Skip to main content

Chemokines and Clearance of West Nile Virus Infection

  • Chapter
West Nile Encephalitis Virus Infection

Part of the book series: Emerging Infectious Diseases of the 21 Century ((EIDC))

  • 1005 Accesses

Abstract

West Nile virus (WNV) is a neurotropic flavivirus that can lead to fatal neuroinvasive infection. Recent studies indicate that innate and adaptive immune responses are critical for clearing infection in the periphery and preventing viral dissemination into the central nervous system (CNS). Clearance of WNV within the CNS compartment, however, specifically requires the infiltration of virus-specific T cells. Chemokines are chemoat-tractant molecules expressed early in the course of WNV infection that participate in leukocyte migration and activation both in the periphery and during CNS dissemination. As WNV leads to predominantly Th1 antiviral immune responses, chemokines that attract these cells might be particularly important in disease progression especially with regard to neuroinvasive disease. In this review, we focus on the role of chemokine members of the CXC or CC subfamilies. Among the CXC chemokines, the non-ELR group comprised of CXCL9–11, attract Th1 cells through the interaction with their receptor, CXCR3. Among the CC subfamily, Th1-associated chemokines include CCL3–5. These chemokines attract cells through an interaction with their receptor, CCR5. Secondary lymphoid and CNS tissue levels of all of these chemokines are elevated during primary infection with WNV, while homeostatic chemokines, including CXCL12 are decreased at the CNS microvasculature during WNV encephalitis. Among the proinflammatory chemokines, CXCL10 is dominantly expressed by WNV-infected neurons. Thus, chemokine gradients tightly regulate T-cell entry into and within the CNS. In the future, manipulation of chemokine receptor activation might be used to control the trafficking of virus-specific T cells and improve viral clearance within the CNS in patients with WNV encephalitis

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alt C, Laschinger M, Engelhardt B (2002) Functional expression of the lymphoid chemokines CCL19 (ELC) and CCL 21 (SLC) at the blood–brain barrier suggests their involvement in G-protein-dependent lymphocyte recruitment into the central nervous system during experimental autoimmune encephalomyelitis. Eur J Immunol 32:2133–2144

    Article  PubMed  CAS  Google Scholar 

  • Becher B, Durell BG, Miga AV, Hickey WF, Noelle RJ (2001) The clinical course of experimental autoimmune encephalomyelitis and inflammation is controlled by the expression of CD40 within the central nervous system. J Exp Med 193:967–974

    Article  PubMed  CAS  Google Scholar 

  • Bouffard JP, Riudavets MA, Holman R, Rushing EJ (2004) Neuropathology of the brain and spinal cord in human West Nile virus infection. Clin Neuropathol 23:59–61

    PubMed  CAS  Google Scholar 

  • Brat DJ, Bellail AC, Van Meir EG (2005) The role of interleukin-8 and its receptors in gliom-agenesis and tumoral angiogenesis. Neuro Oncol 7:122–133

    Article  PubMed  CAS  Google Scholar 

  • Byrne SN, Halliday GM, Johnston LJ, King NJ (2001) Interleukin-1beta but not tumor necrosis factor is involved in West Nile virus-induced Langerhans cell migration from the skin in C57BL/6 mice. J Invest Dermatol 117:702–709

    Article  PubMed  CAS  Google Scholar 

  • Casola A, Garofalo RP, Haeberle H, Elliott TF, Lin R, Jamaluddin M, Brasier AR (2001) Multiple cis regulatory elements control RANTES promoter activity in alveolar epithelial cells infected with respiratory syncytial virus. J Virol 75:6428–6439

    Article  PubMed  CAS  Google Scholar 

  • Cheeran MC, Hu S, Sheng WS, Rashid A, Peterson PK, Lokensgard JR (2005) Differential responses of human brain cells to West Nile virus infection. J Neurovirol 11:512–524

    Article  PubMed  CAS  Google Scholar 

  • Cheng G, Nazar AS, Shin HS, Vanguri P, Shin ML (1998) IP-10 gene transcription by virus in astrocytes requires cooperation of ISRE with adjacent kappaB site but not IRF-1 or viral transcription. J Interferon Cytokine Res 18:987–997

    PubMed  CAS  Google Scholar 

  • Choi YK, Fallert BA, Murphey-Corb MA, Reinhart TA (2003) Simian immunodeficiency virus dramatically alters expression of homeostatic chemokines and dendritic cell markers during infection in vivo. Blood 101:1684–1691

    Article  PubMed  CAS  Google Scholar 

  • Columba-Cabezas S, Serafini B, Ambrosini E, Aloisi F (2003) Lymphoid chemokines CCL19 and CCL21 are expressed in the central nervous system during experimental autoimmune encephalomyelitis: implications for the maintenance of chronic neuroinflammation. Brain Pathol 13:38–51

    Article  PubMed  Google Scholar 

  • Diamond MS, Shrestha B, Marri A, Mahan D, Engle M (2003a) B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. J Virol 77:2578–2586

    Article  CAS  Google Scholar 

  • Diamond MS, Shrestha B, Mehlhop E, Sitati E, Engle M (2003b) Innate and adaptive immune responses determine protection against disseminated infection by West Nile encephalitis virus. Viral Immunol 16:259–278

    Article  CAS  Google Scholar 

  • Esche C, Stellato C, Beck LA (2005) Chemokines: key players in innate and adaptive immunity. J Invest Dermatol 125:615–628

    Article  PubMed  CAS  Google Scholar 

  • Fratkin JD, Leis AA, Stokic DS, Slavinski SA, Geiss RW (2004) Spinal cord neuropathology in human West Nile virus infection. Arch Pathol Lab Med 128:533–537

    PubMed  Google Scholar 

  • Garcia-Tapia D, Hassett DE, Mitchell WJ Jr, Johnson GC, Kleiboeker SB (2007) West Nile virus encephalitis: sequential histopathological and immunological events in a murine model of infection. J Neurovirol 13:130–138

    Article  PubMed  CAS  Google Scholar 

  • Gilfoy FD, Mason PW (2007) West Nile virus-induced interferon production is mediated by the double-stranded RNA-dependent protein kinase PKR. J Virol 81:11148–11158

    Article  PubMed  CAS  Google Scholar 

  • Gimenez MA, Sim JE, Russell JH (2004) TNFR1-dependent VCAM-1 expression by astro-cytes exposes the CNS to destructive inflammation. J Neuroimmunol 151:116–125

    Article  PubMed  CAS  Google Scholar 

  • Gimenez MA, Sim J, Archambault AS, Klein RS, Russell JH (2006) A tumor necrosis factor receptor 1-dependent conversation between central nervous system-specific T cells and the central nervous system is required for inflammatory infiltration of the spinal cord. Am J Pathol 168:1200–1209

    Article  PubMed  CAS  Google Scholar 

  • Glass WG, Lane TE (2003) Functional expression of chemokine receptor CCR5 on CD4(%) T cells during virus-induced central nervous system disease. J Virol 77:191–198

    Article  PubMed  CAS  Google Scholar 

  • Glass WG, Lim JK, Cholera R, Pletnev AG, Gao JL, Murphy PM (2005) Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. J Exp Med 202:1087–1098

    Article  PubMed  CAS  Google Scholar 

  • Glass WG, McDermott DH, Lim JK, Lekhong S, Yu SF, Frank WA, Pape J, Cheshier RC, Murphy PM (2006) CCR5 deficiency increases risk of symptomatic West Nile virus infection. J Exp Med 203:35–40

    Article  PubMed  CAS  Google Scholar 

  • Goetzl EJ, Wang W, McGiffert C, Huang MC, Graler MH (2004) Sphingosine 1-phosphate and its G protein-coupled receptors constitute a multifunctional immunoregulatory system. J Cell Biochem 92:1104–1114

    Article  PubMed  CAS  Google Scholar 

  • Haeberle HA, Kuziel WA, Dieterich HJ, Casola A, Gatalica Z, Garofalo RP (2001) Inducible expression of inflammatory chemokines in respiratory syncytial virus-infected mice: role of MIP-1alpha in lung pathology. J Virol 75:878–890

    Article  PubMed  CAS  Google Scholar 

  • Handel TM, Johnson Z, Crown SE, Lau EK, Proudfoot AE (2005) Regulation of protein function by glycosaminoglycans – as exemplified by chemokines. Annu Rev Biochem 74:385–410

    Article  PubMed  CAS  Google Scholar 

  • Hayes EB, Sejvar JJ, Zaki SR, Lanciotti RS, Bode AV, Campbell GL (2005) Virology, pathology, and clinical manifestations of West Nile virus disease. Emerg Infect Dis 11:1174–1179

    PubMed  Google Scholar 

  • Heller EA, Liu E, Tager AM, Yuan Q, Lin AY, Ahluwalia N, Jones K, Koehn SL, Lok VM, Aikawa E, et-al. (2006) Chemokine CXCL10 promotes atherogenesis by modulating the local balance of effector and regulatory T cells. Circulation 113:2301–2312

    Article  PubMed  CAS  Google Scholar 

  • Howard LM, Miller SD (2001) Autoimmune intervention by CD154 blockade prevents T cell retention and effector function in the target organ. J Immunol 166:1547–1553

    PubMed  CAS  Google Scholar 

  • Howard LM, Miga AJ, Vanderlugt CL, Dal Canto MC, Laman JD, Noelle RJ, Miller SD (1999) Mechanisms of immunotherapeutic intervention by anti-CD40L (CD154) antibody in an animal model of multiple sclerosis. J Clin Invest 103:281–290

    Article  PubMed  CAS  Google Scholar 

  • Hunsperger EA, Roehrig JT (2006) Temporal analyses of the neuropathogenesis of a West Nile virus infection in mice. J Neurovirol 12:129–139

    Article  PubMed  CAS  Google Scholar 

  • Jeha LE, Sila CA, Lederman RJ, Prayson RA, Isada CM, Gordon SM (2003) West Nile virus infection: a new acute paralytic illness. Neurology 61:55–59

    PubMed  CAS  Google Scholar 

  • Jung Y, Wang J, Schneider A, Sun YX, Koh-Paige AJ, Osman NI, McCauley LK, Taichman RS (2006) Regulation of SDF-1 (CXCL12) production by osteoblasts; a possible mechanism for stem cell homing. Bone 38:497–508

    Article  PubMed  CAS  Google Scholar 

  • Kajaste-Rudnitski A, Mashimo T, Frenkiel MP, Guenet JL, Lucas M, Despres P (2006) The 2 ,5 -oligoadenylate synthetase 1b is a potent inhibitor of West Nile virus replication inside infected cells. J Biol Chem 281:4624–4637

    Article  PubMed  CAS  Google Scholar 

  • Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, et-al. (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101–105

    Article  PubMed  CAS  Google Scholar 

  • Kawai T, Akira S (2007) Antiviral signaling through pattern recognition receptors. J Biochem 141:137–145

    Article  PubMed  CAS  Google Scholar 

  • Kim CH (2005) The greater chemotactic network for lymphocyte trafficking: chemokines and beyond. Curr Opin Hematol 12:298–304

    Article  PubMed  CAS  Google Scholar 

  • Kindberg E, Mickiene A, Ax C, Akerlind B, Vene S, Lindquist L, Lundkvist A, Svensson L (2008) A deletion in the chemokine receptor 5 (CCR5) gene is associated with tickborne encephalitis. J Infect Dis 197:266–269

    Article  PubMed  CAS  Google Scholar 

  • King NJ, Getts DR, Getts MT, Rana S, Shrestha B, Kesson AM (2007) Immunopathology of flavivirus infections. Immunol Cell Biol 85:33–42

    Article  PubMed  CAS  Google Scholar 

  • Klein RS, Lin E, Zhang B, Luster AD, Tollett J, Samuel MA, Engle M, Diamond MS (2005a) Neuronal CXCL10 directs CD8% T-cell recruitment and control of West Nile virus encephalitis. J Virol 79:11457–11466

    Article  CAS  Google Scholar 

  • Klein RS, Rubin JB, Luster AD (2005b) Chemokines and central nervous system physiology. In: Schwiebert LM (ed) Chemokines, chemokine receptors and disease, current topics in membranes, vol 55. Elsevier, San Diego, CA, pp 159–187

    Chapter  Google Scholar 

  • Kristensen NN, Brudzewsky D, Gad M, Claesson MH (2006) Chemokines involved in protection from colitis by CD4%CD25% regulatory T cells. Inflamm Bowel Dis 12:612–618

    Article  PubMed  Google Scholar 

  • Lassmann H, Schmied M, Vass K, Hickey WF (1993) Bone marrow derived elements and resident microglia in brain inflammation. Glia 7:19–24

    Article  PubMed  CAS  Google Scholar 

  • Lepej SZ, Misic-Majerus L, Jeren T, Rode OD, Remenar A, Sporec V, Vince A (2007) Chemokines CXCL10 and CXCL11 in the cerebrospinal fluid of patients with tick-borne encephalitis. Acta Neurol Scand 115:109–114

    Article  PubMed  CAS  Google Scholar 

  • Leung TH, Hoffmann A, Baltimore D (2004) One nucleotide in a kappaB site can determine cofactor specificity for NF-kappaB dimers. Cell 118:453–464

    Article  PubMed  CAS  Google Scholar 

  • Li A, Varney ML, Valasek J, Godfrey M, Dave BJ, Singh RK (2005) Autocrine role of inter-leukin-8 in induction of endothelial cell proliferation, survival, migration and MMP-2 production and angiogenesis. Angiogenesis 8:63–71

    Article  PubMed  CAS  Google Scholar 

  • Lim JK, Louie C Y, Glaser C, Jean C, Johnson B, Johnson H, McDermott DH, Murphy PM (2008) Genetic deficiency of chemokine receptor CCR5 is a strong risk factor for symptomatic West Nile virus infection: a meta-analysis of 4 cohorts in the US epidemic. J Infect Dis 197(2): 262–5

    Article  PubMed  Google Scholar 

  • Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA, Landau NR (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86:367–377

    Article  PubMed  CAS  Google Scholar 

  • Liu MT, Chen BP, Oertel P, Buchmeier MJ, Hamilton TA, Armstrong DA, Lane TE (2001) The CXC chemokines IP-10 and Mig are essential in host defense following infection with a neurotropic coronavirus. Adv Exp Med Biol 494:323–327

    PubMed  CAS  Google Scholar 

  • Lu R, Moore PA, Pitha PM (2002) Stimulation of IRF-7 gene expression by tumor necrosis factor alpha: requirement for NFkappa B transcription factor and gene accessibility. J Biol Chem 277:16592–16598

    Article  PubMed  CAS  Google Scholar 

  • Lucas M, Mashimo T, Frenkiel MP, Simon-Chazottes D, Montagutelli X, Ceccaldi PE, Guenet JL, Despres P (2003) Infection of mouse neurones by West Nile virus is modulated by the interferon-inducible 2–5 oligoadenylate synthetase 1b protein. Immunol Cell Biol 81:230–236

    Article  PubMed  CAS  Google Scholar 

  • MartIn-Fontecha A, Sebastiani S, Hopken UE, Uguccioni M, Lipp M, Lanzavecchia A, Sallusto F (2003) Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J Exp Med 198:615–621

    Article  PubMed  CAS  Google Scholar 

  • Mashimo T, Lucas M, Simon-Chazottes D, Frenkiel MP, Montagutelli X, Ceccaldi PE, Deubel V, Guenet JL, Despres P (2002) A nonsense mutation in the gene encoding 2–5 -oligoadenylate synthetase/L1 isoform is associated with West Nile virus susceptibility in laboratory mice. Proc Natl Acad Sci USA 99:11311–11316

    Article  PubMed  CAS  Google Scholar 

  • McCandless EE, Wang Q, Woerner BM, Harper JM, Klein RS (2006) CXCL12 limits inflammation by localizing mononuclear infiltrates to the perivascular space during experimental autoimmune encephalomyelitis. J Immunol 177:8053–8064

    PubMed  CAS  Google Scholar 

  • McCandless EE, Piccio L, Woerner BM, Schmidt RE, Rubin JB, Cross AH, Klein RS (2008) Pathologic expression of CXCL12 at the blood–brain barrier correlates with severity of multiple sclerosis. Am J Pathol 172(3): 799–808

    Article  PubMed  Google Scholar 

  • McCandless EE, Zhang B, Diamond MS, Klein RS (2008) CXCR4 antagonism increases T cell trafficking in the central nervous system and improves survival from West Nile virus encephalitis. PNAS 105(32):11270–5

    Article  PubMed  Google Scholar 

  • Melchjorsen J, Sorensen LN, Paludan SR (2003) Expression and function of chemokines during viral infections: from molecular mechanisms to in vivo function. J Leukoc Biol 74:331–343

    Article  PubMed  CAS  Google Scholar 

  • Mueller SN, Hosiawa-Meagher KA, Konieczny BT, Sullivan BM, Bachmann MF, Locksley RM, Ahmed R, Matloubian M (2007) Regulation of homeostatic chemokine expression and cell trafficking during immune responses. Science 317:670–674

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay S, Kuhn RJ, Rossmann MG (2005) A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3:13–22

    Article  PubMed  CAS  Google Scholar 

  • Muller M, Carter SL, Hofer MJ, Manders P, Getts DR, Getts MT, Dreykluft A, Lu B, Gerard C, King NJ, Campbell IL (2007) CXCR3 signaling reduces the severity of experimental autoimmune encephalomyelitis by controlling the parenchymal distribution of effector and regulatory T cells in the central nervous system. J Immunol 179:2774–2786

    PubMed  Google Scholar 

  • Nanki T, Hayashida K, El-Gabalawy HS, Suson S, Shi K, Girschick HJ, Yavuz S, Lipsky PE (2000) Stromal cell-derived factor-1-CXC chemokine receptor 4 interactions play a central role in CD4+ T cell accumulation in rheumatoid arthritis synovium. J Immunol 165:6590–6598

    PubMed  CAS  Google Scholar 

  • Nombela-Arrieta C, Mempel TR, Soriano SF, Mazo I, Wymann MP, Hirsch E, Martinez AC, Fukui Y, von Andrian UH, Stein JV (2007) A central role for DOCK2 during interstitial lymphocyte motility and sphingosine-1-phosphate-mediated egress. J Exp Med 204:497–510

    Article  PubMed  CAS  Google Scholar 

  • Okada T, Ngo VN, Ekland EH, Forster R, Lipp M, Littman DR, Cyster JG (2002) Chemokine requirements for B cell entry to lymph nodes and Peyer's patches. J Exp Med 196:65–75

    Article  PubMed  CAS  Google Scholar 

  • Oppermann M (2004) Chemokine receptor CCR5: insights into structure, function, and regulation. Cell Signal 16:1201–1210

    Article  PubMed  CAS  Google Scholar 

  • Pashenkov M, Soderstrom M, Link H (2003) Secondary lymphoid organ chemokines are elevated in the cerebrospinal fluid during central nervous system inflammation. J Neuroimmunol 135:154–160

    Article  PubMed  CAS  Google Scholar 

  • Perelygin AA, Scherbik SV, Zhulin IB, Stockman BM, Li Y, Brinton MA (2002) Positional cloning of the murine flavivirus resistance gene. Proc Natl Acad Sci USA 99:9322–9327

    Article  PubMed  CAS  Google Scholar 

  • Piqueras B, Connolly J, Freitas H, Palucka AK, Banchereau J (2006) Upon viral exposure, myeloid and plasmacytoid dendritic cells produce 3 waves of distinct chemokines to recruit immune effectors. Blood 107:2613–2618

    Article  PubMed  CAS  Google Scholar 

  • Proost P, Verpoest S, Van de Borne K, Schutyser E, Struyf S, Put W, Ronsse I, Grillet B, Opdenakker G, Van Damme J (2004) Synergistic induction of CXCL9 and CXCL11 by Toll-like receptor ligands and interferon-gamma in fibroblasts correlates with elevated levels of CXCR3 ligands in septic arthritis synovial fluids. J Leukoc Biol 75:777–784

    Article  PubMed  CAS  Google Scholar 

  • Purtha WE, Myers N, Mitaksov V, Sitati E, Connolly J, Fremont DH, Hansen TH, Diamond MS (2007) Antigen-specific cytotoxic T lymphocytes protect against lethal West Nile virus encephalitis. Eur J Immunol 37:1845–1854

    Article  PubMed  CAS  Google Scholar 

  • Sabroe I, Jones EC, Whyte MK, Dower SK (2005) Regulation of human neutrophil chemokine receptor expression and function by activation of Toll-like receptors 2 and 4. Immunology 115:90–98

    Article  PubMed  CAS  Google Scholar 

  • Samson M,Libert F, Doranz BJ, Rucker J,Liesnard C, Farber CM, Saragosti S, Lapoumeroulie C, Cognaux J, Forceille C, et-al. (1996) Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382:722–725

    Article  PubMed  CAS  Google Scholar 

  • Samuel MA, Morrey JD, Diamond MS (2007) Caspase-3 dependent cell death of neurons contributes to the pathogenesis of West Nile virus encephalitis. J Virol 81(6):2614–23

    Article  PubMed  CAS  Google Scholar 

  • Samuel MA, Whitby K, Keller BC, Marri A, Barchet W, Williams BR, Silverman RH, Gale M Jr, Diamond MS (2006b) PKR and RNase L contribute to protection against lethal West Nile Virus infection by controlling early viral spread in the periphery and replication in neurons. J Virol 80:7009–7019

    Article  CAS  Google Scholar 

  • Sarkar S, Kalia V, Murphey-Corb M, Montelaro RC, Reinhart TA (2003) Expression of IFN-gamma induced CXCR3 agonist chemokines and compartmentalization of CXCR3+ cells in the periphery and lymph nodes of rhesus macaques during simian immunodeficiency virus infection and acquired immunodeficiency syndrome. J Med Primatol 32:247–264

    Article  PubMed  CAS  Google Scholar 

  • Scherbik SV, Paranjape JM, Stockman BM, Silverman RH, Brinton MA (2006) RNase L plays a role in the antiviral response to West Nile virus. J Virol 80:2987–2999

    Article  PubMed  CAS  Google Scholar 

  • Schneider BS, McGee CE, Jordan JM, Stevenson HL, Soong L, Higgs S (2007) Prior exposure to uninfected mosquitoes enhances mortality in naturally-transmitted west nile virus infection. PLoS One 2:e1171

    Article  PubMed  Google Scholar 

  • Scimone ML, Felbinger TW, Mazo IB, Stein JV, Von Andrian UH, Weninger W (2004) CXCL12 mediates CCR7-independent homing of central memory cells, but not naive T cells, in peripheral lymph nodes. J Exp Med 199:1113–1120

    Article  PubMed  CAS  Google Scholar 

  • Semerad CL, Christopher MJ, Liu F, Short B, Simmons PJ, Winkler I, Levesque JP, Chappel J, Ross FP, Link DC (2005) G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 106:3020–3027

    Article  PubMed  CAS  Google Scholar 

  • Servant MJ, Grandvaux N, tenOever BR, Duguay D, Lin R, Hiscott J (2003) Identification of the minimal phosphoacceptor site required for in vivo activation of interferon regulatory factor 3 in response to virus and double-stranded RNA. J Biol Chem 278:9441–9447

    Article  PubMed  CAS  Google Scholar 

  • Shirato K, Kimura T, Mizutani T, Kariwa H, Takashima I (2004) Different chemokine expression in lethal and non-lethal murine West Nile virus infection. J Med Virol 74:507–513

    Article  PubMed  CAS  Google Scholar 

  • Shrestha B, Gottlieb D, Diamond MS (2003) Infection and injury of neurons by West Nile encephalitis virus. J Virol 77:13203–13213

    Article  PubMed  CAS  Google Scholar 

  • Silva MC, Guerrero-Plata A, Gilfoy FD, Garofalo RP, Mason PW (2007) Differential activation of human monocyte-derived and plasmacytoid dendritic cells by West Nile virus generated in different host cells. J Virol 81:13640–13648

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Kulshreshtha R, Mathur A (2000) An enzyme immunoassay for detection of Japanese encephalitis virus-induced chemotactic cytokine. J Biosci 25:47–55

    Article  PubMed  CAS  Google Scholar 

  • Sitati E, McCandless EE, Klein RS, Diamond MS (2007) CD40-CD40 ligand interactions promote trafficking of CD8+ T Cells into the brain and protection against West Nile virus encephalitis. J Virol 81:9801–9811

    Article  PubMed  CAS  Google Scholar 

  • Stumm RK, Rummel J, Junker V, Culmsee C, Pfeiffer M, Krieglstein J, Hollt V, Schulz S (2002) A dual role for the SDF-1/CXCR4 chemokine receptor system in adult brain: isoform-selective regulation of SDF-1 expression modulates CXCR4-dependent neuronal plasticity and cerebral leukocyte recruitment after focal ischemia. J Neurosci 22:5865–5878

    PubMed  CAS  Google Scholar 

  • Trifilo MJ, Bergmann CC, Kuziel WA, Lane TE (2003) CC chemokine ligand 3 (CCL3) regulates CD8(+)-T-cell effector function and migration following viral infection. J Virol 77:4004–4014

    Article  PubMed  CAS  Google Scholar 

  • Tyner JW, Uchida O, Kajiwara N, Kim EY, Patel AC, O'Sullivan MP, Walter MJ, Schwendener RA, Cook DN, Danoff TM, Holtzman MJ (2005) CCL5-CCR5 interaction provides antia-poptotic signals for macrophage survival during viral infection. Nat Med 11:1180–1187

    Article  PubMed  CAS  Google Scholar 

  • Vischer HF, Hulshof JW, de Esch IJ, Smit MJ, Leurs R (2006) Virus-encoded G-protein-coupled receptors: constitutively active (dys)regulators of cell function and their potential as drug target. Ernst Schering Found Symp Proc 2:187–209

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Lobigs M, Lee E, Mullbacher A (2003) CD8% T cells mediate recovery and immun-opathology in West Nile virus encephalitis. J Virol 77:13323–13334

    Article  PubMed  CAS  Google Scholar 

  • Winter PM, Dung NM, Loan HT, Kneen R, Wills B, Thu le T, House D, White NJ, Farrar JJ, Hart CA, Solomon T (2004) Proinflammatory cytokines and chemokines in humans with Japanese encephalitis. J Infect Dis 190:1618–1626

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5:730–737

    Article  PubMed  CAS  Google Scholar 

  • Yopp AC, Fu S, Honig SM, Randolph GJ, Ding Y, Krieger NR, Bromberg JS (2004) FTY720-enhanced T cell homing is dependent on CCR2, CCR5, CCR7, and CXCR4: evidence for distinct chemokine compartments. J Immunol 173:855–865

    PubMed  CAS  Google Scholar 

  • Yopp AC, Ochando JC, Mao M, Ledgerwood L, Ding Y, Bromberg JS (2005) Sphingosine 1-phosphate receptors regulate chemokine-driven transendothelial migration of lymph node but not splenic T cells. J Immunol 175:2913–2924

    PubMed  CAS  Google Scholar 

  • Zhang B, Chan YK, Lu B, Diamond MS, Klein RS (2008) CXCR3 mediates region-specific antiviral T cell trafficking within the central nervous system during West Nile virus encephalitis. J Immunol 180(4):2641–9

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH/NINDS NS045607 and NS052632 and by a grant from the Midwest Regional Center for Excellence in Emerging Infectious Diseases.

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Klein, R.S. (2009). Chemokines and Clearance of West Nile Virus Infection. In: West Nile Encephalitis Virus Infection. Emerging Infectious Diseases of the 21st Century. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79840-0_15

Download citation

Publish with us

Policies and ethics