Skip to main content

Fundamentals of Photoemission from Quantum Wells in Ultrathin Films and Quantum Well Wires of Various Nonparabolic Materials

  • Chapter
  • First Online:
Photoemission from Optoelectronic Materials and their Nanostructures

In chapter 1, the photoemission from wide-gap materials having parabolic energy bands under different physical conditions has been studied. For the purpose of in-depth study, in this chapter, the same has been investigated from QWs in UFs and QWWs of non-parabolic materials having different band structures. The journey towards the knowledge temple known as the photoelectric effect begins with the non-linear optical compounds which find applications in non-linear optics and light emitting diodes [1]. The quasi-cubic model can be used to investigate the symmetric properties of both the bands at the zone center of wave vector space of the same compound [2]. Including the anisotropic crystal potential in the Hamiltonian, and special features of the nonlinear optical compounds, Kildal [3] formulated the electron dispersion law under the assumptions of the isotropic momentum matrix and the isotropic spin orbit splitting constant, respectively, although the anisotropies in the two aforementioned band constants are the significant physical features of the said materials [4]. In Section 2.2.1, the photoemission from QWs in UFs and QWWs of nonlinear optical materials is investigated by considering the combined influence of the anisotropies of the said energy band constants together with the inclusion of the crystal field splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. L. Shay, J. W. Wernick, Ternary Chalcopyrite Semiconductors-Growth, Electronic Properties and Applications Ternary Chalcopyrite Semiconductors-Growth, Electronic Properties and Applications Ternary Chalcopyrite Semiconductors-Growth, Electronic Properties and Applications Ternary Chalcopyrite Semiconductors-Growth, Electronic Properties and Applications (Pergamon Press, UK, 1975).

    Google Scholar 

  2. J. W. Rowe, J. L. Shay, Phys. Rev. B 3, 3, 3, 3, 451 (1973).

    Article  Google Scholar 

  3. H. Kildal, Phys. Rev. B 10, 10, 10, 10, 5082 (1974).

    Article  CAS  Google Scholar 

  4. J. Bodnar, in Proc. Int. Conf. of the Physics of Narrow-gap Semiconductors Proc. Int. Conf. of the Physics of Narrow-gap Semiconductors Proc. Int. Conf. of the Physics of Narrow-gap Semiconductors Proc. Int. Conf. of the Physics of Narrow-gap Semiconductors (Polish Science Publishers, Warsaw, 1978); G. P. Chuiko, N. N. Chuiko, Sov. Phys. Semicond. 15 15 15 15 , 739 (1981); K. P. Ghatak, S. N. Biswas, Proc. SPIE 1484, 1484, 1484, 1484, 149 (1991).

    Google Scholar 

  5. A. Rogalski, J. Alloys Comp. 371 371 371 371 , 53 (2004).

    Article  CAS  Google Scholar 

  6. A. Baumgartner, A. Chaggar, A. Patanè, L. Eaves, M. Henini, Appl. Phys. Lett. 92 92 92 92 , 091121 (2008).

    Article  Google Scholar 

  7. J. Devenson, R. Teissier, O. Cathabard, A. N. Baranov, Proc. SPIE 6909 6909 6909 6909 , 69090U (2008).

    Article  Google Scholar 

  8. B. S. Passmore, J. Wu, M. O. Manasreh, G. J. Salamo, Appl. Phys. Lett. 91 91 91 91 , 233508 (2007).

    Article  Google Scholar 

  9. M. Mikhailova, N. Stoyanov, I. Andreev, B. Zhurtanov, S. Kizhaev, E. Kunitsyna, K. Salikhov, Y. Yakovlev, Proc. SPIE 6585 6585 6585 6585 , 658526 (2007).

    Article  Google Scholar 

  10. W. Kruppa, J. B. Boos, B. R. Bennett, N. A. Papanicolaou, D. Park, R. Bass, Electron. Lett. 42 42 42 42 , 688 (2006).

    Article  CAS  Google Scholar 

  11. B. R. Nag, Electron Transport in Compound Semiconductors Electron Transport in Compound Semiconductors Electron Transport in Compound Semiconductors Electron Transport in Compound Semiconductors , Springer Series in Solid-State Sciences, Vol. 11 11 11 11 (Springer Verlag, Germany, 1980); E. O. Kane, In: Semiconductors and Semimetals Semiconductors and Semimetals Semiconductors and Semimetals Semiconductors and Semimetals , Vol. 1, Ed. By R. K. Willardson, A. C. Beer (Academic Press, USA, 1966) p. 75.

    Google Scholar 

  12. J. A. Zapien, Y. K. Liu, Y. Y. Shan, H. Tang, C. S. Lee, S. T. Lee, Appl. Phys. Lett. 90 90 90 90 , 213114 (2007).

    Article  Google Scholar 

  13. R. M. Park, Proc. SPIE 2524 2524 2524 2524 , 142 (1995).

    Article  Google Scholar 

  14. S. -G. Hur, E. T. -Kim, J. H. -Lee, G. H. -Kim, S. G. -Yoon, Electrochem. Solid-State Lett. 11 11 11 11 , H176 (2008); H. Kroemer, Rev. Mod. Phys. 73 73 73 73 , 783 (2001); T. Nguyen Duy, J. Meslage, G. Pichard, J. Crys, Growth 72 72 72 72 , 490 (1985); T. Aramoto, F. Adurodija, Y. Nishiyama, T. Arita, A. Hanafusa, K. Omura, A. Morita, Solar Energy Mat. Solar Cells 75 75 75 75 , 211 (2003); H. B. Barber, J. Elect. Mat. 25 25 25 25 , 1232 (1996); S. Taniguchi, T. Hino, S. Itoh, K. Nakano, N. Nakayama, A. Ishibashi, M. Ikeda, Elect. Lett. 32 32 32 32 , 552 (1996).

    Article  CAS  Google Scholar 

  15. J. J. Hopfield, J. Appl. Phys. 32, 32, 32, 32, 2277 (1961).

    CAS  Google Scholar 

  16. F. Hatami, V. Lordi, J. S. Harris, H. Kostial, W. T. Masselink, J. Appl. Phys. 97 97 97 97 , 096106 (2005).

    Google Scholar 

  17. B. W. Wessels, J. Electrochem. Soc. 122 122 122 122 , 402 (1975); D. W. L. Tolfree, J. Sci. Instrum. 41 41 41 41 788, 1964; P. B. Hart, Proc. IEEE 61 61 61 61 , 880, 1973.

    Article  CAS  Google Scholar 

  18. H. Choi, M. Chang, M. Jo, S. J. Jung, H. Hwang, Electrochem. Solid-State Lett. 11 11 11 11 , H154 (2008).

    Article  CAS  Google Scholar 

  19. S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, Appl. Opt. 35 35 35 35 , 1956 (1996); H. W. H. Lee, B. R. Taylor, S. M. Kauzlarich, Nonlinear Optics: Materials, Fundamentals, and Applications Nonlinear Optics: Materials, Fundamentals, and Applications Nonlinear Optics: Materials, Fundamentals, and Applications Nonlinear Optics: Materials, Fundamentals, and Applications (Technical Digest, 12, 2000); E. Brundermann, U. Heugen, A. Bergner, R. Schiwon, G. W. Schwaab, S. Ebbinghaus, D. R. Chamberlin, E. E. Haller, M. Havenith, 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Terahertz Electronics 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Terahertz Electronics 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Terahertz Electronics 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Terahertz Electronics , 283 (2004).

    Article  CAS  Google Scholar 

  20. M. A. Hines, G. D. Scholes, Adv. Mater. 15 15 15 15 , 1844 (2003); C. A. Wang, R. K. Huang, D. A. Shiau, M. K. Connors, P. G. Murphy, P. W. O’Brien, A. C. Anderson, D. M. DePoy, G. Nichols, M. N. Palmisiano, Appl. Phys. Lett. 83, 83, 83, 83, 1286 (2003); C. W. Hitchcock, R. J. Gutmann, J. M. Borrego, I. B. Bhat, G. W. Charache, IEEE Trans. Electron. Dev. 46 46 46 46 , 2154 (1999).

    Article  CAS  Google Scholar 

  21. F. Hüe, M. Hÿtch, H. Bender, F. Houdellier, A. Claverie, Phys. Rev. Lett. 100 100 100 100 , 156602 (2008); S. Banerjee, K. A. Shore, C. J. Mitchell, J. L. Sly, M. Missous, IEE Proc. Circ. Dev. Syst. 152 152 152 152 , 497 (2005); M. Razeghi, A. Evans, S. Slivken, J. S. Yu, J. G. Zheng, V. P. Dravid, Proc. SPIE 5840 5840 5840 5840 , 54 (2005); R. A. Stradling, Semicond. Sci. Technol. 6 6 6 6 , C52 (1991).

    Article  Google Scholar 

  22. R. V. Belosludov, A. A. Farajian, H. Mizuseki, K. Miki, Y. Kawazoe, Phys. Rev. B 75 75 75 75 , 113411 (2007); J. Heremans, C. M. Thrush, Y. -M. Lin, S. Cronin, Z. Zhang, M. S. Dresselhaus, J. F. Mansfield, Phys. Rev. B. 61 61 61 61 , 2921. (2000).

    Article  Google Scholar 

  23. D. Shoenberg, Proc. Roy. Soc. (London) 170 170 170 170 , 341 (1939); B. Abeles, S. Meiboom, Phys. Rev. 101 101 101 101 , 544 (1956).

    Article  CAS  Google Scholar 

  24. B. Lax, J. G. Mavroides, H. J. Zieger, R. J. Keyes, Phys. Rev. Letts. 5 5 5 5 , 241 (1960).

    Article  CAS  Google Scholar 

  25. M. Maltz, M. S. Dresselhaus, Phys. Rev. B 2 2 2 2 , 2877 (1970).

    Article  Google Scholar 

  26. M. Cankurtaran, H. Celik, T. Alper, J. Phys. F: Metal Phys. 16 16 16 16 , 853 (1986).

    Article  CAS  Google Scholar 

  27. Y. -H. Kao, Phys. Rev. 129, 129, 129, 129, 1122 (1963).

    Article  CAS  Google Scholar 

  28. R. J. Dinger, A. W. Lawson, Phys. Rev. B 3 3 3 3 , 253 (1971).

    Article  Google Scholar 

  29. J. F. Koch, J. D. Jensen, Phys. Rev. 184 184 184 184 , 643 (1969).

    Article  CAS  Google Scholar 

  30. M. H. Cohen, Phys. Rev. 121 121 121 121 , 387 (1961).

    Article  CAS  Google Scholar 

  31. S. Takaoka, H. Kawamura, K. Murase, S. Takano, Phys. Rev. B 13 13 13 13 , 1428 (1976).

    Article  CAS  Google Scholar 

  32. J. W. McClure, K. H. Choi, Solid State Comm. 21 21 21 21 , 1015 (1977).

    Article  CAS  Google Scholar 

  33. S. Iijima, Nature 354 354 354 354 , 56 (1991).

    Article  CAS  Google Scholar 

  34. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai, Science 287 287 287 287 , 622 (2000).

    Article  CAS  Google Scholar 

  35. P. Kim, C. M. Lieber, Science 286 286 286 286 , 2148 (1999).

    Article  CAS  Google Scholar 

  36. S. J. Tans, A. R. M. Verschueren, C. Dekker, Nature 393 393 393 393 , 49 (1998).

    Article  CAS  Google Scholar 

  37. P. G. Collins, A. Zettl, H. Bando, A. Thess, R. E. Smalley, Science 278 278 278 278 , 100 (1997).

    Article  CAS  Google Scholar 

  38. A. Bacthtold, P. Hadley, T. Nakanish, C. Dekker, Science 294 294 294 294 , 1317 (2001).

    Article  Google Scholar 

  39. S. B. Legoas, V. R. Coluci, S. F. Braga, P. Z. Coura, S. O. Dantus, D. S. Galvao, Nanotechnology 15 15 15 15 , S184 (2004).

    Article  CAS  Google Scholar 

  40. W. Z. Liang, J. Sun, J. Yang, J. Comp. Theo. Nanosci. 3 3 3 3 , 843 (2006); D. Baowan, J. M. Hill, J. Comp. Theo. Nanosci. 5 5 5 5 , 302 (2008) and the references cited therein.

    Article  CAS  Google Scholar 

  41. R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes Physical Properties of Carbon Nanotubes Physical Properties of Carbon Nanotubes Physical Properties of Carbon Nanotubes (Imperial College Press, UK, 1998).

    Google Scholar 

  42. C. Dekker, Physics Today 52 52 52 52 , 22 (1999).

    Article  CAS  Google Scholar 

  43. M. Endo, S. Ijima, M. S. Dresselhaus, Carbon Nanotubes Carbon Nanotubes Carbon Nanotubes Carbon Nanotubes (Pergamon Press, UK, 1996).

    Google Scholar 

  44. T. Maltezopoulos, A. Kubetzka, M. Morgenstern, R. Wiesendanger , S. G. Lemay, C. Dekker, Appl. Phys. Lett. 83 83 83 83 , 1011 (2003).

    Article  CAS  Google Scholar 

  45. R. Heyd, A. Charlier, E. McRae, Phys. Rev. B 55 55 55 55 , 6820 (1997).

    Article  CAS  Google Scholar 

  46. J. W. Mintmire, C. T. White, Phys. Rev. Lett. 81 81 81 81 , 2506 (1998).

    Article  CAS  Google Scholar 

  47. K. P. Ghatak, S. Bhattacharya, D. De, Einstein Relation in Compound Semiconductors and their Nanostructures Einstein Relation in Compound Semiconductors and their Nanostructures Einstein Relation in Compound Semiconductors and their Nanostructures Einstein Relation in Compound Semiconductors and their Nanostructures (Springer Series in Materials Science, Vol. 116, Springer-Verlag, Germany, 2008).

    Google Scholar 

  48. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, Handbook of Mathematical Functions, Handbook of Mathematical Functions, Handbook of Mathematical Functions, (Dover, USA, 1965).

    Google Scholar 

  49. G. J. Rees, Phys. Compounds, Proc. of the 13th Inter. Nat. Conf. Ed. F. G. Fumi, 1166 (North Holland Company, The Netherlands 1976).

    Google Scholar 

  50. M. Cardona, W. Paul, H. Brooks Helv, Acta Physica 33 33 33 33 , 329 (1960); A. F. Gibson, In: Proceeding of International School of Physics “ENRICO FERMI” Proceeding of International School of Physics “ENRICO FERMI” Proceeding of International School of Physics “ENRICO FERMI” Proceeding of International School of Physics “ENRICO FERMI” course XIII, 171 Ed. R. A Smith, (Academic Press, USA, 1963), p. 171.

    Google Scholar 

  51. C. C. Wang, N. W. Ressler, Phys. Rev. 2 2 2 2 , 1827 (1970).

    Article  Google Scholar 

  52. M. Zalazny, Phys. B 124 124 124 124 , 352 (1984).

    Article  Google Scholar 

  53. P. R. Emtage, Phys. Rev. 138 138 138 138 , A246 (1965).

    Article  Google Scholar 

  54. P. M. Petroff, A. C. Gossard, R. A. Logan, W. Wiegmann, Appl. Phys. Lett. 41 41 41 41 , 635 (1982); S. W. Lee, D. S. Lee, R. E. Morjan, S. H. Jhang, M. Sveningsson, O. A. Nerushev, Y. W. Park, E. E. B. Campbell, Nano. Lett. 4, 2027 (2004).

    Article  CAS  Google Scholar 

  55. I. M. Tsidilkovskii, Band Structures of Semiconductors Band Structures of Semiconductors Band Structures of Semiconductors Band Structures of Semiconductors (Pergamon Press, UK, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamakhya Prasad Ghatak .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ghatak, K.P., De, D., Bhattacharya, S. (2009). Fundamentals of Photoemission from Quantum Wells in Ultrathin Films and Quantum Well Wires of Various Nonparabolic Materials. In: Photoemission from Optoelectronic Materials and their Nanostructures. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78606-3_2

Download citation

Publish with us

Policies and ethics