N. 1986. Neutralizing (54 K) and non-neutralizing (54 K and 48 K) monoclonal antibodies against structural and non-structural yellow fever virus proteins confer immunity in mice. J Gen Virol 67 (Pt 3):591–595.

    PubMed  CAS  Google Scholar 

  • Gritsun, T. S., and Gould, E. A. 2007a. Origin and evolution of flavivirus 5′UTRσ and panhandles: trans-terminal duplications? Virology 366:8–15.

    CAS  Google Scholar 

  • Gritsun, T. S., and Gould, E. A. 2007b. Direct repeats in the flavivirus 3′ untranslated region; a strategy for survival in the environment? Virology 358:258–265.

    CAS  Google Scholar 

  • Grun, J. B., and Brinton, M. A. 1986. Characterization of West Nile virus RNA-dependent RNA polymerase and cellular terminal adenylyl and uridylyl transferases in cell-free extracts. J Virol 60:1113–1124.

    PubMed  CAS  Google Scholar 

  • Grun, J. B., and Brinton, M. A. 1987. Dissociation of NS5 from cell fractions containing West Nile virus-specific polymerase activity. J Virol 61:3641–3644.

    PubMed  CAS  Google Scholar 

  • Grun, J. B., and Brinton, M. A. 1988. Separation of functional West Nile virus replication complexes from intracellular membrane fragments. J Gen Virol 69 (Pt 12):3121–3127.

    PubMed  CAS  Google Scholar 

  • Gu, B., Liu, C., Lin-Goerke, J., Maley, D. R., Gutshall, L. L., Feltenberger, C. A., and Del Vecchio, A. M. 2000. The RNA helicase and nucleotide triphosphatase activities of the bovine viral diarrhea virus NS3 protein are essential for viral replication. J Virol 74:1794–1800.

    PubMed  CAS  Google Scholar 

  • Gubler, D. J., Kuno, G., and Markoff, J. 2007. Flaviviruses. Pp. 1153–1252 inP. M. H. David M Knipe, ed. Fields Virology. Lippincott Williams and Wilkins, Philadelphia.

    Google Scholar 

  • Guyatt, K. J., Westaway, E. G., and Khromykh, A. A. 2001. Expression and purification of enzymatically active recombinant RNA-dependent RNA polymerase (NS5) of the flavivirus Kunjin. J Virol Methods 92:37–44.

    PubMed  CAS  Google Scholar 

  • Hahn, C. S., Hahn, Y. S., Rice, C. M., Lee, E., Dalgarno, L., Strauss, E. G., and Strauss, J. H. 1987. Conserved elements in the 3 untranslated region of flavivirus RNAs and potential cyclization sequences. J Mol Biol 198:33–41.

    PubMed  CAS  Google Scholar 

  • Hall, R. A., Khromykh, A. A., Mackenzie, J. M., Scherret, J. H., and Khromykh, T. I. 1999. Loss of dimerisation of the nonstructural protein NS1 of Kunjin virus delays viral replication and reduces virulence in mice, but still allows secretion of NS1. Virology 264:66.

    PubMed  CAS  Google Scholar 

  • Hanley, K. A., Lee, J. J., Blaney, J. E., Jr., Murphy, B. R., and Whitehead, S. S. 2002. Paired charge-to-alanine mutagenesis of dengue virus type 4 NS5 generates mutants with temperature-sensitive, host range, and mouse attenuation phenotypes. J Virol 76:525–531.

    PubMed  CAS  Google Scholar 

  • Hanna, S. L., Pierson, T. C., Sanchez, M. D., Ahmed, A. A., Murtadha, M. M., and Doms, R. W. 2005. N-linked glycosylation of West Nile virus envelope proteins influences particle assembly and infectivity. J Virol 79:13262–13274.

    PubMed  CAS  Google Scholar 

  • Heinz, F. X., and Allison, S. L. 2000. Structures and mechanisms in flavivirus fusion. Adv Virus Res 55:231–269.

    PubMed  CAS  Google Scholar 

  • Heinz, F. X., Auer, G., Stiasny, K., Holzmann, H., Mandl, C., Guirakhoo, F., and Kunz, C. 1994. The interactions of the flavivirus envelope proteins: implications for virus entry and release. Arch Virol Suppl 9:339–348.

    PubMed  CAS  Google Scholar 

  • Heinz, F. X., Purcell, M.S., Gould, E.A., Howard, C.R., Houghton, M. et-al. 2000. Family Flaviviridae. Pp. 860–878 inC. F. MHV Regenmortel, DHL Bishop, E.B Carstens, M K Estes, ed. Virus Taxonomy. Academic Press, San Diego.

    Google Scholar 

  • Hirsch, A. J., Medigeshi, G. R., Meyers, H. L., DeFilippis, V., Fruh, K., Briese, T., Lipkin, W. I., and Nelson, J. A. 2005. The Src family kinase c-Yes is required for maturation of West Nile virus particles. J Virol 79:11943–11951.

    PubMed  CAS  Google Scholar 

  • Hunt, T. A., Urbanowski, M. D., Kalani, K., Law, L.-M. J., Brinton, M. A., and Hobman, T. C. 2007. Interactions between the West Nile virus capsid protein and the host cell-encoded phosphatase inhibitor, I2PP2A. Cell Microbiol 9(11):2756–2766.

    PubMed  CAS  Google Scholar 

  • Ivanyi-Nagy, R., Lavergne, J. P., Gabus, C., Ficheux, D., and Darlix, J. L. 2008. RNA chaperoning and intrinsic disorder in the core proteins of Flaviviridae. Nucleic Acids Res 36(3):712–725.

    PubMed  CAS  Google Scholar 

  • Jacobs, M. G., Robinson, P. J., Bletchly, C., Mackenzie, J. M., and Young, P. R. 2000. Dengue virus nonstructural protein 1 is expressed in a glycosyl-phosphatidylinositol-linked form that is capable of signal transduction. FASEB J 14:1603–1610.

    PubMed  CAS  Google Scholar 

  • Jia, X. Y., Briese, T., Jordan, I., Rambaut, A., Chi, H. C., Mackenzie, J. S., Hall, R. A., Scherret, J., and Lipkin, W. I. 1999. Genetic analysis of West Nile New York 1999 encephalitis virus. Lancet 354:1971–1972.

    PubMed  CAS  Google Scholar 

  • Jia, Y., Moudy, R. M., Dupuis, A. P., 2nd, Ngo, K. A., Maffei, J. G., Jerzak, G. V., Franke, M. A., Kauffman, E. B., and Kramer, L. D. 2007. Characterization of a small plaque variant of West Nile virus isolated in New York in 2000. Virology 367:339–347.

    PubMed  CAS  Google Scholar 

  • Jindadamrongwech, S., Thepparit, C., and Smith, D. R. 2004. Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2. Arch Virol 149:915–927.

    PubMed  CAS  Google Scholar 

  • Johansson, M., Brooks, A. J., Jans, D. A., and Vasudevan, S. G. 2001. A small region of the dengue virus-encoded RNA-dependent RNA polymerase, NS5, confers interaction with both the nuclear transport receptor importin-beta and the viral helicase, NS3. J Gen Virol 82:735–745.

    PubMed  CAS  Google Scholar 

  • Jones, C. T., Ma, L., Burgner, J. W., Groesch, T. D., Post, C. B., and Kuhn, R. J. 2003. Flavivirus capsid is a dimeric alpha-helical protein. J Virol 77:7143–7149.

    PubMed  CAS  Google Scholar 

  • Kakuta, S., Shibata, S., and Iwakura, Y. 2002. Genomic structure of the mouse 2′,5′-oligoadenylate synthetase gene family. J Interferon Cytokine Res 22:981– 993.

    PubMed  CAS  Google Scholar 

  • Kamer, G., and Argos, P. 1984. Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Res 12:7269–7282.

    PubMed  CAS  Google Scholar 

  • Kapoor, M., Zhang, L., Ramachandra, M., Kusukawa, J., Ebner, K. E., and Padmanabhan, R. 1995. Association between NS3 and NS5 proteins of dengue virus type 2 in the putative RNA replicase is linked to differential phosphorylation of NS5. J Biol Chem 270:19100–19106.

    PubMed  CAS  Google Scholar 

  • Khromykh, A. A., and Westaway, E. G. 1996. RNA binding properties of core protein of the flavivirus Kunjin. Arch Virol 141:685–699.

    PubMed  CAS  Google Scholar 

  • Khromykh, A. A., Kenney, M. T., and Westaway, E. G. 1998. trans-Complementation of flavivirus RNA polymerase gene NS5 by using Kunjin virus replicon-expressing BHK cells. J Virol 72:7270–7279.

    PubMed  CAS  Google Scholar 

  • Khromykh, A. A., Sedlak, P. L., Guyatt, K. J., Hall, R. A., and Westaway, E. G. 1999a. Efficient trans-complementation of the flavivirus kunjin NS5 protein but not of the NS1 protein requires its coexpression with other components of the viral replicase. J Virol 73:10272–10280.

    CAS  Google Scholar 

  • Khromykh, A. A., Sedlak, P. L., and Westaway, E. G. 1999b. trans-Complementation analysis of the flavivirus Kunjin ns5 gene reveals an essential role for translation of its N-terminal half in RNA replication. J Virol 73:9247–9255.

    CAS  Google Scholar 

  • Khromykh, A. A., Sedlak, P. L., and Westaway, E. G. 2000. cis- and trans-acting elements in flavivirus RNA replication. J Virol 74:3253–3263.

    PubMed  CAS  Google Scholar 

  • Khromykh, A. A., Meka, H., Guyatt, K. J., and Westaway, E. G. 2001a. Essential role of cyclization sequences in flavivirus RNA replication. J Virol 75:6719–6728.

    CAS  Google Scholar 

  • Khromykh, A. A., Varnavski, A. N., Sedlak, P. L., and Westaway, E. G. 2001b. Coupling between replication and packaging of flavivirus RNA: evidence derived from the use of DNA-based full-length cDNA clones of Kunjin virus. J Virol 75:4633–4640.

    CAS  Google Scholar 

  • Kiermayr, S., Kofler, R. M., Mandl, C. W., Messner, P., and Heinz, F. X. 2004. Isolation of capsid protein dimers from the tick-borne encephalitis flavivirus and in vitro assembly of capsid-like particles. J Virol 78:8078–8084.

    PubMed  CAS  Google Scholar 

  • Kim, S. M., and Jeong, Y. S. 2006. Polypyrimidine tract-binding protein interacts with the 3′ stem-loop region of Japanese encephalitis virus negative-strand RNA. Virus Res 115:131–140.

    PubMed  CAS  Google Scholar 

  • Kleinschmidt, M. C., Michaelis, M., Ogbomo, H., Doerr, H. W., and Cinatl, J., Jr. 2007. Inhibition of apoptosis prevents West Nile virus induced cell death. BMC Microbiol 7:49.

    PubMed  Google Scholar 

  • Kofler, R. M., Heinz, F. X., and Mandl, C. W. 2002. Capsid protein C of tick-borne encephalitis virus tolerates large internal deletions and is a favorable target for attenuation of virulence. J Virol 76:3534–3543.

    PubMed  CAS  Google Scholar 

  • Koonin, E. V. 1991. The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J Gen Virol 72 (Pt 9):2197–2206.

    PubMed  Google Scholar 

  • Krishnan, M. N., Sukumaran, B., Pal, U., Agaisse, H., Murray, J. L., Hodge, T. W., and Fikrig, E. 2007. Rab 5 is required for the cellular entry of dengue and West Nile viruses. J Virol 81:4881–4885.

    PubMed  CAS  Google Scholar 

  • Kuhn, R. J., Zhang, W., Rossmann, M. G., Pletnev, S. V., Corver, J., Lenches, E., Jones, C. T., Mukhopadhyay, S., Chipman, P. R., Strauss, E. G., Baker, T. S., and Strauss, J. H. 2002. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108:717–725.

    PubMed  CAS  Google Scholar 

  • Kummerer, B. M., and Rice, C. M. 2002. Mutations in the yellow fever virus nonstructural protein NS2A selectively block production of infectious particles. J Virol 76:4773–4784.

    PubMed  Google Scholar 

  • Lai, M. M. 1998. Cellular factors in the transcription and replication of viral RNA genomes: a parallel to DNA-dependent RNA transcription. Virology 244:1–12.

    PubMed  CAS  Google Scholar 

  • Lai, C. J., Men, R., Pethel, M., and Bray, M. 1992. Infectious RNA transcribed from stably cloned full-length cDNA: Construction of growth-restricted dengue mutants. Pp. 265–270 in R. M. C. F Brown, H. S. Ginsberg, and R. A. Lerner, ed. Vaccines 92. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  • Lanciotti, R. S., Roehrig, J. T., Deubel, V., Smith, J., Parker, M., Steele, K., Crise, B., Volpe, K. E., Crabtree, M. B., Scherret, J. H., Hall, R. A., MacKenzie, J. S., Cropp, C. B., Panigrahy, B., Ostlund, E., Schmitt, B., Malkinson, M., Banet, C., Weissman, J., Komar, N., Savage, H. M., Stone, W., McNamara, T., and Gubler, D. J. 1999. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286:2333–2337.

    PubMed  CAS  Google Scholar 

  • Li, W., Li, Y., Kedersha, N., Anderson, P., Emara, M., Swiderek, K. M., Moreno, G. T., and Brinton, M. A. 2002. Cell proteins TIA-1 and TIAR interact with the 3′ stem-loop of the West Nile virus complementary minus-strand RNA and facilitate virus replication. J Virol 76:11989–12000.

    PubMed  CAS  Google Scholar 

  • Li, J., Bhuvanakantham, R., Howe, J., and Ng, M. L. 2005. Identifying the region influencing the cis-mode of maturation of West Nile (Sarafend) virus using chimeric infectious clones. Biochem Biophys Res Commun 334:714–720.

    PubMed  CAS  Google Scholar 

  • Lindenbach, B. D., and Rice, C. M. 1997. Trans-complementation of yellow fever virus NS1 reveals a role in early RNA replication. J Virol 71:9608–9617.

    PubMed  CAS  Google Scholar 

  • Lindenbach, B. D., and Rice, C. M. 1999. Genetic interaction of flavivirus nonstructural proteins NS1 and NS4A as a determinant of replicase function. J Virol 73:4611–4621.

    PubMed  CAS  Google Scholar 

  • Lindenbach, B. D., Thiel, H. J., and Rice, C. M. 2007. Flaviviridae: The Viruses and Their Replication. Pp. 1101–1152 in D. M. Knipe, and Howley, P. M., ed. Fields Virology. Lippincott Williams and Wilkins, Philadelphia.

    Google Scholar 

  • Liu, W. J., Sedlak, P. L., Kondratieva, N., and Khromykh, A. A. 2002. Complementation analysis of the flavivirus Kunjin NS3 and NS5 proteins defines the minimal regions essential for formation of a replication complex and shows a requirement of NS3 in cis for virus assembly. J Virol 76:10766–10775.

    PubMed  CAS  Google Scholar 

  • Liu, W. J., Chen, H. B., and Khromykh, A. A. 2003. Molecular and functional analyses of Kunjin virus infectious cDNA clones demonstrate the essential roles for NS2A in virus assembly and for a nonconservative residue in NS3 in RNA replication. J Virol 77:7804–7813.

    PubMed  CAS  Google Scholar 

  • Liu, W. J., Chen, H. B., Wang, X. J., Huang, H., and Khromykh, A. A. 2004. Analysis of adaptive mutations in Kunjin virus replicon RNA reveals a novel role for the flavivirus nonstructural protein NS2A in inhibition of beta interferon promoter-driven transcription. J Virol 78:12225–12235.

    PubMed  CAS  Google Scholar 

  • Liu, W. J., Wang, X. J., Clark, D. C., Lobigs, M., Hall, R. A., and Khromykh, A. A. 2006. A single amino acid substitution in the West Nile virus nonstructural protein NS2A disables its ability to inhibit alpha/beta interferon induction and attenuates virus virulence in mice. J Virol 80:2396–2404.

    PubMed  CAS  Google Scholar 

  • Ma, L., Jones, C. T., Groesch, T. D., Kuhn, R. J., and Post, C. B. 2004. Solution structure of dengue virus capsid protein reveals another fold. Proc Natl Acad Sci USA 101:3414–3419.

    PubMed  CAS  Google Scholar 

  • Macdonald, J., Tonry, J., Hall, R. A., Williams, B., Palacios, G., Ashok, M. S., Jabado, O., Clark, D., Tesh, R. B., Briese, T., and Lipkin, W. I. 2005. NS1 protein secretion during the acute phase of West Nile virus infection. J Virol 79:13924–13933.

    PubMed  CAS  Google Scholar 

  • Mackenzie, J. M., Jones, M. K., and Young, P. R. 1996. Immunolocalization of the dengue virus nonstructural glycoprotein NS1 suggests a role in viral RNA replication. Virology 220:232–240.

    PubMed  CAS  Google Scholar 

  • Mackenzie, J. M., Khromykh, A. A., Jones, M. K., and Westaway, E. G. 1998. Subcellular localization and some biochemical properties of the flavivirus Kunjin nonstructural proteins NS2A and NS4A. Virology 245:203–215.

    PubMed  CAS  Google Scholar 

  • Mackenzie, J. M., Kenney, M. T., and Westaway, E. G. 2007a. West Nile virus strain Kunjin NS5 polymerase is a phosphoprotein localized at the cytoplasmic site of viral RNA synthesis. J Gen Virol 88:1163–1168.

    CAS  Google Scholar 

  • Mackenzie, J. M., Khromykh, A. A., and Parton, R. G. 2007b. Cholesterol manipulation by West Nile virus perturbs the cellular immune response. Cell Host Microbe 2:229–239.

    CAS  Google Scholar 

  • Maginnis, M. S., Forrest, J. C., Kopecky-Bromberg, S. A., Dickeson, S. K., Santoro, S. A., Zutter, M. M., Nemerow, G. R., Bergelson, J. M., and Dermody, T. S. 2006. Beta1 integrin mediates internalization of mammalian reovirus. J Virol 80:2760–2770.

    PubMed  CAS  Google Scholar 

  • Malet, H., Egloff, M. P., Selisko, B., Butcher, R. E., Wright, P. J., Roberts, M., Gruez, A., Sulzenbacher, G., Vonrhein, C., Bricogne, G., Mackenzie, J. M., Khromykh, A. A., Davidson, A. D., and Canard, B. 2007. Crystal structure of the RNA polymerase domain of the West Nile virus non-structural protein 5. J Biol Chem 282:10678–10689.

    PubMed  CAS  Google Scholar 

  • Mandl, C. W., Holzmann, H., Meixner, T., Rauscher, S., Stadler, P. F., Allison, S. L., and Heinz, F. X. 1998. Spontaneous and engineered deletions in the 3′ noncoding region of tick-borne encephalitis virus: construction of highly attenuated mutants of a flavivirus. J Virol 72:2132–2140.

    PubMed  CAS  Google Scholar 

  • Mashimo, T., Lucas, M., Simon-Chazottes, D., Frenkiel, M. P., Montagutelli, X., Ceccaldi, P. E., Deubel, V., Guenet, J. L., and Despres, P. 2002. A nonsense mutation in the gene encoding 2′-5′-oligoadenylate synthetase/L1 isoform is associated with West Nile virus susceptibility in laboratory mice. Proc Natl Acad Sci USA 99:11311–11316.

    PubMed  CAS  Google Scholar 

  • Mason, P. W. 1989. Maturation of Japanese encephalitis virus glycoproteins produced by infected mammalian and mosquito cells. Virology 169:354–364.

    PubMed  CAS  Google Scholar 

  • Matusan, A. E., Pryor, M. J., Davidson, A. D., and Wright, P. J. 2001. Mutagenesis of the Dengue virus type 2 NS3 protein within and outside helicase motifs: effects on enzyme activity and virus replication. J Virol 75:9633–9643.

    PubMed  CAS  Google Scholar 

  • Medigeshi, G. R., Hirsh, A. J., Streblow, D. N., Nikolich-Zugich, J., and Nelson, J. A. 2008. West Nile virus entry requires cholesterol-rich membrane microdomains and is independent of alphavbeta3 integrin. J Virol 82:5212–5219.

    PubMed  CAS  Google Scholar 

  • Medigeshi, G. R., Lancaster, A. M., Hirsch, A. J., Briese, T., Lipkin, W. I., Defilippis, V., Fruh, K., Mason, P. W., Nikolich-Zugich, J., and Nelson, J. A. 2007. West Nile virus infection activates the unfolded protein response, leading to CHOP induction and apoptosis. J Virol 81:10849–10860.

    PubMed  CAS  Google Scholar 

  • Medin, C. L., Fitzgerald, K. A., and Rothman, A. L. 2005. Dengue virus nonstructural protein NS5 induces interleukin-8 transcription and secretion. J Virol 79:11053–11061.

    PubMed  CAS  Google Scholar 

  • Mehlhop, E., and Diamond, M. S. 2006. Protective immune responses against West Nile virus are primed by distinct complement activation pathways. Pp. 1371–1381.

    Google Scholar 

  • Men, R., Bray, M., Clark, D., Chanock, R. M., and Lai, C. J. 1996. Dengue type 4 virus mutants containing deletions in the 3′ noncoding region of the RNA genome: analysis of growth restriction in cell culture and altered viremia pattern and immunogenicity in rhesus monkeys. J Virol 70:3930–3937.

    PubMed  CAS  Google Scholar 

  • Miller, S., Sparacio, S., and Bartenschlager, R. 2006. Subcellular localization and membrane topology of the Dengue virus type 2 Non-structural protein 4B. J Biol Chem 281:8854–8863.

    PubMed  CAS  Google Scholar 

  • Miller, S., Kastner, S., Krijnse-Locker, J., Buhler, S., and Bartenschlager, R. 2007. The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2 K-regulated manner. J Biol Chem 282:8873–8882.

    PubMed  CAS  Google Scholar 

  • van der Most, R. G., Corver, J., and Strauss, J. H. 1999. Mutagenesis of the RGD motif in the yellow fever virus 17D envelope protein. Virology 265:83–95.

    PubMed  Google Scholar 

  • Mukhopadhyay, S., Kim, B. S., Chipman, P. R., Rossmann, M. G., and Kuhn, R. J. 2003. Structure of West Nile virus. Science 302:248.

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay, S., Kuhn, R. J., and Rossmann, M. G. 2005. A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3:13–22.

    PubMed  CAS  Google Scholar 

  • Munoz-Jordan, J. L., Sanchez-Burgos, G. G., Laurent-Rolle, M., and Garcia-Sastre, A. 2003. Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci USA 100:14333–14338.

    PubMed  CAS  Google Scholar 

  • Murray, J. M., Aaskov, J. G., and Wright, P. J. 1993. Processing of the dengue virus type 2 proteins prM and C-prM. J Gen Virol 74 (Pt 2):175–182.

    PubMed  CAS  Google Scholar 

  • Muylaert, I. R., Chambers, T. J., Galler, R., and Rice, C. M. 1996. Mutagenesis of the N-linked glycosylation sites of the yellow fever virus NS1 protein: effects on virus replication and mouse neurovirulence. Virology 222:159–168.

    PubMed  CAS  Google Scholar 

  • Muylaert, I. R., Galler, R., and Rice, C. M. 1997. Genetic analysis of the yellow fever virus NS1 protein: identification of a temperature-sensitive mutation which blocks RNA accumulation. J Virol 71:291–298.

    PubMed  CAS  Google Scholar 

  • Nomaguchi, M., Ackermann, M., Yon, C., You, S., and Padmanabhan, R. 2003. De novo synthesis of negative-strand RNA by Dengue virus RNA-dependent RNA polymerase in vitro: nucleotide, primer, and template parameters. J Virol 77:8831–8842.

    PubMed  CAS  Google Scholar 

  • Nowak, T., and Wengler, G. 1987. Analysis of disulfides present in the membrane proteins of the West Nile flavivirus. Virology 156:127–137.

    PubMed  CAS  Google Scholar 

  • Nowak, T., Farber, P. M., Wengler, G., and Wengler, G. 1989. Analyses of the terminal sequences of West Nile virus structural proteins and of the in vitro translation of these proteins allow the proposal of a complete scheme of the proteolytic cleavages involved in their synthesis. Virology 169:365–376.

    PubMed  CAS  Google Scholar 

  • Oh, W. K., and Song, J. 2006. Hsp70 functions as a negative regulator of West Nile virus capsid protein through direct interaction. Biochem Biophys Res Commun 347:994–1000.

    PubMed  CAS  Google Scholar 

  • Oh, W., Yang, M. R., Lee, E. W., Park, K. M., Pyo, S., Yang, J. S., Lee, H. W., and Song, J. 2006. Jab1 mediates cytoplasmic localization and degradation of West Nile virus capsid protein. J Biol Chem 281:30166–30174.

    PubMed  CAS  Google Scholar 

  • Olsthoorn, R. C., and Bol, J. F. 2001. Sequence comparison and secondary structure analysis of the 3′ noncoding region of flavivirus genomes reveals multiple pseudoknots. RNA 7:1370–1377.

    PubMed  CAS  Google Scholar 

  • Orlinger, K. K., Hoenninger, V. M., Kofler, R. M., and Mandl, C. W. 2006. Construction and mutagenesis of an artificial bicistronic tick-borne encephalitis virus genome reveals an essential function of the second transmembrane region of protein e in flavivirus assembly. J Virol 80:12197–12208.

    PubMed  CAS  Google Scholar 

  • Paranjape, S. M., and Harris, E. 2007. Y box-binding protein-1 binds to the dengue virus 3′-untranslated region and mediates antiviral effects. J Biol Chem 282:30497–30508.

    PubMed  CAS  Google Scholar 

  • Parquet, M. C., Kumatori, A., Hasebe, F., Morita, K., and Igarashi, A. 2001. West Nile virus-induced bax-dependent apoptosis. FEBS Lett 500:17–24.

    PubMed  CAS  Google Scholar 

  • Perelygin, A. A., Scherbik, S. V., Zhulin, I. B., Stockman, B. M., Li, Y., and Brinton, M. A. 2002. Positional cloning of the murine flavivirus resistance gene. Proc Natl Acad Sci USA 99:9322–9327.

    PubMed  CAS  Google Scholar 

  • Pijlman, G. P., Kondratieva, N., and Khromykh, A. A. 2006. Translation of the flavivirus kunjin NS3 gene in cis but not its RNA sequence or secondary structure is essential for efficient RNA packaging. J Virol 80:11255–11264.

    PubMed  CAS  Google Scholar 

  • Poidinger, M., Hall, R. A., and Mackenzie, J. S. 1996. Molecular characterization of the Japanese encephalitis serocomplex of the flavivirus genus. Virology 218:417–421.

    PubMed  CAS  Google Scholar 

  • Preugschat, F., and Strauss, J. H. 1991. Processing of nonstructural proteins NS4A and NS4B of dengue 2 virus in vitro and in vivo. Virology 185:689–697.

    PubMed  CAS  Google Scholar 

  • Prikhod'ko, G. G., Prikhod'ko, E. A., Pletnev, A. G., and Cohen, J. I. 2002. Langat flavivirus protease NS3 binds caspase-8 and induces apoptosis. J Virol 76:5701–5710.

    PubMed  Google Scholar 

  • Puig-Basagoiti, F., Tilgner, M., Bennett, C. J., Zhou, Y., Munoz-Jordan, J. L., Garcia-Sastre, A., Bernard, K. A., and Shi, P. Y. 2007. A mouse cell-adapted NS4B mutation attenuates West Nile virus RNA synthesis. Virology 361:229–241.

    PubMed  CAS  Google Scholar 

  • Ramanathan, M. P., Chambers, J. A., Pankhong, P., Chattergoon, M., Attatippaholkun, W., Dang, K., Shah, N., and Weiner, D. B. 2006. Host cell killing by the West Nile Virus NS2B-NS3 proteolytic complex: NS3 alone is sufficient to recruit caspase-8-based apoptotic pathway. Virology 345:56–72.

    PubMed  CAS  Google Scholar 

  • Ranjith-Kumar, C. T., Gajewski, J., Gutshall, L., Maley, D., Sarisky, R. T., and Kao, C. C. 2001. Terminal nucleotidyl transferase activity of recombinant Flaviviridae RNA-dependent RNA polymerases: implication for viral RNA synthesis. J Virol 75:8615–8623.

    PubMed  CAS  Google Scholar 

  • Rauscher, S., Flamm, C., Mandl, C. W., Heinz, F. X., and Stadler, P. F. 1997. Secondary structure of the 3′-noncoding region of flavivirus genomes: comparative analysis of base pairing probabilities. RNA 3:779–791.

    PubMed  CAS  Google Scholar 

  • Ray, D., Shah, A., Tilgner, M., Guo, Y., Zhao, Y., Dong, H., Deas, T. S., Zhou, Y., Li, H., and Shi, P. Y. 2006. West Nile virus 5′-cap structure is formed by sequential guanine N-7 and ribose 2′-O methylations by nonstructural protein 5. J Virol 80:8362–8370.

    PubMed  CAS  Google Scholar 

  • Reed, K. E., Gorbalenya, A. E., and Rice, C. M. 1998. The NS5A/NS5 proteins of viruses from three genera of the family flaviviridae are phosphorylated by associated serine/threonine kinases. J Virol 72:6199–6206.

    PubMed  CAS  Google Scholar 

  • Reyes-Del Valle, J., Chavez-Salinas, S., Medina, F., and Del Angel, R. M. 2005. Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol 79:4557–4567.

    PubMed  CAS  Google Scholar 

  • Rice, C. M., Lenches, E. M., Eddy, S. R., Shin, S. J., Sheets, R. L., and Strauss, J. H. 1985. Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science 229:726–733.

    PubMed  CAS  Google Scholar 

  • Riis, B., Rattan, S. I., Clark, B. F., and Merrick, W. C. 1990. Eukaryotic protein elongation factors. Trends Biochem Sci 15:420–424.

    PubMed  Google Scholar 

  • Rios, M., Daniel, S., Chancey, C., Hewlett, I. K., and Stramer, S. L. 2007. West Nile virus adheres to human red blood cells in whole blood. Clin Infect Dis 45:181–186.

    PubMed  Google Scholar 

  • Roosendaal, J., Westaway, E. G., Khromykh, A., and Mackenzie, J. M. 2006. Regulated cleavages at the West Nile virus NS4A-2 K-NS4B junctions play a major role in rearranging cytoplasmic membranes and Golgi trafficking of the NS4A protein. J Virol 80:4623–4632.

    PubMed  CAS  Google Scholar 

  • Russell, P. K., Brandt, W. E., and Dalrymple, J. M. 1980. Chemical and antigenic structure of flaviviruses. Pp. 503–529 in R. W. Schlesinger, ed. The Togaviruses. Academic, New York.

    Google Scholar 

  • Samuel, M. A., Morrey, J. D., and Diamond, M. S. 2007. Caspase 3-dependent cell death of neurons contributes to the pathogenesis of West Nile virus encephalitis. J Virol 81:2614–2623.

    PubMed  CAS  Google Scholar 

  • Scherbik, S. V., Paranjape, J. M., Stockman, B. M., Silverman, R. H., and Brinton, M. A. 2006. RNase L plays a role in the antiviral response to West Nile virus. J Virol 80:2987–2999.

    PubMed  CAS  Google Scholar 

  • Scherbik, S. V., Kluetzman, K., Perelygin, A. A., and Brinton, M. A. 2007a. Knock-in of the Oas1b(r) allele into a flavivirus-induced disease susceptible mouse generates the resistant phenotype. Virology 368:232–237.

    CAS  Google Scholar 

  • Scherbik, S. V., Stockman, B. M., and Brinton, M. A. 2007b. Differential activation of interferon regulatory factors (IRFs) and interferon-stimulated genes (ISGs) at early times after West Nile virus (WNV) infection of mouse embryo fibroblasts (MEFs). J Virol 81:12005–12018.

    CAS  Google Scholar 

  • Scherret, J. H., Poidinger, M., Mackenzie, J. S., Broom, A. K., Deubel, V., Lipkin, W. I., Briese, T., Gould, E. A., and Hall, R. A. 2001. The relationships between West Nile and Kunjin viruses. Emerg Infect Dis 7:697–705.

    PubMed  CAS  Google Scholar 

  • Schlesinger, J. J., Brandriss, M. W., and Walsh, E. E. 1985. Protection against 17D yellow fever encephalitis in mice by passive transfer of monoclonal antibodies to the nonstructural glycoprotein gp48 and by active immunization with gp48. J Immunol 135:2805–2809.

    PubMed  CAS  Google Scholar 

  • Selisko, B., Dutartre, H., Guillemot, J. C., Debarnot, C., Benarroch, D., Khromykh, A., Despres, P., Egloff, M. P., and Canard, B. 2006. Comparative mechanistic studies of de novo RNA synthesis by flavivirus RNA-dependent RNA polymerases. Virology 351:145–158.

    PubMed  CAS  Google Scholar 

  • Shafee, N., and AbuBakar, S. 2003. Dengue virus type 2 NS3 protease and NS2B-NS3 protease precursor induce apoptosis. J Gen Virol 84:2191–2195.

    PubMed  CAS  Google Scholar 

  • Shi, P. Y., Brinton, M. A., Veal, J. M., Zhong, Y. Y., and Wilson, W. D. 1996a. Evidence for the existence of a pseudoknot structure at the 3′ terminus of the flavivirus genomic RNA. Biochemistry 35:4222–4230.

    CAS  Google Scholar 

  • Shi, P. Y., Li, W., and Brinton, M. A. 1996b. Cell proteins bind specifically to West Nile virus minus-strand 3′ stem-loop RNA. J Virol 70:6278–6287.

    CAS  Google Scholar 

  • Shirato, K., Miyoshi, H., Goto, A., Ako, Y., Ueki, T., Kariwa, H., and Takashima, I. 2004. Viral envelope protein glycosylation is a molecular determinant of the neuroinvasiveness of the New York strain of West Nile virus. J Gen Virol 85:3637–3645.

    PubMed  CAS  Google Scholar 

  • Shurtleff, A. C., Beasley, D. W., Chen, J. J., Ni, H., Suderman, M. T., Wang, H., Xu, R., Wang, E., Weaver, S. C., Watts, D. M., Russell, K. L., and Barrett, A. D. 2001. Genetic variation in the 3′ non-coding region of dengue viruses. Virology 281:75–87.

    PubMed  CAS  Google Scholar 

  • Smith, G. W., and Wright, P. J. 1985. Synthesis of proteins and glycoproteins in dengue type 2 virus-infected vero and Aedes albopictus cells. J Gen Virol 66 (Pt 3):559–571.

    PubMed  CAS  Google Scholar 

  • Stadler, K., Allison, S. L., Schalich, J., and Heinz, F. X. 1997. Proteolytic activation of tick-borne encephalitis virus by furin. J Virol 71:8475–8481.

    PubMed  CAS  Google Scholar 

  • Steffens, S., Thiel, H. J., and Behrens, S. E. 1999. The RNA-dependent RNA polymerases of different members of the family Flaviviridae exhibit similar properties in vitro. J Gen Virol 80 (Pt 10):2583–2590.

    PubMed  CAS  Google Scholar 

  • Ta, M., and Vrati, S. 2000. Mov34 protein from mouse brain interacts with the 3′ noncoding region of Japanese encephalitis virus. J Virol 74:5108–5115.

    PubMed  CAS  Google Scholar 

  • Tan, B. H., Fu, J., Sugrue, R. J., Yap, E. H., Chan, Y. C., and Tan, Y. H. 1996. Recombinant dengue type 1 virus NS5 protein expressed in Escherichia coli exhibits RNA-dependent RNA polymerase activity. Virology 216:317–325.

    PubMed  CAS  Google Scholar 

  • Taupin, J. L., Tian, Q., Kedersha, N., Robertson, M., and Anderson, P. 1995. The RNA-binding protein TIAR is translocated from the nucleus to the cytoplasm during Fas-mediated apoptotic cell death. Proc Natl Acad Sci USA 92:1629–1633.

    PubMed  CAS  Google Scholar 

  • Tsuda, Y., Mori, Y., Abe, T., Yamashita, T., Okamoto, T., Ichimura, T., Moriishi, K., and Matsuura, Y. 2006. Nucleolar protein B23 interacts with Japanese encephalitis virus core protein and participates in viral replication. Microbiol Immunol 50:225–234.

    PubMed  CAS  Google Scholar 

  • Urosevic, N., Mansfield, J. P., Mackenzie, J. S., and Shellam, G. R. 1995. Low resolution mapping around the flavivirus resistance locus (Flv) on mouse chromosome 5. Mamm Genome 6:454–458.

    PubMed  CAS  Google Scholar 

  • Urosevic, N., Mann, K., Hodgetts, S. I., and Shellam, G. R. 1997. High-resolution genetic mapping of the chromosomal region around the mouse flavivirus resistance locus (Flv). Arbovir Res Aust 7:296–299.

    Google Scholar 

  • Wallis, T. P., Huang, C. Y., Nimkar, S. B., Young, P. R., and Gorman, J. J. 2004. Determination of the disulfide bond arrangement of dengue virus NS1 protein. J Biol Chem 279:20729–20741.

    PubMed  CAS  Google Scholar 

  • Wang, S. H., Syu, W. J., Huang, K. J., Lei, H. Y., Yao, C. W., King, C. C., and Hu, S. T. 2002. Intracellular localization and determination of a nuclear localization signal of the core protein of dengue virus. J Gen Virol 83:3093–3102.

    PubMed  CAS  Google Scholar 

  • Wengler, G., and Wengler, G. 1991. The carboxy-terminal part of the NS 3 protein of the West Nile flavivirus can be isolated as a soluble protein after proteolytic cleavage and represents an RNA-stimulated NTPase. Virology 184:707–715.

    PubMed  CAS  Google Scholar 

  • Wengler, G., and Wengler, G. 1993. The NS 3 nonstructural protein of flaviviruses contains an RNA triphosphatase activity. Virology 197:265–273.

    PubMed  CAS  Google Scholar 

  • Wengler, G., Czaya, G., Farber, P. M., and Hegemann, J. H. 1991. In vitro synthesis of West Nile virus proteins indicates that the amino-terminal segment of the NS3 protein contains the active centre of the protease which cleaves the viral polyprotein after multiple basic amino acids. J Gen Virol 72 (Pt 4):851–858.

    PubMed  CAS  Google Scholar 

  • Westaway, E. G., Khromykh, A. A., Kenney, M. T., Mackenzie, J. M., and Jones, M. K. 1997a. Proteins C and NS4B of the flavivirus Kunjin translocate independently into the nucleus. Virology 234:31–41.

    CAS  Google Scholar 

  • Westaway, E. G., Mackenzie, J. M., Kenney, M. T., Jones, M. K., and Khromykh, A. A. 1997b. Ultrastructure of Kunjin virus-infected cells: colocalization of NS1 and NS3 with double-stranded RNA, and of NS2B with NS3, in virus-induced membrane structures. J Virol 71:6650–6661.

    CAS  Google Scholar 

  • Westaway, E. G., Khromykh, A. A., and Mackenzie, J. M. 1999. Nascent flavivirus RNA colocalized in situ with double-stranded RNA in stable replication complexes. Virology 258:108–117.

    PubMed  CAS  Google Scholar 

  • Westaway, E. G., Mackenzie, J. M., and Khromykh, A. A. 2002. Replication and gene function in Kunjin virus. Curr Top Microbiol Immunol 267:323–351.

    PubMed  CAS  Google Scholar 

  • Wicker, J. A., Whiteman, M. C., Beasley, D. W., Davis, C. T., Zhang, S., Schneider, B. S., Higgs, S., Kinney, R. M., and Barrett, A. D. 2006. A single amino acid substitution in the central portion of the West Nile virus NS4B protein confers a highly attenuated phenotype in mice. Virology 349:245–253.

    PubMed  CAS  Google Scholar 

  • Winkler, G., Randolph, V. B., Cleaves, G. R., Ryan, T. E., and Stollar, V. 1988. Evidence that the mature form of the flavivirus nonstructural protein NS1 is a dimer. Virology 162:187–196.

    PubMed  CAS  Google Scholar 

  • Winkler, G., Maxwell, S. E., Ruemmler, C., and Stollar, V. 1989. Newly synthesized dengue-2 virus nonstructural protein NS1 is a soluble protein but becomes partially hydrophobic and membrane-associated after dimerization. Virology 171:302–305.

    PubMed  CAS  Google Scholar 

  • Wu, J., Bera, A. K., Kuhn, R. J., and Smith, J. L. 2005. Structure of the Flavivirus helicase: implications for catalytic activity, protein interactions, and proteolytic processing. J Virol 79:10268–10277.

    PubMed  CAS  Google Scholar 

  • Xu, T., Sampath, A., Chao, A., Wen, D., Nanao, M., Chene, P., Vasudevan, S. G., and Lescar, J. 2005. Structure of the Dengue virus helicase/nucleoside triphosphatase catalytic domain at a resolution of 2.4 A. J Virol 79:10278–10288.

    PubMed  CAS  Google Scholar 

  • Yakub, I., Lillibridge, K. M., Moran, A., Gonzalez, O. Y., Belmont, J., Gibbs, R. A., and Tweardy, D. J. 2005. Single nucleotide polymorphisms in genes for 2′–5′-oligoadenylate synthetase and RNase L inpatients hospitalized with West Nile virus infection. J Infect Dis 192:1741–1748.

    PubMed  CAS  Google Scholar 

  • Yang, J. S., Ramanathan, M. P., Muthumani, K., Choo, A. Y., Jin, S. H., Yu, Q. C., Hwang, D. S., Choo, D. K., Lee, M. D., Dang, K., Tang, W., Kim, J. J., and Weiner, D. B. 2002. Induction of inflammation by West Nile virus capsid through the caspase-9 apoptotic pathway. Emerg Infect Dis 8:1379–1384.

    PubMed  CAS  Google Scholar 

  • Yang, M. R., Lee, S. R., Oh, W., Lee, E. W., Yeh, J. Y., Nah, J. J., Joo, Y. S., Shin, J., Lee, H. W., Pyo, S., and Song, J. 2008. West Nile virus capsid protein induces p53-mediated apoptosis via the sequestration of HDM2 to the nucleolus. Cell Microbiol 10(1):165–176

    PubMed  CAS  Google Scholar 

  • Yap, T. L., Xu, T., Chen, Y. L., Malet, H., Egloff, M. P., Canard, B., Vasudevan, S. G., and Lescar, J. 2007. Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution. J Virol 81:4753–4765.

    PubMed  CAS  Google Scholar 

  • Yocupicio-Monroy, M., Padmanabhan, R., Medina, F., and del Angel, R. M. 2007. Mosquito La protein binds to the 3′ untranslated region of the positive and negative polarity dengue virus RNAs and relocates to the cytoplasm of infected cells. Virology 357:29–40.

    PubMed  CAS  Google Scholar 

  • Yon, C., Teramoto, T., Mueller, N., Phelan, J., Ganesh, V. K., Murthy, K. H., and Padmanabhan, R. 2005. Modulation of the nucleoside triphosphatase/RNA helicase and 5′-RNA triphosphatase activities of Dengue virus type 2 nonstructural protein 3 (NS3) by interaction with NS5, the RNA-dependent RNA polymerase. J Biol Chem 280: 27412–27419.

    PubMed  CAS  Google Scholar 

  • You, S., and Padmanabhan, R. 1999. A novel in vitro replication system for Dengue virus. Initiation of RNA synthesis at the 3′-end of exogenous viral RNA templates requires 5′-and 3′-terminal complementary sequence motifs of the viral RNA. J Biol Chem 274:33714–33722.

    PubMed  CAS  Google Scholar 

  • You, S., Falgout, B., Markoff, L., and Padmanabhan, R. 2001. In vitro RNA synthesis from exogenous dengue viral RNA templates requires long range interactions between 5′- and 3′-terminal regions that influence RNA structure. J Biol Chem 276:15581–15591.

    PubMed  CAS  Google Scholar 

  • Yu, L., and Markoff, L. 2005. The topology of bulges in the long stem of the flavivirus 3′ stem-loop is a major determinant of RNA replication competence. J Virol 79:2309–2324.

    PubMed  CAS  Google Scholar 

  • Yu, C. Y., Hsu, Y. W., Liao, C. L., and Lin, Y. L. 2006. Flavivirus infection activates the XBP1 pathway of the unfolded protein response to cope with endoplasmic reticulum stress. J Virol 80:11868–11880.

    PubMed  CAS  Google Scholar 

  • Yusof, R., Clum, S., Wetzel, M., Murthy, H. M., and Padmanabhan, R. 2000. Purified NS2B/ NS3 serine protease of dengue virus type 2 exhibits cofactor NS2B dependence for cleavage of substrates with dibasic amino acids in vitro. J Biol Chem 275: 9963 – 9969.

    PubMed  CAS  Google Scholar 

  • Zeng, L., Falgout, B., and Markoff, L. 1998. Identification of specific nucleotide sequences within the conserved 3′-SL in the dengue type 2 virus genome required for replication. J Virol 72:7510–7522.

    PubMed  CAS  Google Scholar 

  • Zhang, W., Chipman, P. R., Corver, J., Johnson, P. R., Zhang, Y., Mukhopadhyay, S., Baker, T. S., Strauss, J. H., Rossmann, M. G., and Kuhn, R. J. 2003a. Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat Struct Biol 10:907–912.

    CAS  Google Scholar 

  • Zhang, Y., Corver, J., Chipman, P. R., Zhang, W., Pletnev, S. V., Sedlak, D., Baker, T. S., Strauss, J. H., Kuhn, R. J., and Rossmann, M. G. 2003b. Structures of immature flavivirus particles. EMBO J 22:2604–2613.

    CAS  Google Scholar 

  • Zhang, Y., Kaufmann, B., Chipman, P. R., Kuhn, R. J., and Rossmann, M. G. 2007. Structure of immature West Nile virus. J Virol 81:6141–6145.

    PubMed  CAS  Google Scholar 

  • Zhou, Y., Ray, D., Zhao, Y., Dong, H., Ren, S., Li, Z., Guo, Y., Bernard, K. A., Shi, P. Y., and Li, H. 2007. Structure and function of flavivirus NS5 methyltransferase. J Virol 81:3891–3903.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks W. Davis for producing the graphics, W. Davis and M. Emara for assistance with manuscript production, and G. Radu and S. Scherbik for proofreading.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Brinton, M.A. (2009). Molecular Biology of West Nile Virus. In: West Nile Encephalitis Virus Infection. Emerging Infectious Diseases of the 21st Century. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79840-0_5

Download citation

Publish with us

Policies and ethics