Skip to main content

Part of the book series: Fuel Cells and Hydrogen Energy ((FCHY))

  • 1690 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bogdanović, B. Sandrock, G. (2002) “Catalyzed complex metal hydrides”, MRS Bull. 27 (9) 712–716.

    Google Scholar 

  2. Schüth, F. Bogdanović, B. Felderhoff, M. (2004) “Light metal hydrides and complex hydrides for hydrogen storage”, Chem. Commun. (Camb) 21 2249–2258.

    Article  Google Scholar 

  3. Seayad, A.M. Antonelli, D.M. (2004) “Recent advances in hydrogen storage in metal-containing inorganic nanostructures and related materials”, Adv. Mater. 16 765–777.

    Article  Google Scholar 

  4. Fichtner, M. (2005) “Nanotechnological aspects in materials for hydrogen storage”, Adv. Eng. Mater. 7 443–455.

    Article  Google Scholar 

  5. Chandra, D. Reilly, J.J. Chellapa, R. (2006) “Metal hydrides for vehicular applications: The state of the art”, JOM 58 (2) 26–32.

    Article  Google Scholar 

  6. Bogdanović, B. Eberle, U. Felderhoff, M. Schüth, F. (2007) “Complex aluminum hydrides”, Scripta Mater. 56 813–816.

    Article  Google Scholar 

  7. Orimo, S.I. Nakamori, Y. Eliseo, J.R. Züttel, A. Jensen, C.M. (2007) “Complex hydrides for hydrogen storage”, Chem. Rev. 107 4111–4132.

    Article  Google Scholar 

  8. Bortz, M. Bertheville, B. Yvon, K. Movlaev, E.A. Verbetsky, V.N. Fauth, F. (1998) “Mg3,MnH7, containing the first known hexahydridomanganese (I) complex”, J. Alloys Compd. 279 L8–L10.

    Article  Google Scholar 

  9. Aiello, R. Sharp, J.H. Matthews, M.A. (1999) “Production of hydrogen from chemical hydrides via hydrolysis with steam”, Int. J. Hydrogen Energ. 24 1123–1130.

    Article  Google Scholar 

  10. Amendola, S.C. Sharp-Goldman, S.L. Saleem Janjua, M. Spencer, N.C. Kelly, M.T. Petillo, P.J. Binder, M. (2000) “A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst”, Int. J. Hydrogen Energ. 25 969–975.

    Article  Google Scholar 

  11. Suda, S. Sun, Y.-M. Liu, B.-H. Zhou, Y. Morimitsu, S. Arai, K. Tsukamoto, N. Uchida, M. Candra, Y. Li, Z.-P. (2001) “Catalytic generation of hydrogen by applying fluorinated-metal hydrides as catalysts”, Appl. Phys. A 72 209–212.

    Article  Google Scholar 

  12. Kojima, Y. Suzuki, K. Fukumoto, K. Sasaki, M. Yamamoto, T. Kawai, Y. Hayashi, H. (2002) “Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide”, Int. J. Hydrogen Energ. 27 1029–1034.

    Article  Google Scholar 

  13. B. H. Liu, S. Suda, “Hydrogen storage alloys as the anode materials of the direct borohydride fuel cell”, J. Alloys Compd. (2007) (in press; doi:10.1016/j.jallcom.2006.12.034).

    Google Scholar 

  14. Okamoto, H. 2000.Desk Handbook-Phase Diagrams for Binary Alloys, ASM International, Materials Park, OH, p. 550

    Google Scholar 

  15. G. Sandrock, “A panoramic overview of hydrogen storage alloys from a gas reaction point of view”, J. Alloys Compd. 293–295 (1999) 877–888.

    Google Scholar 

  16. Reilly, J.J. Wiswall, R.H. (1968) “The reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2,NiH4”, Inorg. Chem. 7 2254–2256.

    Article  Google Scholar 

  17. Singh, A. K. Singh, A. K. Srivastava, O.N. (1995) “On the synthesis of the Mg2,Ni alloy by mechanical alloying”, J. Alloys Compd. 227 63–68.

    Article  Google Scholar 

  18. Zaluski, L. Zaluska, A. Ström-Olsen, J.O. (1995) “Hydrogen absorption in nanocrystalline Mg2,Ni formed by mechanical alloying”, J. Alloys Compd. 217 245–249.

    Article  Google Scholar 

  19. Varin, R.A. Czujko, T. (2002) “Overview of processing of nanocrystalline hydrogen storage intermetallics by mechanical alloying/milling”, Mater. Manuf. Process. 17 129–156.

    Article  Google Scholar 

  20. Li, L. Akiyama, T. Yagi, J. (2001) “Activation behaviors of Mg2,NiH4 at different hydrogen pressures in hydriding combustion synthesis”, Int. J. Hydrogen Energ. 26 1035–1040.

    Article  Google Scholar 

  21. Li, L. Akiyama, T. Yagi, J. (2001) “Activity and capacity of hydrogen storage alloy Mg2, NiH4 produced by hydriding combustion synthesis”, J. Alloys Compd. 316 118–123.

    Article  Google Scholar 

  22. Li, L. Saita, I. Saito, K. Akiyama, T. (2002) “Effect of synthesis temperature on the purity of product in hydriding combustion synthesis of Mg2,NiH4”, J. Alloys Compd. 345 189–195.

    Article  Google Scholar 

  23. Hampton, M.D. Juturu, R. Lomness, J. (1999) “The activation of Mg1Ni for initial hydrogen uptake by treatment with water vapor”, Int. J. Hydrogen Energ. 24 981–988.

    Article  Google Scholar 

  24. M.D. Hampton, J.K. Lomness, L.A. Giannuzzi, “Surface study of liquid water treated and water vapor treated Mg2.35 Ni alloy”

    Google Scholar 

  25. Shao, H. Liu, T. Li, X. Zhang, L. (2003) “Preparation of Mg2,Ni intermetallic compound from nanoparticles”, Scripta Mater. 49 595–599.

    Article  Google Scholar 

  26. Varin, R.A. Czujko, T. Mizera, J. (2003) “Microstructural evolution during controlled ball milling of (Mg2,Ni + MgNi2) intermetallic alloy”, J. Alloys Compd. 350 332–339.

    Article  Google Scholar 

  27. Varin, R.A. Czujko, T. Mizera, J. (2003) “The effect of MgNi2, intermetallic compound on nanostructurization and amorphization of Mg–Ni alloys processed by controlled mechanical milling”, J. Alloys Compd. 354 281–295.

    Article  Google Scholar 

  28. Chen, C. Cai, G. Chen, Y. An, Y. Xu, G. Wang, Q. (2003) “Hydrogen absorption properties of the slurry system composed of liquid C6,H6 and F-treated Mg2Ni”, J. Alloys Compd. 350 275–279.

    Article  Google Scholar 

  29. Liu, X. Zhu, Y. Li, L. (2006) “Hydriding and dehydriding properties of nanostructured Mg2,Ni alloy prepared by the process of hydriding combustion synthesis and subsequent mechanical grinding”, J. Alloys Compd. 425 235–238.

    Article  Google Scholar 

  30. Xie, L. Shao, H.Y. Wang, Y.T. Li, Y. Li, X.G. (2007) “Synthesis and hydrogen storing properties of nanostructured ternary Mg–Ni–Co compounds”, Int. J. Hydrogen Energ. 32 1949–1953.

    Article  Google Scholar 

  31. Hara, M. Morozumi, S. Watanabe, K. (2006) “Effect of a magnesium depletion on the Mg–Ni–Y alloy hydrogen absorption properties”, J. Alloys Compd. 414 207–214.

    Article  Google Scholar 

  32. L.H. Kumar, B. Viswanathan, S.S. Murthy, “Hydrogen absorption by Mg2Ni prepared by polyol reduction”, J. Alloys Compd. (in press; doi:10.1016/j.jallcom.2007.07.028).

    Google Scholar 

  33. Wronski, Z.S. (2001) “Materials for rechargeable batteries and clean hydrogen energy sources”, Int. Mater. Rev. 46 1–52.

    Article  Google Scholar 

  34. Didisheim, J. J. Zolliker, P. Yvon, K. Fischer, P. Schefer, J. Gubelman, M. Williams, A.F. (1984) “Dimagnesium iron(I1) hydride, Mg2,FeH6, containing octahedral FeH6 4 anions”, Inorg. Chem. 23 1953–1957.

    Article  Google Scholar 

  35. Orgaz, E. Gupta, M. (1987) “Theoretical study of the X-ray absorption spectra of Mg2,FeH6”, J. Less-Comm. Met. 130 293–299.

    Article  Google Scholar 

  36. Welter, J.-M. Rudman, P.S. (1982) “Iron catalyzed hydriding of magnesium”, Scripta Metall. 16 285–286.

    Article  Google Scholar 

  37. Ivanov, E. Konstanchuk, I.G. Stepanov, A. Boldyrev, V. (1987) “Magnesium mechanical alloys for hydrogen storage”, J. Less-Comm. Met. 131 25–29.

    Article  Google Scholar 

  38. Konstanchuk, I.G. Ivanov, E. Yu. Pezat, M. Darriet, B. Boldyrev, V.V. Hagenmuller, P. (1987) “The hydriding properties of a mechanical alloy with composition Mg-25%Fe”, J. Less-Comm. Met. 131 181–189.

    Article  Google Scholar 

  39. Reiser, A. Bogdanović, B. Schlichte, K. (2000) “The application of Mg-based metal-hydrides as heat energy storage systems”, Int. J. Hydrogen Energ. 25 425–430.

    Article  Google Scholar 

  40. Bogdanović, B. Reiser, A. Schlichte, K. Spliethoff, B. Tesche, B. (2002) “Thermodynamics and dynamics of the Mg–Fe–H system and its potential for thermochemical thermal energy storage”, J. Alloys Compd. 345 77–89.

    Article  Google Scholar 

  41. Huot, J. Hayakawa, H. Akiba, E. (1997) “Preparation of the hydrides Mg2,FeH6 and Mg2CoH5 by mechanical alloying following sintering”, J. Alloys Compd. 248 164–167.

    Article  Google Scholar 

  42. Huot, J. Boily, S. Akiba, E. Schulz, R. (1998) “Direct synthesis of Mg2,FeH6 by mechanical alloying”, J. Alloys Compd. 280 306–309.

    Article  Google Scholar 

  43. Khrussanova, M. Grigorova, E. Mitov, I. Radev, D. (2001) P. Peshev, “Hydrogen sorption properties of an Mg–Ti–V–Fe nanocomposite obtained by mechanical alloying”, J. Alloys Compd. 327 230–234.

    Article  Google Scholar 

  44. Gennari, F.C. Castro, F.J. Andrade Gamboa, J.J. (2002) “Synthesis of Mg2,FeH6 by reactive mechanical alloying: formation and decomposition properties”, J. Alloys Compd. 339 261–267.

    Article  Google Scholar 

  45. C.X. Shang, M. Bououdina, Z.X. Guo, “Direct mechanical synthesis and characterisation of Mg2Fe(Cu)H6”, J. Alloys Compd. 356–357 (2003) 626–629.

    Google Scholar 

  46. Castro, F.J. Gennari, F.C. (2004) “Effect of the nature of the starting materials on the formation of Mg2,FeH6”, J. Alloys Compd. 375 292–296.

    Article  Google Scholar 

  47. Herrich, M. Ismail, N. Lyubina, J. Handstein, A. Pratt, A. Gutfleisch, O. (2004) “Synthesis and decomposition of Mg2,FeH6 prepared by reactive milling”, Mater. Sci. Eng. B108 28–32.

    Article  Google Scholar 

  48. Varin, R.A. Li, S. Calka, A. Wexler, D. (2004) “Formation and environmental stability of nanocrystalline and amorphous hydrides in the 2Mg–Fe mixture processed by controlled reactive mechanical alloying (CRMA)”, J. Alloys Compd. 373 270–286.

    Google Scholar 

  49. Li, S. Varin, R.A. Morozova, O. Khomenko, T. (2004) “Controlled mechano-chemical synthesis of nanostructured ternary complex hydride Mg2,FeH6 under low-energy impact mode with and without pre-milling”, J. Alloys Compd. 384 231–248.

    Article  Google Scholar 

  50. Li, S. Varin, R.A. Morozova, O. Khomenko, T. (2004) “Corrigendum to ‘Controlled mechano-chemical synthesis of nanostructured ternary complex hydride Mg2,FeH6 under low-energy impact mode with and without pre-milling J. Alloys Compd. 385 318.[J. Alloys Compd. 384 (2004) 231–248]’”

    Google Scholar 

  51. Varin, R.A. Li, S. Wronski, Z. Morozova, O. Khomenko, T. (2005) “The effect of sequential and continuous high-energy impact mode on the mechano-chemical synthesis of nanostructured complex hydride Mg2,FeH6”, J. Alloys Compd. 390 282–296.

    Article  Google Scholar 

  52. Varin, R.A. Li, S. Czujko, T. Wronski, Z. 2005, pp. “An overview of the controlled mechano-chemical synthesis of nanostructured complex hydride Mg2,FeH6”Gupta, M. Lim, C.Y.H. Varin, R.A. Srivatsan, T.S. Proc. Int. Symp. on Processing and Fabrication of Advanced Materials XIII (PFAM XIII), Eds. Stallion Press, Singapore, 315–331.

    Google Scholar 

  53. Zhou, D.W. Li, S.L. Varin, R.A. Peng, P. Liu, J.S. Yang, F. (2006) “Mechanical alloying and electronic simulations of 2Mg–Fe mixture powders for hydrogen storage”, Mater. Sci. Eng. A 427 306–315.

    Article  Google Scholar 

  54. Saita, I. Saito, K. Akiyama, T. (2005) “Hydriding combustion synthesis of Mg2,Ni1 -x Fe x hydride”, J. Alloys Compd. 390 265–269.

    Article  Google Scholar 

  55. J.A. Puszkiel, P.A. Larochette, F.C. Gennari, “Thermodynamic and kinetic studies of Mg–Fe–H after mechanical milling followed by sintering”, J. Alloys Compd. (2007) (in press; doi:10.1016/j.jallcom.2007.08.085).

    Google Scholar 

  56. Q. Li, J. Liu, K. C. Chou, G. W. Lin, K. D. Xu, “Synthesis and dehydrogenation behavior of Mg–Fe–H system prepared under an external magnetic field”, J. Alloys Compd. (2007) (in press; doi:10.1016/j.jallcom.2007.11.085).

    Google Scholar 

  57. Zolliker, P. Yvon, K. Fischer, P. Schefer, J. (1985) “Diamagnesium cobalt (I) pentahydride, Mg2,CoH5, containing square-pyramidal CoH5 4 ”, Inorg. Chem. 24 4177–4180.

    Article  Google Scholar 

  58. Ivanov, E.J. Konstanchuk, I. Stepanov, A. Jie, Y. Pezat, M. Darriet, B. (1989) “The ternary system Mg–Co–H”, Inorg. Chem. 28 613–615.

    Article  Google Scholar 

  59. Selvam, P. Yvon, K. (1991) “Synthesis of Mg2,FeH6, Mg2CoH5 and Mg2NiH4 by high-pressure sintering of the elements”, Int. J. Hydrogen Energ. 16 615–617.

    Article  Google Scholar 

  60. Huot, J. Hayakawa, H. Akiba, E. (1997) “Preparation of the hydrides Mg2,FeH6 and Mg2CoH5 by mechanical alloying followed by sintering”, J. Alloys Compd. 248 164–167.

    Article  Google Scholar 

  61. Chen, J. Takeshita, H.T. Chartouni, D. Kuriyama, N. Sakai, T. (2001) “Synthesis and characterization of nanocrystalline Mg2,CoH5 obtained by mechanical alloying”, J. Mater. Sci. 36 5829–5834.

    Article  Google Scholar 

  62. Shao, H. Xu, H. Wang, Y. Li, X. (2004) “Synthesis and hydrogen storage behavior of Mg–Co–H system at nanometer scale”, J. Solid State Chem. 177 3626–3632.

    Article  Google Scholar 

  63. Gennari, F.C. Castro, F.J. (2005) “Formation, composition and stability of Mg–Co compounds”, J. Alloys Compd. 396 182–192.

    Article  Google Scholar 

  64. I.G. Fernández, G.O. Meyer, F.C. Gennari, “Reversible hydrogen storage in Mg2CoH5 prepared by a combined milling-sintering procedure”, J. Alloys Compd. 446–447 (2007) 106–109.

    Google Scholar 

  65. I.G. Fernández, G.O. Meyer, F.C. Gennari, “Hydriding/dehydriding behavior of Mg2CoH5 produced by reactive mechanical milling”, J. Alloys Compd. (2007) (in press; doi:10.1016/j.jallcom.2007.09.102).

    Google Scholar 

  66. R.A. Varin, C. Chiu, T. Czujko, unpublished yet; in preparation for publication.

    Google Scholar 

  67. Andreasen, A. (2006) “Effect of Ti-doping on the dehydrogenation kinetic parameters of lithium aluminum hydride”, J. Alloys Compd. 419 40–44.

    Article  Google Scholar 

  68. Claudy, P. Bonnetot, B. Chahine, G. Letoffe, J.M. (1980) “Etude du comportement thermique du tetrahydroaluminate de sodium NaAlH4, et de l’hexahydroaluminate de sodium Na3AlH6 de 298 a 600K”, Thermochem. Acta 38 75–88.

    Article  Google Scholar 

  69. Gross, K.J. Guthrie, S. Takara, S. Thomas, G. (2000) “In-situ X-ray diffraction study of the decomposition of NaAlH4”, J. Alloys Compd. 297 270–281.

    Article  Google Scholar 

  70. Dilts, J.A. Ashby, E.C. (1972) “A study of the thermal decomposition of complex metal hydrides”, Inorg. Chem. 11 1230–1236.

    Article  Google Scholar 

  71. Zaluski, L. Zaluska, A. Ström-Olsen, J.O. (1999) “Hydrogenation properties of complex alkali metal hydrides fabricated by mechano-chemical synthesis”, J. Alloys Compd. 290 71–78.

    Article  Google Scholar 

  72. Zaluska, A. Zaluski, L. Ström-Olsen, J.O. (2000) “Sodium alanates for reversible hydrogen storage”, J. Alloys Compd. 298 125–134.

    Article  Google Scholar 

  73. T.N. Dymova, N.G. Eliseeva, S.I. Bakum, Y.M. Dergachev, Dokl. Akad. Nauk. SSSR 215 (1974) 1369, Engl.256 (cited after Ref. [7]).

    Google Scholar 

  74. Bogdanović, B. Schwickardi, M. “Ti-doped alkali metal aluminum hydrides as potential novel reversible hydrogen storage materials”, J. Alloys Compd. 253–254 (1997) 1–9.

    Google Scholar 

  75. Sandrock, G. Gross, K. Thomas, G. (2002) “Effect of Ti-catalyst content on the reversible hydrogen storage properties of the sodium alanate”, J. Alloys Compd. 339 299–308.

    Article  Google Scholar 

  76. G. Sandrock, K. Gross, G.J. Thomas, “Dynamic in situ X-ray diffraction of catalyzed alanates”, J. Alloys Compd. 330–332 (2002) 691–695.

    Google Scholar 

  77. Fichtner, M. Fuhr, O. Kircher, O. Rothe, J. (2003) “Small Ti clusters for catalysis of hydrogen exchange in NaAlH4”, Nanotechnology 14 778–785.

    Article  Google Scholar 

  78. Kircher, O. Fichtner, M. (2004) “Hydrogen exchange kinetics in NaAlH4, catalyzed in different decomposition states”, J. Appl. Phys. 95 7748–7753.

    Article  Google Scholar 

  79. Wang, P. Jensen, C.M. (2004) “Method for preparing Ti-doped NaAlH4, using Ti powder: observation of an unusual reversible dehydrogenation behavior”, J. Alloys Compd. 379 99–102.

    Article  Google Scholar 

  80. Pukazhselvan, D. Hudson, M.S.L. Gupta, B. K. Shaz, M.A. Srivatsava, O.N. (2007) “Investigations on the desorption kinetics of Mm-doped NaAlH4”, J. Alloys Compd. 439 243–248.

    Article  Google Scholar 

  81. Wang, J. Ebner, A.D. Zidan, R. Ritter, J.A. (2005) “Synergistic effects of co-dopants on the dehydrogenation kinetics of sodium aluminum hydride”, J. Alloys Compd. 391 245–255.

    Article  Google Scholar 

  82. Wang, J. Ebner, A.D. Prozorov, T. Zidan, R. Ritter, J.A. (2005) “Effect of graphite as a co-dopant on the dehydrogenation and hydrogenation kinetics of Ti-doped sodium aluminum hydride”, J. Alloys Compd. 395 252–262.

    Article  Google Scholar 

  83. Zaluska, A. Zaluski, L. Ström-Olsen, J.O. (2001) “Structure, catalysis and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage”, Appl. Phys. A 72 157–165.

    Google Scholar 

  84. Eigen, N. Kunowsky, M. Klassen, T. Bormann, R. (2007) “Synthesis of NaAlH4,-based hydrogen storage material using milling under low pressure hydrogen atmosphere”, J. Alloys Compd. 430 350–355.

    Article  Google Scholar 

  85. Chen, J. Kuriyama, N. Xu, Q. Takeshita, H.T. Sakai, T. (2001) “Reversible hydrogen storage via titanium-catalyzed LiAlH4, and Li3AlH6”, J. Phys. Chem. 105 11214–11220.

    Google Scholar 

  86. Andreasen, A. Vegge, T. Pedersen, A.S. (2005) “Dehydrogenation kinetics of as-received and ball-milled LiAlH4”, J. Solid State Chem. 178 3672–3678.

    Article  Google Scholar 

  87. Brinks, H.W. Hauback, B.C. Norby, P. Fjellvåg, H. (2003) “The decomposition of LiAlD4, studied by in-situ X-ray and neutron diffraction”, J. Alloys Compd. 351 222–227.

    Article  Google Scholar 

  88. V.P. Balema, K.W. Dennis, V.K. Pecharsky, “Rapid solid-state transformation of tetrahedral [AlH4]into octahedral [AlH6]3 in lithium aluminohydride”, Chem. Commun. (2000) 1665–1666.

    Google Scholar 

  89. Balema, V.P. Wiench, J.W. Dennis, K.W. Pruski, M. Pecharsky, V.K. (2001) “Titanium catalyzed solid-state transformations in LiAlH4, during high-energy ball milling”, J. Alloys Compd. 329 108–114.

    Article  Google Scholar 

  90. Wiench, J.W. Balema, V.P. Pecharsky, V.K. Pruski, M. (2004) “Solid-state 27, Al NMR investigation of thermal decomposition of LiAlH4”, J. Solid State Chem. 177 648–653.

    Article  Google Scholar 

  91. D. Blanchard, H.W. Brinks, B.C. Hauback, P. Norby, J. Muller, “Isothermal decomposition of LiAlD4 with and without additives”, J. Alloys Compd. 404–406 (2005) 743–747.

    Google Scholar 

  92. Resan, M. Hampton, M.D. Lomness, J.K. Slattery, D.K. (2005) “Effect of Ti x, Al y catalysts on hydrogen storage properties of LiAlH4 and NaAlH4”, Int. J. Hydrogen Energ. 30 1417–1421.

    Article  Google Scholar 

  93. Blanchard, D. Brinks, H.W. Hauback, B.C. Norby, P. (2004) “Desorption of LiAlH4, with Ti- and V-based additives”, Mater. Sci. Eng. B 108 54–59.

    Article  Google Scholar 

  94. D. Blanchard, A.I. Lem, S. Øvergaard, H.W. Brinks, “LiAlD4 with VCl3 additives: influence of ball-milling energies”, J. Alloys Compd. (in press; doi:10.1016/j.jallcom.2007.04.008).

    Google Scholar 

  95. Wang, J. Ebner, A.D. Ritter, J.A. (2005) “On the reversibility of hydrogen storage in novel complex hydrides”, Adsorption 11 811–816.

    Article  Google Scholar 

  96. Y. Kojima, Y. Kawai, M. Matsumoto, T. Haga, “Hydrogen release of catalyzed lithium aluminum hydride by a mechanochemical reaction”, J. Alloys Compd. (in press; doi:10.1016/j.jallcom.2007.08.015).

    Google Scholar 

  97. Brinks, H.W. Fossdal, A. Fonneløp, J.E. Hauback, B.C. (2005) “Crystal structure and stability of LiAlD4, with TiF3 additive”, J. Alloys Compd. 397 291–295.

    Article  Google Scholar 

  98. Claudy, P. Bonnetot, B. Letoffe, J.M. Turck, G. (1978) “Determination des constantes thermodynamiques des hydrures simples et complexes de l’aluminium. IV. Enthalpie de formation de LiAlH4, et Li3AlH6”, Thermochem. Acta 27 213–221.

    Article  Google Scholar 

  99. Løvvik, O.M. Opalka, S.M. Brinks, H.W. Hauback, B.C. (2004) “Crystal structure stability of the lithium alanates LiAlH4, and Li3AlH6”, Phys. Rev. B 69 134117-–1–134117-9.

    Article  Google Scholar 

  100. Jang, J.W. Shim, J.H. Cho, Y.W. Lee, B.J. (2006) “Thermodynamic calculation of LiH↔Li3,AlH6↔LiAlH4 reactions”, J. Alloys Compd. 420 286–290.

    Article  Google Scholar 

  101. Z. Wronski, R.A. Varin, C. Chiu, T. Czujko, A. Calka, (2007) “Mechanochemical synthesis of nanostructured chemical hydrides in hydrogen alloying mills”, J. Alloys Compd. 434–435 743–746.

    Google Scholar 

  102. Wang, J. Ebner, A.D. Ritter, J.A. (2006) “Physiochemical pathway for cycling dehydrogenation and rehydrogenation of LiAlH4”, J. Am. Chem. Soc. 128 5949–5954.

    Article  Google Scholar 

  103. Kojima, Y. Kawai, Y. Haga, T. Matsumoto, M. Koiwai, A. (2007) “Direct formation of LiAlH4, by a mechanochemical reaction”, J. Alloys Compd. 441 189–191.

    Article  Google Scholar 

  104. Balema, V.P. Pecharsky, V.K. Dennis, K.W. (2000) “Solid state phase transformations in LiAlH4, during high-energy ball-milling”, J. Alloys Compd. 313 69–74.

    Article  Google Scholar 

  105. E. Wiberg, R. Bauer, Z. Naturforsch. 5b (1950) 397; E. Wiberg, Angew. Chem. 65 (1953) 16; E. Wiberg, R. Bauer, Z. Naturforsch. 7b (1952) 131 (cited after [106]).

    Google Scholar 

  106. Ashby, E.C. Schwartz, R.D. James, B.D. (1970)“Concerning the preparation of magnesium aluminum hydride. A study of the reactions of lithium and sodium aluminum hydrides with magnesium halides in ether solvents”, Inorg. Chem. 9 325–332.

    Article  Google Scholar 

  107. Claudy, P. Bonnetot, B. Letoffe, J.M. (1979) “Preparation et properties physico-chimiques de l’alanate de magnesium Mg(AlH4,)2”, J. Thermal Anal. 15 119–128.

    Article  Google Scholar 

  108. Fichtner, M. Engel, J. Fuhr, O. Kircher, O. Rubner, O. (2004)“Nanocrystalline aluminium hydrides for hydrogen storage”, Mater. Sci. Eng. B 108 42–47.

    Article  Google Scholar 

  109. M. Fichtner, O. Fuhr, O. Kircher, “Magnesium alanate-a material for reversible hydrogen storage?”, J. Alloys Compd. 356–357 (2003) 418–422.

    Google Scholar 

  110. Fichtner, M. Engel, J. Fuhr, O. Glöss, A. Rubner, O. Ahlrichs, R. (2003) “The structure of magnesium alanate”, Inorg. Chem. 42 7060–7066.

    Article  Google Scholar 

  111. Fichtner, M. Fuhr, O. (2002)“Synthesis and structures of magnesium alanate and two solvent adducts”, J. Alloys Compd. 345 286–296.

    Article  Google Scholar 

  112. M. Schwarz, A. Haiduc, H. Still, P. Paulus, H. Geerlings, “The use of complex metal hydrides as hydrogen storage materials: Synthesis and XRD-studies of Ca(AlH4)2 and Mg(AlH4)2”, J. Alloys Compd. 404–406 (2005) 762–765.

    Google Scholar 

  113. Fossdal, A. Brinks, H.W. Fichtner, M. Hauback, B.C. (2005) “Determination of the crystal structure of Mg(AlH4,)2 by combined X-ray and neutron diffraction”, J. Alloys Compd. 387 47–51.

    Article  Google Scholar 

  114. A. Fossdal, H.W. Brinks, M. Fichtner, B.C. Hauback, “Thermal decomposition of Mg(AlH4)2 studied by in situ synchrotron X-ray diffraction”, J. Alloys Compd. 404–406 (2005) 752–756.

    Google Scholar 

  115. Dymova, T.N. Mal’tseva, N.N. Konoplev, V.N. Golovanova, A.I. Alexandrov, D.P. Sizareva, A.S. (2003) “Solid-phase solvate-free formation of magnesium hydroaluminates Mg(AlH4,)2 and MgAlH5 upon mechanochemical activation or heating of magnesium hydride and aluminum chloride mixtures”, Russ. J. Coord. Chem. 29 385–389.

    Article  Google Scholar 

  116. Dymova, T.N. Konoplev, V.N. Sizareva, A.S. Alexandrov, D.P. (1999) “Magnesium tetrahydroaluminate: solid-phase formation with mechanochemical activation of a mixture of aluminum and magnesium hydrides”, Russ. J. Coord. Chem. 25 312–315.

    Google Scholar 

  117. Mamatha, M. Weidenthaler, C. Pommerin, A. Felderhoff, M. Schüth, F. (2006) “Comparative studies of the decomposition of alanates followed by in situ XRD and DSC methods”, J. Alloys Compd. 416 303–314.

    Article  Google Scholar 

  118. Mamatha, M. Bogdanović, B. Felderhoff, M. Pommerin, A. Schmidt, W. Schüth, F. Weidenthaler, C. (2006) “Mechanochemical preparation and investigation of properties of magnesium, calcium and lithium-magnesium alanates”, J. Alloys Compd. 407 78–86.

    Article  Google Scholar 

  119. Kim, Y. Lee, E.-K. Shim, J.-H. Cho, Y.W. Yoon, K.B. (2006) “Mechanochemical synthesis and thermal decomposition of Mg(AlH4,)2”, J. Alloys Compd. 422 283–287.

    Article  Google Scholar 

  120. Varin, R.A. Chiu, Ch. Czujko, T. Wronski, Z. (2007) “Mechano-chemical activation synthesis (MCAS) of nanocrystalline magnesium alanate hydride [Mg(AlH4,)2] and its hydrogen desorption properties”, J. Alloys Compd. 439 302–311.

    Article  Google Scholar 

  121. Askeland, D.R. Phulé, P.P. 2006, p. The Science and Engineering of Materials, Thomson Canada Ltd., Toronto, 842.

    Google Scholar 

  122. Okamoto, H. 2000.Desk Handbook-Phase Diagrams for Binary Alloys, ASM International, Materials Park, OH, 36

    Google Scholar 

  123. Hou, Z.F. (2006) “First-principles investigation of Mg(AlH4,)2 complex hydride”, J. Power Sourc. 159 111–115.

    Article  Google Scholar 

  124. Varin, R.A. Chiu, Ch. Czujko, T. Wronski, Z. (2005) “Feasibility study of the direct mechano-chemical synthesis of nanostructured magnesium tetrahydroaluminate (alanate) [Mg(AlH4,)2] complex hydride”, Nanotechnology 16 2261–2274.

    Article  Google Scholar 

  125. M.S.L. Hudson, D. Pukazhselvan, G. Irene Sheeja, O.N. Srivastava, “Studies on the synthesis and dehydrogenation behavior of magnesium alanate and magnesium-sodium alanate mixture”, Int. J. Hydrogen Energ. (in press; doi:10.1016/j.ijhydene.2007.07.068).

    Google Scholar 

  126. K. Komiya, N. Morisaku, Y. Shinzato, K. Ikeda, S. Orimo, Y. Ohki, K. Tatsumi, H. Yukawa, M. Morinaga, “Synthesis and dehydrogenation of M(AlH4)2 (M = Mg, Ca)”, J. Alloys Compd. 446–447 (2007) 237–241.

    Google Scholar 

  127. Chen, P. Xiong, Z. Luo, J. Lin, J. Tan, K. L. (2002) “Interaction of hydrogen with metal nitrides and imides”, Nature 420 302–304.

    Article  Google Scholar 

  128. Chen, P. Xiong, Z. Luo, J. Lin, J. Tan, K.L. (2003) “Interaction between lithium amide and lithium hydride”, J. Phys. Chem. B 107 10967–10970.

    Article  Google Scholar 

  129. Xiong, Z. Wu, G. Hu, J. Chen, P. (2004) “Ternary imides for hydrogen storage”, Adv. Mater. 16 1522–1524.

    Article  Google Scholar 

  130. Ichikawa, T. Hanada, N. Isobe, S. Leng, H. Fujii, H. (2004) “Mechanism of novel reaction from LiNH2, and LiH to Li2NH and H2 as a promising hydrogen storage system”, J. Phys. Chem. B 108 7887–7892.

    Article  Google Scholar 

  131. Ichikawa, T. Isobe, S. Hanada, N. Fujii, H. (2004) “Lithium nitride for reversible hydrogen storage”, J. Alloys Compd. 365 271–276.

    Article  Google Scholar 

  132. Orimo, S. Nakamori, Y. Kitahara, G. Miwa, K. Ohba, N. Noritake, T. Towata, S. (2004) “Destabilization and enhanced dehydriding reaction of LiNH2,: an electronic structure viewpoint”, Appl. Phys. A 79 1765–1767.

    Article  Google Scholar 

  133. Kojima, Y. Kawai, Y. (2005) “IR characterization of lithium imide and amide”, J. Alloys Compd. 395 236–239.

    Article  Google Scholar 

  134. H.Y. Leng, T. Ichikawa, S. Isobe, S. Hino, N. Hanada, H. Fujii, (2005) “Desorption behaviors from metal-N–H systems synthesized by ball milling”, J. Alloys Compd. 404–406 443–447.

    Google Scholar 

  135. Pinkerton, F.E. (2005) “Decomposition kinetics of lithium amide for hydrogen storage materials”, J. Alloys Compd. 400 76–82.

    Article  Google Scholar 

  136. G.P. Meisner, F.E. Pinkerton, M.S. Meyer, M.P. Balogh, M.D. Kundrat, “Study of the lithium–nitrogen–hydrogen system”, J. Alloys Compd. 404–406 (2005) 24–26.

    Google Scholar 

  137. S. Isobe, T. Ichikawa, N. Hanada, H.Y. Leng, M. Fichtner, O. Fuhr, H. Fujii, “Effect of Ti catalyst with different chemical form on Li–N–H hydrogen storage properties”, J. Alloys Compd. 404–406 (2005) 439–442.

    Google Scholar 

  138. T. Ichikawa, N. Hanada, S. Isobe, H.Y. Leng, H. Fujii, “Hydrogen storage properties in Ti catalyzed Li–N–H system”, J. Alloys Compd. 404–406 (2005) 435–438.

    Google Scholar 

  139. Y. Nakamori, G. Kitahara, K. Miwa, N. Ohba, T. Noritake, S. Towata, S. Orimo, “Hydrogen storage properties of Li–Mg–N–H systems”, J. Alloys Compd. 404–406 (2005) 396–398.

    Google Scholar 

  140. Yao, J.H. Shang, C. Aguey-Zinsou, K.F. Guo, Z.X. (2007) “Desorption characteristics of mechanically and chemically modified LiNH2, and (LiNH2 + LiH)”, J. Alloys Compd. 432 277–282.

    Article  Google Scholar 

  141. Hu, Y. H. Ruckenstein, E. (2003) “Ultrafast reaction between LiH and NH3, during H2 storage in Li3N”, J. Phys.Chem. A 107 9737–9739.

    Article  Google Scholar 

  142. Shaw, L.L. Ren, R. Markmaitree, T. Osborn, W. (2008) “Effects of mechanical activation on dehydrogenation of the lithium amide and lithium hydride system”, J. Alloys Compd. 448 263–271.

    Article  Google Scholar 

  143. Luo, W. (2004) “(LiNH2,–MgH2): a viable hydrogen storage system”, J. Alloys Compd. 381 284–287.

    Article  Google Scholar 

  144. Luo, W. (2004) “Corrigendum to “(LiNH2,–MgH2): a viable hydrogen storage system J. Alloys Compd. 385 316.[J. Alloys Compd. 381(2004) 284–287]”

    Google Scholar 

  145. W. Luo, E. Rönnebro, “Towards a viable hydrogen storage system for transportation application”, J. Alloys Compd. 404–406 (2005) 392–395.

    Google Scholar 

  146. Xiong, Z. Hu, J. Wu, G. Chen, P. Luo, W. Gross, K. Wang, J. (2005) “Thermodynamic and kinetic investigations of the hydrogen storage in the Li–Mg–N–H system”, J. Alloys Compd. 398 235–239.

    Article  Google Scholar 

  147. Chen, Y. Wu, C.Z. Wang, P. Cheng, H.M. (2006) “Structure and hydrogen storage property of ball-milled LiNH2,/MgH2 mixture”, Int. J. Hydrogen Energ. 31 1236–1240.

    Article  Google Scholar 

  148. Luo, W. Sickafoose, S. (2006) “Thermodynamic and structural characterization of the Mg–Li–N–H system”, J. Alloys Compd. 407 274–281.

    Article  Google Scholar 

  149. Yang, J. Sudik, A. Wolverton, C. (2007) “Activation of hydrogen storage materials in the Li–Mg–N–H system: Effect on storage properties”, J. Alloys Compd. 430 334–338.

    Article  Google Scholar 

  150. Luo, S. Flanagan, T.B. Luo, W. (2007) “The effect of exposure of the H-storage system (LiNH2, + MgH2) to water saturated air”, J. Alloys Compd. 440 L13–L17.

    Article  Google Scholar 

  151. W. Lohstroh, M. Fichtner, “Reaction steps in the Li–Mg–N–H hydrogen storage system”, J. Alloys Compd. 446–447 (2007) 332–335.

    Google Scholar 

  152. Luo, W. Stewart, K. (2007) “Characterization of NH3, formation in desorption of Li–Mg–N–H storage system”, J. Alloys Compd. 440 357–361.

    Article  Google Scholar 

  153. W. Luo, J. Wang, K. Stewart, M. Clift, K. Gross, “Li–Mg–N–H: Recent investigations and development”, J. Alloys Compd. 446–447 (2007) 336–341.

    Google Scholar 

  154. S. Barison, F. Agresti, S.L. Russo, A. Maddalena, P. Palade, G. Principi, G. Torzo, “A study of the LiNH2–MgH2 system for solid state hydrogen storage”, J. Alloys Compd. (in press; doi:10.1016/j.jallcom.2007.04.278).

    Google Scholar 

  155. Nakamori, Y. Kitahara, G. Orimo, S. (2004) “Synthesis and dehydriding studies of Mg–N–H system”, J. Power Sourc. 138 309–312.

    Article  Google Scholar 

  156. Leng, H.Y. Ichikawa, T. Hino, S. Hanada, N. Isobe, S. Fujii, H. (2004) “New metal–N–H system composed of Mg(NH2,)2 and LiH for hydrogen storage”, J. Phys. Chem. B 108 8763–8765.

    Article  Google Scholar 

  157. Materials Matters™ 2 (2007) 18, 22 (Sigma-Aldrich Corporation).

    Google Scholar 

  158. Hu, J. Xiong, Z. Wu, G. Chen, P. Murata, K. Sakata, K. (2006) “Effects of ball milling on dehydrogenation of Mg(NH2,)2–MgH2”, J. Power Sourc. 159 120–125.

    Article  Google Scholar 

  159. Leng, H.Y. Ichikawa, T. Hino, S. Nakagawa, T. Fujii, H. (2005) “Mechanism of hydrogenation reaction in the Li–Mg–N–H system”, J. Phys. Chem. B 109 10744–10748.

    Article  Google Scholar 

  160. Ichikawa, T. Tokoyoda, K. Leng, H. Fujii, H. (2005) “Hydrogen absorption properties of Li–Mg–N–H system”, J. Alloys Compd. 400 245–248.

    Article  Google Scholar 

  161. Ichikawa, T. Leng, H.Y. Isobe, S. Hanada, N. Fujii, H. (2006) “Recent development on hydrogen storage properties in metal-N–H systems”, J. Power Sourc. 159 126–131.

    Article  Google Scholar 

  162. Nakagawa, T. Ichikawa, T. Iida, R. Leng, H. Takeichi, N. Kiyobayashi, T. Fujii, H. (2007) “Observation on hydrogen absorption/desorption reaction processes in Li–Mg–N–H system by in-situ X-ray diffractometry”, J. Alloys Compd. 430 217–221.

    Article  Google Scholar 

  163. Okamoto, K. Tokoyoda, K. Ichikawa, T. Fujii, H. (2007) “A process for synthesizing the Li–Mg–N–H hydrogen storage system from Mg and LiNH2”, J. Alloys Compd. 432 289–292.

    Article  Google Scholar 

  164. Aoki, M. Noritake, T. Kitahara, G. Nakamori, Y. Towata, S. Orimo, S. (2007) “Dehydriding reaction of Mg(NH2,)2–LiH system under hydrogen pressure”, J. Alloys Compd. 428 307–311.

    Article  Google Scholar 

  165. M. Aoki, T. Noritake, Y. Nakamori, S. Towata, S. Orimo, (2007) “Dehydriding and rehydriding properties of Mg(NH2,)–LiH systems”J. Alloys Compd. 446–447 328–331.

    Google Scholar 

  166. Xiong, Z. Hu, J. Wu, G. Chen, P. (2005) “Hydrogen absorption and desorption in Mg–Na–N–H system”, J. Alloys Compd. 395 209–212.

    Article  Google Scholar 

  167. Xiong, Z. Wu, G. Hu, J. Chen, P. (2006) “Investigation on chemical reaction between LiAlH4, and LiNH2”, J. Power Sourc. 159 167–170.

    Article  Google Scholar 

  168. J. Yang, A. Sudik, D.J. Siegel, D. Halliday, A. Drews, R.O. Carter III, C. Wolverton, G.J. Lewis, J.W.A. Sachtler, J.J. Low, S.A. Faheem, D.A. Lesch, V. Ozolins, “Hydrogen storage properties of 2LiNH2 + LiBH4 + MgH2”, J. Alloys Compd. 446–447 (2007) 345–349.

    Google Scholar 

  169. Xiong, Z. Wu, G. Hu, J. Chen, P. (2007) “Ca–Na–N–H system for reversible hydrogen storage”, J. Alloys Compd. 441 152–156.

    Article  Google Scholar 

  170. Tokoyoda, K. Hino, S. Ichikawa, T. Okamoto, K. Fujii, H. (2007) “Hydrogen desorption/absorption properties of Li–Ca–N–H system”, J. Alloys Compd. 439 337–341.

    Article  Google Scholar 

  171. Liu, Y. Hu, J. Xiong, Z. Wu, G. Chen, P. Murata, K. Sakata, K. (2007) “Investigations on hydrogen desorption from the mixture of Mg(NH2,)2 and CaH2”, J. Alloys Compd. 432 298–302.

    Article  Google Scholar 

  172. D. Goerrig, “Verfahren zur Herstellung von Boranaten”, German Patent DE 1 077644 (1958).

    Google Scholar 

  173. Nakamori, Y. Miwa, K. Ninomiya, A. Li, H. Ohba, N. Towata, S.-I. Züttel, A. Orimo, S.-I. (2006) “Correlation between thermodynamical stabilities of metal borohydrides and cation electronegatives: First principles calculations and experiments”, Phys. Rev. B 74 45126.

    Article  Google Scholar 

  174. Y. Nakamori, H.W. Li, K. Kikuchi, M. Aoki, K. Miwa, S. Towata, S. Orimo, “Thermodynamical stabilities of metal-borohydrides”, J. Alloys Compd. (in press, doi:10.1016/j.jallcom.2007.03.144).

    Google Scholar 

  175. R.A. Varin, C. Chiu, Z.S. Wronski, “Mechano-chemical activation synthesis (MCAS) of disordered Mg(BH4)2 using NaBH4”, J. Alloys Compd. (in press: doi:10.1016/j.jallcom.2007.07.110)

    Google Scholar 

  176. Li, Z.P. Morigazaki, N. Liu, B.H. Suda, S. (2003) “Preparation of sodium borohydride by the reaction of MgH2, with dehydrated borax through ball milling at room temperature”, J. Alloys Compd. 349 232–236.

    Article  Google Scholar 

  177. Stasinevich, D.S. Egorenko, G.A. Gnedina, G.N. (1966) “Tiermograficzieskoie issliedovanie systiemy gidridoborat natrija-gidrid natrija”, Dokl. Akad. Nauk SSSR 168 610–612.

    Google Scholar 

  178. Stasinevich, D.S. Egorenko, G.A. (1968) “Thermographic investigation of alkali metal and magnesium tetrahydroborates at pressures up to 10atm”, Russ. J. Inorg. Chem. 13 341–343.

    Google Scholar 

  179. Varin, R.A. Chiu, Ch. (2005) “Structural stability of sodium borohydride (NaBH4,) during controlled mechanical milling”, J. Alloys Compd. 397 276–281.

    Article  Google Scholar 

  180. Züttel, A. Wenger, P. Rentsch, S. Sudan, P. Mauron, Ph. Emmenegger, Ch. (2003) “LiBH4, a new hydrogen storage material”, J. Power Sourc. 118 1–7.

    Article  Google Scholar 

  181. S. Orimo, Y. Nakamori, G. Kitahara, K. Miwa, N. Ohba, S. Towata, A. Züttel, “Dehydriding and rehydriding reactions of LiBH4”, J. Alloys Compd. 404–406 (2005) 427–430.

    Google Scholar 

  182. L. Mosegaard, B. Møller, J.E. Jørgensen, U. Bösenberg, M. Dornheim, J.C. Hanson, Y. Cerenius, G. Walker, H.J. Jakobsen, F. Besenbacher, T.R. Jensen,”Intermediate phases observed during decomposition of LiBH4”, J. Alloys Compd. 446–447 (2007) 301–305.

    Google Scholar 

  183. Konoplev, V.N. Bakulina, V.M. (1971) “Some properties of magnesium borohydride”, Acad. Sci. USSR: Gen. Inorg. Chem. 1) 159–161.(English translation) (

    Google Scholar 

  184. Vajeeston, P. Ravindran, P. Kjekshus, A. Fjellvåg, H. (2006) “High hydrogen content complex hydrides: A density-functional study”, Appl. Phys. Lett. 89 71906.

    Article  Google Scholar 

  185. Varin, R.A. Chiu, Ch. Wronski, Z. Calka, A. (2007) “The effects of oxidized and oxide-free boron on the Mg–B–H nanohydrides transformation in the nearly nanosized powders”, Solid State Phenom. 128 47–52.

    Article  Google Scholar 

  186. Chase M.W. Jr., 1998, p. Journal of Physical and Chemical Reference Data Monographs, Fourth Editon, ACS, AIP, NIST, Washingtone, DC, 268. No.9; NIS T-JANAF Thermochemical Tables

    Google Scholar 

  187. Askeland, D.R. Phulé: P.P. 2003, pp. The Science and Engineering of Materials, Fourth Edition, Brooks/Cole-Thomson Learning Inc., Pacific Grove, 980–981.

    Google Scholar 

  188. T. Matsunaga, F. Buchter, P. Mauron, M. Bielman, Y. Nakamori, S. Orimo, N. Ohba, K. Miwa, S. Towata, A. Züttel, “Hydrogen storage properties of Mg(BH4)2”, J. Alloys Compd. (in press; doi:10.1016/j.jallcom.2007.05.054).

    Google Scholar 

  189. Jeon, E. Cho, Y.W. (2006) “Mechanochemical synthesis and thermal decomposition of zinc borohydride”, J. Alloys Compd. 422 273–275.

    Article  Google Scholar 

  190. K. Miwa, N. Ohba, S. Towata, Y. Nakamori, A. Züttel, S. Orimo, “First-principles study on thermodynamical stability of metal borohydrides: Aluminum borohydride Al(BH4)2”, J. Alloys Compd. 446–447 (2007) 310–314.

    Google Scholar 

  191. H.W. Li, S. Orimo, Y. Nakamori, K. Miwa, N. Ohba, S. Towata, A. Züttel, “Materials designing of metal borohydrides: Viewpoints from thermodynamical stabilities”, J. Alloys Compd. 446–447 (2007) 315–318.

    Google Scholar 

  192. S. Srinivasan, E. Stefanakos, Y. Goswami, “New transition metal assisted complex borohydrides for hydrogen storage”, Proc. World Hydrogen Energy Congress, 13–16 June 2006, Lyon, France, pp. 1/6–6/6.

    Google Scholar 

  193. S. Srinivasan, D. Escobar, M. Jurczyk, Y. Goswami, E. Stefanakos, “Nanocatalysts doping of Zn(BH4)2 for on-board hydrogen storage”, J. Alloys Compd. (in press; doi:10.1016/j.jallcom.2007.08.028).

    Google Scholar 

  194. Zaluska, A. Zaluski, L. Ström-Olsen, J.O. (1999) “Synergy of hydrogen sorption in ball-milled hydrides of Mg and Mg2,Ni”, J. Alloys Compd. 289 197–206.

    Article  Google Scholar 

  195. Johnson, S.R. Anderson, P.A. Edwards, P.P. Gameson, I. Prendergast, J.W. Al-Mamouri, A. Book, D. Rex Harris, I. Speight, J.D. Walton, A. (2005) “Chemical activation of MgH2,; a new route to superior hydrogen storage materials”, Chem. Commun. 281 2823–2825.

    Article  Google Scholar 

  196. Vajo, J.J. Mertens, F. Ahn, C.C. Bowman R.C. Jr., Fultz, B. (2004) “Altering hydrogen storage properties by hydride destabilization through alloy formation: LiH and MgH2, destabilized with Si”, J. Phys. Chem. B 108 13977–13983.

    Article  Google Scholar 

  197. Vajo, J.J. Skeith, S.L. Mertens, F. (2005) “Reversible storage of hydrogen in destabilized LiBH4”, Phys. Chem. B Lett. 109 3719–3722.

    Google Scholar 

  198. J.J. Vajo, T.T. Salguero, A.F. Gross, S.L. Skeith, G.L. Olsen, “Thermodynamic destabilization and reaction kinetics in light metal hydride systems”, J. Alloys Compd. 446–447 (2007) 409–414.

    Google Scholar 

  199. Hanada, N. Lohstroh, W. Fichtner, M. (2008) “Comparison of the calculated and experimental scenarios for solid-state reactions involving Ca(AlH4,)2”, J. Phys. Chem. C 112 131–138.

    Article  Google Scholar 

  200. Varin, R.A. Czujko, T. Wronski, Z.S. April 29–May 2, 2007, “Hydrogen storage properties of mechanically milled MgH2, + NaBH4 hydride composite”Presented by R.A. Varin at the 2007 Hydrogen and Fuel Cell Conference, Vancouver, Canada.

    Google Scholar 

  201. Varin, R.A. Czujko, T. Chiu, C. Pulz, R. Wronski, Z. August 26–30, 2007, “Synthesis of nanocomposite hydrides for solid state hydrogen storage by controlled mechanical milling techniques”, Presented by R.A. Varin at the 14th Int. Symposium on Metastable and Nanomaterials, ISMANAM 2007, Corfu, Greece.

    Google Scholar 

  202. Y. Makihara, K. Umeda, F. Shoji, K. Kato, Y. Miyairi, “Cooperative dehydriding mechanism in a mechanically milled Mg-50mass%ZrMn2 composite”, J. Alloys Compd. (in press; doi:10.1016/j.jallcom.2007.01.109).

    Google Scholar 

  203. Czujko, T. Varin, R.A. Wronski, Z. Zaranski, Z. Durejko, T. (2007) “Synthesis and hydrogen desorption properties of nanocomposite magnesium hydride with sodium borohydride (MgH2, + NaBH4)”, J. Alloys Compd. 427 291–299.

    Article  Google Scholar 

  204. http://en.wikipedia.org/wiki/Sodium_oxide.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2009). Complex Hydrides. In: Nanomaterials for Solid State Hydrogen Storage. Fuel Cells and Hydrogen Energy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77712-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-77712-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-77711-5

  • Online ISBN: 978-0-387-77712-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics