Advertisement

Fundamentals of Photoemission from Quantum Wells in Ultrathin Films and Quantum Well Wires of Various Nonparabolic Materials

  • Kamakhya Prasad Ghatak
  • Debashis De
  • Sitangshu Bhattacharya
Chapter
Part of the Nanostructure Science and Technology book series (NST)

In chapter 1, the photoemission from wide-gap materials having parabolic energy bands under different physical conditions has been studied. For the purpose of in-depth study, in this chapter, the same has been investigated from QWs in UFs and QWWs of non-parabolic materials having different band structures. The journey towards the knowledge temple known as the photoelectric effect begins with the non-linear optical compounds which find applications in non-linear optics and light emitting diodes [1]. The quasi-cubic model can be used to investigate the symmetric properties of both the bands at the zone center of wave vector space of the same compound [2]. Including the anisotropic crystal potential in the Hamiltonian, and special features of the nonlinear optical compounds, Kildal [3] formulated the electron dispersion law under the assumptions of the isotropic momentum matrix and the isotropic spin orbit splitting constant, respectively, although the anisotropies in the two aforementioned band constants are the significant physical features of the said materials [4]. In Section 2.2.1, the photoemission from QWs in UFs and QWWs of nonlinear optical materials is investigated by considering the combined influence of the anisotropies of the said energy band constants together with the inclusion of the crystal field splitting.

Keywords

Dispersion Relation Bulk Specimen Nonlinear Optical Material Crystal Field Splitting Subband Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. L. Shay, J. W. Wernick, Ternary Chalcopyrite Semiconductors-Growth, Electronic Properties and Applications Ternary Chalcopyrite Semiconductors-Growth, Electronic Properties and Applications Ternary Chalcopyrite Semiconductors-Growth, Electronic Properties and Applications Ternary Chalcopyrite Semiconductors-Growth, Electronic Properties and Applications (Pergamon Press, UK, 1975).Google Scholar
  2. 2.
    J. W. Rowe, J. L. Shay, Phys. Rev. B 3, 3, 3, 3, 451 (1973).CrossRefGoogle Scholar
  3. 3.
    H. Kildal, Phys. Rev. B 10, 10, 10, 10, 5082 (1974).CrossRefGoogle Scholar
  4. 4.
    J. Bodnar, in Proc. Int. Conf. of the Physics of Narrow-gap Semiconductors Proc. Int. Conf. of the Physics of Narrow-gap Semiconductors Proc. Int. Conf. of the Physics of Narrow-gap Semiconductors Proc. Int. Conf. of the Physics of Narrow-gap Semiconductors (Polish Science Publishers, Warsaw, 1978); G. P. Chuiko, N. N. Chuiko, Sov. Phys. Semicond. 15 15 15 15 , 739 (1981); K. P. Ghatak, S. N. Biswas, Proc. SPIE 1484, 1484, 1484, 1484, 149 (1991).Google Scholar
  5. 5.
    A. Rogalski, J. Alloys Comp. 371 371 371 371 , 53 (2004).CrossRefGoogle Scholar
  6. 6.
    A. Baumgartner, A. Chaggar, A. Patanè, L. Eaves, M. Henini, Appl. Phys. Lett. 92 92 92 92 , 091121 (2008).CrossRefGoogle Scholar
  7. 7.
    J. Devenson, R. Teissier, O. Cathabard, A. N. Baranov, Proc. SPIE 6909 6909 6909 6909 , 69090U (2008).CrossRefGoogle Scholar
  8. 8.
    B. S. Passmore, J. Wu, M. O. Manasreh, G. J. Salamo, Appl. Phys. Lett. 91 91 91 91 , 233508 (2007).CrossRefGoogle Scholar
  9. 9.
    M. Mikhailova, N. Stoyanov, I. Andreev, B. Zhurtanov, S. Kizhaev, E. Kunitsyna, K. Salikhov, Y. Yakovlev, Proc. SPIE 6585 6585 6585 6585 , 658526 (2007).CrossRefGoogle Scholar
  10. 10.
    W. Kruppa, J. B. Boos, B. R. Bennett, N. A. Papanicolaou, D. Park, R. Bass, Electron. Lett. 42 42 42 42 , 688 (2006).CrossRefGoogle Scholar
  11. 11.
    B. R. Nag, Electron Transport in Compound Semiconductors Electron Transport in Compound Semiconductors Electron Transport in Compound Semiconductors Electron Transport in Compound Semiconductors , Springer Series in Solid-State Sciences, Vol. 11 11 11 11 (Springer Verlag, Germany, 1980); E. O. Kane, In: Semiconductors and Semimetals Semiconductors and Semimetals Semiconductors and Semimetals Semiconductors and Semimetals , Vol. 1, Ed. By R. K. Willardson, A. C. Beer (Academic Press, USA, 1966) p. 75.Google Scholar
  12. 12.
    J. A. Zapien, Y. K. Liu, Y. Y. Shan, H. Tang, C. S. Lee, S. T. Lee, Appl. Phys. Lett. 90 90 90 90 , 213114 (2007).CrossRefGoogle Scholar
  13. 13.
    R. M. Park, Proc. SPIE 2524 2524 2524 2524 , 142 (1995).CrossRefGoogle Scholar
  14. 14.
    S. -G. Hur, E. T. -Kim, J. H. -Lee, G. H. -Kim, S. G. -Yoon, Electrochem. Solid-State Lett. 11 11 11 11 , H176 (2008); H. Kroemer, Rev. Mod. Phys. 73 73 73 73 , 783 (2001); T. Nguyen Duy, J. Meslage, G. Pichard, J. Crys, Growth 72 72 72 72 , 490 (1985); T. Aramoto, F. Adurodija, Y. Nishiyama, T. Arita, A. Hanafusa, K. Omura, A. Morita, Solar Energy Mat. Solar Cells 75 75 75 75 , 211 (2003); H. B. Barber, J. Elect. Mat. 25 25 25 25 , 1232 (1996); S. Taniguchi, T. Hino, S. Itoh, K. Nakano, N. Nakayama, A. Ishibashi, M. Ikeda, Elect. Lett. 32 32 32 32 , 552 (1996).CrossRefGoogle Scholar
  15. 15.
    J. J. Hopfield, J. Appl. Phys. 32, 32, 32, 32, 2277 (1961).Google Scholar
  16. 16.
    F. Hatami, V. Lordi, J. S. Harris, H. Kostial, W. T. Masselink, J. Appl. Phys. 97 97 97 97 , 096106 (2005).Google Scholar
  17. 17.
    B. W. Wessels, J. Electrochem. Soc. 122 122 122 122 , 402 (1975); D. W. L. Tolfree, J. Sci. Instrum. 41 41 41 41 788, 1964; P. B. Hart, Proc. IEEE 61 61 61 61 , 880, 1973.CrossRefGoogle Scholar
  18. 18.
    H. Choi, M. Chang, M. Jo, S. J. Jung, H. Hwang, Electrochem. Solid-State Lett. 11 11 11 11 , H154 (2008).CrossRefGoogle Scholar
  19. 19.
    S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, Appl. Opt. 35 35 35 35 , 1956 (1996); H. W. H. Lee, B. R. Taylor, S. M. Kauzlarich, Nonlinear Optics: Materials, Fundamentals, and Applications Nonlinear Optics: Materials, Fundamentals, and Applications Nonlinear Optics: Materials, Fundamentals, and Applications Nonlinear Optics: Materials, Fundamentals, and Applications (Technical Digest, 12, 2000); E. Brundermann, U. Heugen, A. Bergner, R. Schiwon, G. W. Schwaab, S. Ebbinghaus, D. R. Chamberlin, E. E. Haller, M. Havenith, 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Terahertz Electronics 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Terahertz Electronics 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Terahertz Electronics 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Terahertz Electronics , 283 (2004).CrossRefGoogle Scholar
  20. 20.
    M. A. Hines, G. D. Scholes, Adv. Mater. 15 15 15 15 , 1844 (2003); C. A. Wang, R. K. Huang, D. A. Shiau, M. K. Connors, P. G. Murphy, P. W. O’Brien, A. C. Anderson, D. M. DePoy, G. Nichols, M. N. Palmisiano, Appl. Phys. Lett. 83, 83, 83, 83, 1286 (2003); C. W. Hitchcock, R. J. Gutmann, J. M. Borrego, I. B. Bhat, G. W. Charache, IEEE Trans. Electron. Dev. 46 46 46 46 , 2154 (1999).CrossRefGoogle Scholar
  21. 21.
    F. Hüe, M. Hÿtch, H. Bender, F. Houdellier, A. Claverie, Phys. Rev. Lett. 100 100 100 100 , 156602 (2008); S. Banerjee, K. A. Shore, C. J. Mitchell, J. L. Sly, M. Missous, IEE Proc. Circ. Dev. Syst. 152 152 152 152 , 497 (2005); M. Razeghi, A. Evans, S. Slivken, J. S. Yu, J. G. Zheng, V. P. Dravid, Proc. SPIE 5840 5840 5840 5840 , 54 (2005); R. A. Stradling, Semicond. Sci. Technol. 6 6 6 6 , C52 (1991).CrossRefGoogle Scholar
  22. 22.
    R. V. Belosludov, A. A. Farajian, H. Mizuseki, K. Miki, Y. Kawazoe, Phys. Rev. B 75 75 75 75 , 113411 (2007); J. Heremans, C. M. Thrush, Y. -M. Lin, S. Cronin, Z. Zhang, M. S. Dresselhaus, J. F. Mansfield, Phys. Rev. B. 61 61 61 61 , 2921. (2000).CrossRefGoogle Scholar
  23. 23.
    D. Shoenberg, Proc. Roy. Soc. (London) 170 170 170 170 , 341 (1939); B. Abeles, S. Meiboom, Phys. Rev. 101 101 101 101 , 544 (1956).CrossRefGoogle Scholar
  24. 24.
    B. Lax, J. G. Mavroides, H. J. Zieger, R. J. Keyes, Phys. Rev. Letts. 5 5 5 5 , 241 (1960).CrossRefGoogle Scholar
  25. 25.
    M. Maltz, M. S. Dresselhaus, Phys. Rev. B 2 2 2 2 , 2877 (1970).CrossRefGoogle Scholar
  26. 26.
    M. Cankurtaran, H. Celik, T. Alper, J. Phys. F: Metal Phys. 16 16 16 16 , 853 (1986).CrossRefGoogle Scholar
  27. 27.
    Y. -H. Kao, Phys. Rev. 129, 129, 129, 129, 1122 (1963).CrossRefGoogle Scholar
  28. 28.
    R. J. Dinger, A. W. Lawson, Phys. Rev. B 3 3 3 3 , 253 (1971).CrossRefGoogle Scholar
  29. 29.
    J. F. Koch, J. D. Jensen, Phys. Rev. 184 184 184 184 , 643 (1969).CrossRefGoogle Scholar
  30. 30.
    M. H. Cohen, Phys. Rev. 121 121 121 121 , 387 (1961).CrossRefGoogle Scholar
  31. 31.
    S. Takaoka, H. Kawamura, K. Murase, S. Takano, Phys. Rev. B 13 13 13 13 , 1428 (1976).CrossRefGoogle Scholar
  32. 32.
    J. W. McClure, K. H. Choi, Solid State Comm. 21 21 21 21 , 1015 (1977).CrossRefGoogle Scholar
  33. 33.
    S. Iijima, Nature 354 354 354 354 , 56 (1991).CrossRefGoogle Scholar
  34. 34.
    J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai, Science 287 287 287 287 , 622 (2000).CrossRefGoogle Scholar
  35. 35.
    P. Kim, C. M. Lieber, Science 286 286 286 286 , 2148 (1999).CrossRefGoogle Scholar
  36. 36.
    S. J. Tans, A. R. M. Verschueren, C. Dekker, Nature 393 393 393 393 , 49 (1998).CrossRefGoogle Scholar
  37. 37.
    P. G. Collins, A. Zettl, H. Bando, A. Thess, R. E. Smalley, Science 278 278 278 278 , 100 (1997).CrossRefGoogle Scholar
  38. 38.
    A. Bacthtold, P. Hadley, T. Nakanish, C. Dekker, Science 294 294 294 294 , 1317 (2001).CrossRefGoogle Scholar
  39. 39.
    S. B. Legoas, V. R. Coluci, S. F. Braga, P. Z. Coura, S. O. Dantus, D. S. Galvao, Nanotechnology 15 15 15 15 , S184 (2004).CrossRefGoogle Scholar
  40. 40.
    W. Z. Liang, J. Sun, J. Yang, J. Comp. Theo. Nanosci. 3 3 3 3 , 843 (2006); D. Baowan, J. M. Hill, J. Comp. Theo. Nanosci. 5 5 5 5 , 302 (2008) and the references cited therein.CrossRefGoogle Scholar
  41. 41.
    R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes Physical Properties of Carbon Nanotubes Physical Properties of Carbon Nanotubes Physical Properties of Carbon Nanotubes (Imperial College Press, UK, 1998).Google Scholar
  42. 42.
    C. Dekker, Physics Today 52 52 52 52 , 22 (1999).CrossRefGoogle Scholar
  43. 43.
    M. Endo, S. Ijima, M. S. Dresselhaus, Carbon Nanotubes Carbon Nanotubes Carbon Nanotubes Carbon Nanotubes (Pergamon Press, UK, 1996).Google Scholar
  44. 44.
    T. Maltezopoulos, A. Kubetzka, M. Morgenstern, R. Wiesendanger , S. G. Lemay, C. Dekker, Appl. Phys. Lett. 83 83 83 83 , 1011 (2003).CrossRefGoogle Scholar
  45. 45.
    R. Heyd, A. Charlier, E. McRae, Phys. Rev. B 55 55 55 55 , 6820 (1997).CrossRefGoogle Scholar
  46. 46.
    J. W. Mintmire, C. T. White, Phys. Rev. Lett. 81 81 81 81 , 2506 (1998).CrossRefGoogle Scholar
  47. 47.
    K. P. Ghatak, S. Bhattacharya, D. De, Einstein Relation in Compound Semiconductors and their Nanostructures Einstein Relation in Compound Semiconductors and their Nanostructures Einstein Relation in Compound Semiconductors and their Nanostructures Einstein Relation in Compound Semiconductors and their Nanostructures (Springer Series in Materials Science, Vol. 116, Springer-Verlag, Germany, 2008).Google Scholar
  48. 48.
    M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, Handbook of Mathematical Functions, Handbook of Mathematical Functions, Handbook of Mathematical Functions, (Dover, USA, 1965).Google Scholar
  49. 49.
    G. J. Rees, Phys. Compounds, Proc. of the 13th Inter. Nat. Conf. Ed. F. G. Fumi, 1166 (North Holland Company, The Netherlands 1976).Google Scholar
  50. 50.
    M. Cardona, W. Paul, H. Brooks Helv, Acta Physica 33 33 33 33 , 329 (1960); A. F. Gibson, In: Proceeding of International School of Physics “ENRICO FERMI” Proceeding of International School of Physics “ENRICO FERMI” Proceeding of International School of Physics “ENRICO FERMI” Proceeding of International School of Physics “ENRICO FERMI” course XIII, 171 Ed. R. A Smith, (Academic Press, USA, 1963), p. 171.Google Scholar
  51. 51.
    C. C. Wang, N. W. Ressler, Phys. Rev. 2 2 2 2 , 1827 (1970).CrossRefGoogle Scholar
  52. 52.
    M. Zalazny, Phys. B 124 124 124 124 , 352 (1984).CrossRefGoogle Scholar
  53. 53.
    P. R. Emtage, Phys. Rev. 138 138 138 138 , A246 (1965).CrossRefGoogle Scholar
  54. 54.
    P. M. Petroff, A. C. Gossard, R. A. Logan, W. Wiegmann, Appl. Phys. Lett. 41 41 41 41 , 635 (1982); S. W. Lee, D. S. Lee, R. E. Morjan, S. H. Jhang, M. Sveningsson, O. A. Nerushev, Y. W. Park, E. E. B. Campbell, Nano. Lett. 4, 2027 (2004).CrossRefGoogle Scholar
  55. 55.
    I. M. Tsidilkovskii, Band Structures of Semiconductors Band Structures of Semiconductors Band Structures of Semiconductors Band Structures of Semiconductors (Pergamon Press, UK, 1982).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kamakhya Prasad Ghatak
    • 1
  • Debashis De
    • 2
  • Sitangshu Bhattacharya
    • 3
  1. 1.Department of Electronic ScienceThe University of CalcuttaKolkataIndia
  2. 2.Department of Computer Science and EngineeringWest Bengal University of TechnologyKolkataIndia
  3. 3.Nano Scale Device Research LaboratoryCentre for Electronics Design and Technology Indian Institute of ScienceBangaloreIndia

Personalised recommendations