Complex Hydrides

Part of the Fuel Cells and Hydrogen Energy book series (FCHY)


Ball Milling Hydrogen Storage Milled Powder Hydrogen Desorption Desorption Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bogdanović, B. Sandrock, G. (2002) “Catalyzed complex metal hydrides”, MRS Bull. 27 (9) 712–716.Google Scholar
  2. 2.
    Schüth, F. Bogdanović, B. Felderhoff, M. (2004) “Light metal hydrides and complex hydrides for hydrogen storage”, Chem. Commun. (Camb) 21 2249–2258.CrossRefGoogle Scholar
  3. 3.
    Seayad, A.M. Antonelli, D.M. (2004) “Recent advances in hydrogen storage in metal-containing inorganic nanostructures and related materials”, Adv. Mater. 16 765–777.CrossRefGoogle Scholar
  4. 4.
    Fichtner, M. (2005) “Nanotechnological aspects in materials for hydrogen storage”, Adv. Eng. Mater. 7 443–455.CrossRefGoogle Scholar
  5. 5.
    Chandra, D. Reilly, J.J. Chellapa, R. (2006) “Metal hydrides for vehicular applications: The state of the art”, JOM 58 (2) 26–32.CrossRefGoogle Scholar
  6. 6.
    Bogdanović, B. Eberle, U. Felderhoff, M. Schüth, F. (2007) “Complex aluminum hydrides”, Scripta Mater. 56 813–816.CrossRefGoogle Scholar
  7. 7.
    Orimo, S.I. Nakamori, Y. Eliseo, J.R. Züttel, A. Jensen, C.M. (2007) “Complex hydrides for hydrogen storage”, Chem. Rev. 107 4111–4132.CrossRefGoogle Scholar
  8. 8.
    Bortz, M. Bertheville, B. Yvon, K. Movlaev, E.A. Verbetsky, V.N. Fauth, F. (1998) “Mg3,MnH7, containing the first known hexahydridomanganese (I) complex”, J. Alloys Compd. 279 L8–L10.CrossRefGoogle Scholar
  9. 9.
    Aiello, R. Sharp, J.H. Matthews, M.A. (1999) “Production of hydrogen from chemical hydrides via hydrolysis with steam”, Int. J. Hydrogen Energ. 24 1123–1130.CrossRefGoogle Scholar
  10. 10.
    Amendola, S.C. Sharp-Goldman, S.L. Saleem Janjua, M. Spencer, N.C. Kelly, M.T. Petillo, P.J. Binder, M. (2000) “A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst”, Int. J. Hydrogen Energ. 25 969–975.CrossRefGoogle Scholar
  11. 11.
    Suda, S. Sun, Y.-M. Liu, B.-H. Zhou, Y. Morimitsu, S. Arai, K. Tsukamoto, N. Uchida, M. Candra, Y. Li, Z.-P. (2001) “Catalytic generation of hydrogen by applying fluorinated-metal hydrides as catalysts”, Appl. Phys. A 72 209–212.CrossRefGoogle Scholar
  12. 12.
    Kojima, Y. Suzuki, K. Fukumoto, K. Sasaki, M. Yamamoto, T. Kawai, Y. Hayashi, H. (2002) “Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide”, Int. J. Hydrogen Energ. 27 1029–1034.CrossRefGoogle Scholar
  13. 13.
    B. H. Liu, S. Suda, “Hydrogen storage alloys as the anode materials of the direct borohydride fuel cell”, J. Alloys Compd. (2007) (in press; doi:10.1016/j.jallcom.2006.12.034).Google Scholar
  14. 14.
    Okamoto, H. 2000.Desk Handbook-Phase Diagrams for Binary Alloys, ASM International, Materials Park, OH, p. 550Google Scholar
  15. 15.
    G. Sandrock, “A panoramic overview of hydrogen storage alloys from a gas reaction point of view”, J. Alloys Compd. 293–295 (1999) 877–888.Google Scholar
  16. 16.
    Reilly, J.J. Wiswall, R.H. (1968) “The reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2,NiH4”, Inorg. Chem. 7 2254–2256.CrossRefGoogle Scholar
  17. 17.
    Singh, A. K. Singh, A. K. Srivastava, O.N. (1995) “On the synthesis of the Mg2,Ni alloy by mechanical alloying”, J. Alloys Compd. 227 63–68.CrossRefGoogle Scholar
  18. 18.
    Zaluski, L. Zaluska, A. Ström-Olsen, J.O. (1995) “Hydrogen absorption in nanocrystalline Mg2,Ni formed by mechanical alloying”, J. Alloys Compd. 217 245–249.CrossRefGoogle Scholar
  19. 19.
    Varin, R.A. Czujko, T. (2002) “Overview of processing of nanocrystalline hydrogen storage intermetallics by mechanical alloying/milling”, Mater. Manuf. Process. 17 129–156.CrossRefGoogle Scholar
  20. 20.
    Li, L. Akiyama, T. Yagi, J. (2001) “Activation behaviors of Mg2,NiH4 at different hydrogen pressures in hydriding combustion synthesis”, Int. J. Hydrogen Energ. 26 1035–1040.CrossRefGoogle Scholar
  21. 21.
    Li, L. Akiyama, T. Yagi, J. (2001) “Activity and capacity of hydrogen storage alloy Mg2, NiH4 produced by hydriding combustion synthesis”, J. Alloys Compd. 316 118–123.CrossRefGoogle Scholar
  22. 22.
    Li, L. Saita, I. Saito, K. Akiyama, T. (2002) “Effect of synthesis temperature on the purity of product in hydriding combustion synthesis of Mg2,NiH4”, J. Alloys Compd. 345 189–195.CrossRefGoogle Scholar
  23. 23.
    Hampton, M.D. Juturu, R. Lomness, J. (1999) “The activation of Mg1Ni for initial hydrogen uptake by treatment with water vapor”, Int. J. Hydrogen Energ. 24 981–988.CrossRefGoogle Scholar
  24. 24.
    M.D. Hampton, J.K. Lomness, L.A. Giannuzzi, “Surface study of liquid water treated and water vapor treated Mg2.35 Ni alloy”Google Scholar
  25. 25.
    Shao, H. Liu, T. Li, X. Zhang, L. (2003) “Preparation of Mg2,Ni intermetallic compound from nanoparticles”, Scripta Mater. 49 595–599.CrossRefGoogle Scholar
  26. 26.
    Varin, R.A. Czujko, T. Mizera, J. (2003) “Microstructural evolution during controlled ball milling of (Mg2,Ni + MgNi2) intermetallic alloy”, J. Alloys Compd. 350 332–339.CrossRefGoogle Scholar
  27. 27.
    Varin, R.A. Czujko, T. Mizera, J. (2003) “The effect of MgNi2, intermetallic compound on nanostructurization and amorphization of Mg–Ni alloys processed by controlled mechanical milling”, J. Alloys Compd. 354 281–295.CrossRefGoogle Scholar
  28. 28.
    Chen, C. Cai, G. Chen, Y. An, Y. Xu, G. Wang, Q. (2003) “Hydrogen absorption properties of the slurry system composed of liquid C6,H6 and F-treated Mg2Ni”, J. Alloys Compd. 350 275–279.CrossRefGoogle Scholar
  29. 29.
    Liu, X. Zhu, Y. Li, L. (2006) “Hydriding and dehydriding properties of nanostructured Mg2,Ni alloy prepared by the process of hydriding combustion synthesis and subsequent mechanical grinding”, J. Alloys Compd. 425 235–238.CrossRefGoogle Scholar
  30. 30.
    Xie, L. Shao, H.Y. Wang, Y.T. Li, Y. Li, X.G. (2007) “Synthesis and hydrogen storing properties of nanostructured ternary Mg–Ni–Co compounds”, Int. J. Hydrogen Energ. 32 1949–1953.CrossRefGoogle Scholar
  31. 31.
    Hara, M. Morozumi, S. Watanabe, K. (2006) “Effect of a magnesium depletion on the Mg–Ni–Y alloy hydrogen absorption properties”, J. Alloys Compd. 414 207–214.CrossRefGoogle Scholar
  32. 32.
    L.H. Kumar, B. Viswanathan, S.S. Murthy, “Hydrogen absorption by Mg2Ni prepared by polyol reduction”, J. Alloys Compd. (in press; doi:10.1016/j.jallcom.2007.07.028).Google Scholar
  33. 33.
    Wronski, Z.S. (2001) “Materials for rechargeable batteries and clean hydrogen energy sources”, Int. Mater. Rev. 46 1–52.CrossRefGoogle Scholar
  34. 34.
    Didisheim, J. J. Zolliker, P. Yvon, K. Fischer, P. Schefer, J. Gubelman, M. Williams, A.F. (1984) “Dimagnesium iron(I1) hydride, Mg2,FeH6, containing octahedral FeH6 4 anions”, Inorg. Chem. 23 1953–1957.CrossRefGoogle Scholar
  35. 35.
    Orgaz, E. Gupta, M. (1987) “Theoretical study of the X-ray absorption spectra of Mg2,FeH6”, J. Less-Comm. Met. 130 293–299.CrossRefGoogle Scholar
  36. 36.
    Welter, J.-M. Rudman, P.S. (1982) “Iron catalyzed hydriding of magnesium”, Scripta Metall. 16 285–286.CrossRefGoogle Scholar
  37. 37.
    Ivanov, E. Konstanchuk, I.G. Stepanov, A. Boldyrev, V. (1987) “Magnesium mechanical alloys for hydrogen storage”, J. Less-Comm. Met. 131 25–29.CrossRefGoogle Scholar
  38. 38.
    Konstanchuk, I.G. Ivanov, E. Yu. Pezat, M. Darriet, B. Boldyrev, V.V. Hagenmuller, P. (1987) “The hydriding properties of a mechanical alloy with composition Mg-25%Fe”, J. Less-Comm. Met. 131 181–189.CrossRefGoogle Scholar
  39. 39.
    Reiser, A. Bogdanović, B. Schlichte, K. (2000) “The application of Mg-based metal-hydrides as heat energy storage systems”, Int. J. Hydrogen Energ. 25 425–430.CrossRefGoogle Scholar
  40. 40.
    Bogdanović, B. Reiser, A. Schlichte, K. Spliethoff, B. Tesche, B. (2002) “Thermodynamics and dynamics of the Mg–Fe–H system and its potential for thermochemical thermal energy storage”, J. Alloys Compd. 345 77–89.CrossRefGoogle Scholar
  41. 41.
    Huot, J. Hayakawa, H. Akiba, E. (1997) “Preparation of the hydrides Mg2,FeH6 and Mg2CoH5 by mechanical alloying following sintering”, J. Alloys Compd. 248 164–167.CrossRefGoogle Scholar
  42. 42.
    Huot, J. Boily, S. Akiba, E. Schulz, R. (1998) “Direct synthesis of Mg2,FeH6 by mechanical alloying”, J. Alloys Compd. 280 306–309.CrossRefGoogle Scholar
  43. 43.
    Khrussanova, M. Grigorova, E. Mitov, I. Radev, D. (2001) P. Peshev, “Hydrogen sorption properties of an Mg–Ti–V–Fe nanocomposite obtained by mechanical alloying”, J. Alloys Compd. 327 230–234.CrossRefGoogle Scholar
  44. 44.
    Gennari, F.C. Castro, F.J. Andrade Gamboa, J.J. (2002) “Synthesis of Mg2,FeH6 by reactive mechanical alloying: formation and decomposition properties”, J. Alloys Compd. 339 261–267.CrossRefGoogle Scholar
  45. 45.
    C.X. Shang, M. Bououdina, Z.X. Guo, “Direct mechanical synthesis and characterisation of Mg2Fe(Cu)H6”, J. Alloys Compd. 356–357 (2003) 626–629.Google Scholar
  46. 46.
    Castro, F.J. Gennari, F.C. (2004) “Effect of the nature of the starting materials on the formation of Mg2,FeH6”, J. Alloys Compd. 375 292–296.CrossRefGoogle Scholar
  47. 47.
    Herrich, M. Ismail, N. Lyubina, J. Handstein, A. Pratt, A. Gutfleisch, O. (2004) “Synthesis and decomposition of Mg2,FeH6 prepared by reactive milling”, Mater. Sci. Eng. B108 28–32.CrossRefGoogle Scholar
  48. 48.
    Varin, R.A. Li, S. Calka, A. Wexler, D. (2004) “Formation and environmental stability of nanocrystalline and amorphous hydrides in the 2Mg–Fe mixture processed by controlled reactive mechanical alloying (CRMA)”, J. Alloys Compd. 373 270–286.Google Scholar
  49. 49.
    Li, S. Varin, R.A. Morozova, O. Khomenko, T. (2004) “Controlled mechano-chemical synthesis of nanostructured ternary complex hydride Mg2,FeH6 under low-energy impact mode with and without pre-milling”, J. Alloys Compd. 384 231–248.CrossRefGoogle Scholar
  50. 50.
    Li, S. Varin, R.A. Morozova, O. Khomenko, T. (2004) “Corrigendum to ‘Controlled mechano-chemical synthesis of nanostructured ternary complex hydride Mg2,FeH6 under low-energy impact mode with and without pre-milling J. Alloys Compd. 385 318.[J. Alloys Compd. 384 (2004) 231–248]’”Google Scholar
  51. 51.
    Varin, R.A. Li, S. Wronski, Z. Morozova, O. Khomenko, T. (2005) “The effect of sequential and continuous high-energy impact mode on the mechano-chemical synthesis of nanostructured complex hydride Mg2,FeH6”, J. Alloys Compd. 390 282–296.CrossRefGoogle Scholar
  52. 52.
    Varin, R.A. Li, S. Czujko, T. Wronski, Z. 2005, pp. “An overview of the controlled mechano-chemical synthesis of nanostructured complex hydride Mg2,FeH6”Gupta, M. Lim, C.Y.H. Varin, R.A. Srivatsan, T.S. Proc. Int. Symp. on Processing and Fabrication of Advanced Materials XIII (PFAM XIII), Eds. Stallion Press, Singapore, 315–331.Google Scholar
  53. 53.
    Zhou, D.W. Li, S.L. Varin, R.A. Peng, P. Liu, J.S. Yang, F. (2006) “Mechanical alloying and electronic simulations of 2Mg–Fe mixture powders for hydrogen storage”, Mater. Sci. Eng. A 427 306–315.CrossRefGoogle Scholar
  54. 54.
    Saita, I. Saito, K. Akiyama, T. (2005) “Hydriding combustion synthesis of Mg2,Ni1 -xFex hydride”, J. Alloys Compd. 390 265–269.CrossRefGoogle Scholar
  55. 55.
    J.A. Puszkiel, P.A. Larochette, F.C. Gennari, “Thermodynamic and kinetic studies of Mg–Fe–H after mechanical milling followed by sintering”, J. Alloys Compd. (2007) (in press; doi:10.1016/j.jallcom.2007.08.085).Google Scholar
  56. 56.
    Q. Li, J. Liu, K. C. Chou, G. W. Lin, K. D. Xu, “Synthesis and dehydrogenation behavior of Mg–Fe–H system prepared under an external magnetic field”, J. Alloys Compd. (2007) (in press; doi:10.1016/j.jallcom.2007.11.085).Google Scholar
  57. 57.
    Zolliker, P. Yvon, K. Fischer, P. Schefer, J. (1985) “Diamagnesium cobalt (I) pentahydride, Mg2,CoH5, containing square-pyramidal CoH5 4 ”, Inorg. Chem. 24 4177–4180.CrossRefGoogle Scholar
  58. 58.
    Ivanov, E.J. Konstanchuk, I. Stepanov, A. Jie, Y. Pezat, M. Darriet, B. (1989) “The ternary system Mg–Co–H”, Inorg. Chem. 28 613–615.CrossRefGoogle Scholar
  59. 59.
    Selvam, P. Yvon, K. (1991) “Synthesis of Mg2,FeH6, Mg2CoH5 and Mg2NiH4 by high-pressure sintering of the elements”, Int. J. Hydrogen Energ. 16 615–617.CrossRefGoogle Scholar
  60. 60.
    Huot, J. Hayakawa, H. Akiba, E. (1997) “Preparation of the hydrides Mg2,FeH6 and Mg2CoH5 by mechanical alloying followed by sintering”, J. Alloys Compd. 248 164–167.CrossRefGoogle Scholar
  61. 61.
    Chen, J. Takeshita, H.T. Chartouni, D. Kuriyama, N. Sakai, T. (2001) “Synthesis and characterization of nanocrystalline Mg2,CoH5 obtained by mechanical alloying”, J. Mater. Sci. 36 5829–5834.CrossRefGoogle Scholar
  62. 62.
    Shao, H. Xu, H. Wang, Y. Li, X. (2004) “Synthesis and hydrogen storage behavior of Mg–Co–H system at nanometer scale”, J. Solid State Chem. 177 3626–3632.CrossRefGoogle Scholar
  63. 63.
    Gennari, F.C. Castro, F.J. (2005) “Formation, composition and stability of Mg–Co compounds”, J. Alloys Compd. 396 182–192.CrossRefGoogle Scholar
  64. 64.
    I.G. Fernández, G.O. Meyer, F.C. Gennari, “Reversible hydrogen storage in Mg2CoH5 prepared by a combined milling-sintering procedure”, J. Alloys Compd. 446–447 (2007) 106–109.Google Scholar
  65. 65.
    I.G. Fernández, G.O. Meyer, F.C. Gennari, “Hydriding/dehydriding behavior of Mg2CoH5 produced by reactive mechanical milling”, J. Alloys Compd. (2007) (in press; doi:10.1016/j.jallcom.2007.09.102).Google Scholar
  66. 66.
    R.A. Varin, C. Chiu, T. Czujko, unpublished yet; in preparation for publication.Google Scholar
  67. 67.
    Andreasen, A. (2006) “Effect of Ti-doping on the dehydrogenation kinetic parameters of lithium aluminum hydride”, J. Alloys Compd. 419 40–44.CrossRefGoogle Scholar
  68. 68.
    Claudy, P. Bonnetot, B. Chahine, G. Letoffe, J.M. (1980) “Etude du comportement thermique du tetrahydroaluminate de sodium NaAlH4, et de l’hexahydroaluminate de sodium Na3AlH6 de 298 a 600K”, Thermochem. Acta 38 75–88.CrossRefGoogle Scholar
  69. 69.
    Gross, K.J. Guthrie, S. Takara, S. Thomas, G. (2000) “In-situ X-ray diffraction study of the decomposition of NaAlH4”, J. Alloys Compd. 297 270–281.CrossRefGoogle Scholar
  70. 70.
    Dilts, J.A. Ashby, E.C. (1972) “A study of the thermal decomposition of complex metal hydrides”, Inorg. Chem. 11 1230–1236.CrossRefGoogle Scholar
  71. 71.
    Zaluski, L. Zaluska, A. Ström-Olsen, J.O. (1999) “Hydrogenation properties of complex alkali metal hydrides fabricated by mechano-chemical synthesis”, J. Alloys Compd. 290 71–78.CrossRefGoogle Scholar
  72. 72.
    Zaluska, A. Zaluski, L. Ström-Olsen, J.O. (2000) “Sodium alanates for reversible hydrogen storage”, J. Alloys Compd. 298 125–134.CrossRefGoogle Scholar
  73. 73.
    T.N. Dymova, N.G. Eliseeva, S.I. Bakum, Y.M. Dergachev, Dokl. Akad. Nauk. SSSR 215 (1974) 1369, Engl.256 (cited after Ref. [7]).Google Scholar
  74. 74.
    Bogdanović, B. Schwickardi, M. “Ti-doped alkali metal aluminum hydrides as potential novel reversible hydrogen storage materials”, J. Alloys Compd. 253–254 (1997) 1–9.Google Scholar
  75. 75.
    Sandrock, G. Gross, K. Thomas, G. (2002) “Effect of Ti-catalyst content on the reversible hydrogen storage properties of the sodium alanate”, J. Alloys Compd. 339 299–308.CrossRefGoogle Scholar
  76. 76.
    G. Sandrock, K. Gross, G.J. Thomas, “Dynamic in situ X-ray diffraction of catalyzed alanates”, J. Alloys Compd. 330–332 (2002) 691–695.Google Scholar
  77. 77.
    Fichtner, M. Fuhr, O. Kircher, O. Rothe, J. (2003) “Small Ti clusters for catalysis of hydrogen exchange in NaAlH4”, Nanotechnology 14 778–785.CrossRefGoogle Scholar
  78. 78.
    Kircher, O. Fichtner, M. (2004) “Hydrogen exchange kinetics in NaAlH4, catalyzed in different decomposition states”, J. Appl. Phys. 95 7748–7753.CrossRefGoogle Scholar
  79. 79.
    Wang, P. Jensen, C.M. (2004) “Method for preparing Ti-doped NaAlH4, using Ti powder: observation of an unusual reversible dehydrogenation behavior”, J. Alloys Compd. 379 99–102.CrossRefGoogle Scholar
  80. 80.
    Pukazhselvan, D. Hudson, M.S.L. Gupta, B. K. Shaz, M.A. Srivatsava, O.N. (2007) “Investigations on the desorption kinetics of Mm-doped NaAlH4”, J. Alloys Compd. 439 243–248.CrossRefGoogle Scholar
  81. 81.
    Wang, J. Ebner, A.D. Zidan, R. Ritter, J.A. (2005) “Synergistic effects of co-dopants on the dehydrogenation kinetics of sodium aluminum hydride”, J. Alloys Compd. 391 245–255.CrossRefGoogle Scholar
  82. 82.
    Wang, J. Ebner, A.D. Prozorov, T. Zidan, R. Ritter, J.A. (2005) “Effect of graphite as a co-dopant on the dehydrogenation and hydrogenation kinetics of Ti-doped sodium aluminum hydride”, J. Alloys Compd. 395 252–262.CrossRefGoogle Scholar
  83. 83.
    Zaluska, A. Zaluski, L. Ström-Olsen, J.O. (2001) “Structure, catalysis and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage”, Appl. Phys. A 72 157–165.Google Scholar
  84. 84.
    Eigen, N. Kunowsky, M. Klassen, T. Bormann, R. (2007) “Synthesis of NaAlH4,-based hydrogen storage material using milling under low pressure hydrogen atmosphere”, J. Alloys Compd. 430 350–355.CrossRefGoogle Scholar
  85. 85.
    Chen, J. Kuriyama, N. Xu, Q. Takeshita, H.T. Sakai, T. (2001) “Reversible hydrogen storage via titanium-catalyzed LiAlH4, and Li3AlH6”, J. Phys. Chem. 105 11214–11220.Google Scholar
  86. 86.
    Andreasen, A. Vegge, T. Pedersen, A.S. (2005) “Dehydrogenation kinetics of as-received and ball-milled LiAlH4”, J. Solid State Chem. 178 3672–3678.CrossRefGoogle Scholar
  87. 87.
    Brinks, H.W. Hauback, B.C. Norby, P. Fjellvåg, H. (2003) “The decomposition of LiAlD4, studied by in-situ X-ray and neutron diffraction”, J. Alloys Compd. 351 222–227.CrossRefGoogle Scholar
  88. 88.
    V.P. Balema, K.W. Dennis, V.K. Pecharsky, “Rapid solid-state transformation of tetrahedral [AlH4]into octahedral [AlH6]3 in lithium aluminohydride”, Chem. Commun. (2000) 1665–1666.Google Scholar
  89. 89.
    Balema, V.P. Wiench, J.W. Dennis, K.W. Pruski, M. Pecharsky, V.K. (2001) “Titanium catalyzed solid-state transformations in LiAlH4, during high-energy ball milling”, J. Alloys Compd. 329 108–114.CrossRefGoogle Scholar
  90. 90.
    Wiench, J.W. Balema, V.P. Pecharsky, V.K. Pruski, M. (2004) “Solid-state 27, Al NMR investigation of thermal decomposition of LiAlH4”, J. Solid State Chem. 177 648–653.CrossRefGoogle Scholar
  91. 91.
    D. Blanchard, H.W. Brinks, B.C. Hauback, P. Norby, J. Muller, “Isothermal decomposition of LiAlD4 with and without additives”, J. Alloys Compd. 404–406 (2005) 743–747.Google Scholar
  92. 92.
    Resan, M. Hampton, M.D. Lomness, J.K. Slattery, D.K. (2005) “Effect of Tix, Aly catalysts on hydrogen storage properties of LiAlH4 and NaAlH4”, Int. J. Hydrogen Energ. 30 1417–1421.CrossRefGoogle Scholar
  93. 93.
    Blanchard, D. Brinks, H.W. Hauback, B.C. Norby, P. (2004) “Desorption of LiAlH4, with Ti- and V-based additives”, Mater. Sci. Eng. B 108 54–59.CrossRefGoogle Scholar
  94. 94.
    D. Blanchard, A.I. Lem, S. Øvergaard, H.W. Brinks, “LiAlD4 with VCl3 additives: influence of ball-milling energies”, J. Alloys Compd. (in press; doi:10.1016/j.jallcom.2007.04.008).Google Scholar
  95. 95.
    Wang, J. Ebner, A.D. Ritter, J.A. (2005) “On the reversibility of hydrogen storage in novel complex hydrides”, Adsorption 11 811–816.CrossRefGoogle Scholar
  96. 96.
    Y. Kojima, Y. Kawai, M. Matsumoto, T. Haga, “Hydrogen release of catalyzed lithium aluminum hydride by a mechanochemical reaction”, J. Alloys Compd. (in press; doi:10.1016/j.jallcom.2007.08.015).Google Scholar
  97. 97.
    Brinks, H.W. Fossdal, A. Fonneløp, J.E. Hauback, B.C. (2005) “Crystal structure and stability of LiAlD4, with TiF3 additive”, J. Alloys Compd. 397 291–295.CrossRefGoogle Scholar
  98. 98.
    Claudy, P. Bonnetot, B. Letoffe, J.M. Turck, G. (1978) “Determination des constantes thermodynamiques des hydrures simples et complexes de l’aluminium. IV. Enthalpie de formation de LiAlH4, et Li3AlH6”, Thermochem. Acta 27 213–221.CrossRefGoogle Scholar
  99. 99.
    Løvvik, O.M. Opalka, S.M. Brinks, H.W. Hauback, B.C. (2004) “Crystal structure stability of the lithium alanates LiAlH4, and Li3AlH6”, Phys. Rev. B 69 134117-–1–134117-9.CrossRefGoogle Scholar
  100. 100.
    Jang, J.W. Shim, J.H. Cho, Y.W. Lee, B.J. (2006) “Thermodynamic calculation of LiH↔Li3,AlH6↔LiAlH4 reactions”, J. Alloys Compd. 420 286–290.CrossRefGoogle Scholar
  101. 101.
    Z. Wronski, R.A. Varin, C. Chiu, T. Czujko, A. Calka, (2007) “Mechanochemical synthesis of nanostructured chemical hydrides in hydrogen alloying mills”, J. Alloys Compd. 434–435 743–746.Google Scholar
  102. 102.
    Wang, J. Ebner, A.D. Ritter, J.A. (2006) “Physiochemical pathway for cycling dehydrogenation and rehydrogenation of LiAlH4”, J. Am. Chem. Soc. 128 5949–5954.CrossRefGoogle Scholar
  103. 103.
    Kojima, Y. Kawai, Y. Haga, T. Matsumoto, M. Koiwai, A. (2007) “Direct formation of LiAlH4, by a mechanochemical reaction”, J. Alloys Compd. 441 189–191.CrossRefGoogle Scholar
  104. 104.
    Balema, V.P. Pecharsky, V.K. Dennis, K.W. (2000) “Solid state phase transformations in LiAlH4, during high-energy ball-milling”, J. Alloys Compd. 313 69–74.CrossRefGoogle Scholar
  105. 105.
    E. Wiberg, R. Bauer, Z. Naturforsch. 5b (1950) 397; E. Wiberg, Angew. Chem. 65 (1953) 16; E. Wiberg, R. Bauer, Z. Naturforsch. 7b (1952) 131 (cited after [106]).Google Scholar
  106. 106.
    Ashby, E.C. Schwartz, R.D. James, B.D. (1970)“Concerning the preparation of magnesium aluminum hydride. A study of the reactions of lithium and sodium aluminum hydrides with magnesium halides in ether solvents”, Inorg. Chem. 9 325–332.CrossRefGoogle Scholar
  107. 107.
    Claudy, P. Bonnetot, B. Letoffe, J.M. (1979) “Preparation et properties physico-chimiques de l’alanate de magnesium Mg(AlH4,)2”, J. Thermal Anal. 15 119–128.CrossRefGoogle Scholar
  108. 108.
    Fichtner, M. Engel, J. Fuhr, O. Kircher, O. Rubner, O. (2004)“Nanocrystalline aluminium hydrides for hydrogen storage”, Mater. Sci. Eng. B 108 42–47.CrossRefGoogle Scholar
  109. 109.
    M. Fichtner, O. Fuhr, O. Kircher, “Magnesium alanate-a material for reversible hydrogen storage?”, J. Alloys Compd. 356–357 (2003) 418–422.Google Scholar
  110. 110.
    Fichtner, M. Engel, J. Fuhr, O. Glöss, A. Rubner, O. Ahlrichs, R. (2003) “The structure of magnesium alanate”, Inorg. Chem. 42 7060–7066.CrossRefGoogle Scholar
  111. 111.
    Fichtner, M. Fuhr, O. (2002)“Synthesis and structures of magnesium alanate and two solvent adducts”, J. Alloys Compd. 345 286–296.CrossRefGoogle Scholar
  112. 112.
    M. Schwarz, A. Haiduc, H. Still, P. Paulus, H. Geerlings, “The use of complex metal hydrides as hydrogen storage materials: Synthesis and XRD-studies of Ca(AlH4)2 and Mg(AlH4)2”, J. Alloys Compd. 404–406 (2005) 762–765.Google Scholar
  113. 113.
    Fossdal, A. Brinks, H.W. Fichtner, M. Hauback, B.C. (2005) “Determination of the crystal structure of Mg(AlH4,)2 by combined X-ray and neutron diffraction”, J. Alloys Compd. 387 47–51.CrossRefGoogle Scholar
  114. 114.
    A. Fossdal, H.W. Brinks, M. Fichtner, B.C. Hauback, “Thermal decomposition of Mg(AlH4)2 studied by in situ synchrotron X-ray diffraction”, J. Alloys Compd. 404–406 (2005) 752–756.Google Scholar
  115. 115.
    Dymova, T.N. Mal’tseva, N.N. Konoplev, V.N. Golovanova, A.I. Alexandrov, D.P. Sizareva, A.S. (2003) “Solid-phase solvate-free formation of magnesium hydroaluminates Mg(AlH4,)2 and MgAlH5 upon mechanochemical activation or heating of magnesium hydride and aluminum chloride mixtures”, Russ. J. Coord. Chem. 29 385–389.CrossRefGoogle Scholar
  116. 116.
    Dymova, T.N. Konoplev, V.N. Sizareva, A.S. Alexandrov, D.P. (1999) “Magnesium tetrahydroaluminate: solid-phase formation with mechanochemical activation of a mixture of aluminum and magnesium hydrides”, Russ. J. Coord. Chem. 25 312–315.Google Scholar
  117. 117.
    Mamatha, M. Weidenthaler, C. Pommerin, A. Felderhoff, M. Schüth, F. (2006) “Comparative studies of the decomposition of alanates followed by in situ XRD and DSC methods”, J. Alloys Compd. 416 303–314.CrossRefGoogle Scholar
  118. 118.
    Mamatha, M. Bogdanović, B. Felderhoff, M. Pommerin, A. Schmidt, W. Schüth, F. Weidenthaler, C. (2006) “Mechanochemical preparation and investigation of properties of magnesium, calcium and lithium-magnesium alanates”, J. Alloys Compd. 407 78–86.CrossRefGoogle Scholar
  119. 119.
    Kim, Y. Lee, E.-K. Shim, J.-H. Cho, Y.W. Yoon, K.B. (2006) “Mechanochemical synthesis and thermal decomposition of Mg(AlH4,)2”, J. Alloys Compd. 422 283–287.CrossRefGoogle Scholar
  120. 120.
    Varin, R.A. Chiu, Ch. Czujko, T. Wronski, Z. (2007) “Mechano-chemical activation synthesis (MCAS) of nanocrystalline magnesium alanate hydride [Mg(AlH4,)2] and its hydrogen desorption properties”, J. Alloys Compd. 439 302–311.CrossRefGoogle Scholar
  121. 121.
    Askeland, D.R. Phulé, P.P. 2006, p. The Science and Engineering of Materials, Thomson Canada Ltd., Toronto, 842.Google Scholar
  122. 122.
    Okamoto, H. 2000.Desk Handbook-Phase Diagrams for Binary Alloys, ASM International, Materials Park, OH, 36Google Scholar
  123. 123.
    Hou, Z.F. (2006) “First-principles investigation of Mg(AlH4,)2 complex hydride”, J. Power Sourc. 159 111–115.CrossRefGoogle Scholar
  124. 124.
    Varin, R.A. Chiu, Ch. Czujko, T. Wronski, Z. (2005) “Feasibility study of the direct mechano-chemical synthesis of nanostructured magnesium tetrahydroaluminate (alanate) [Mg(AlH4,)2] complex hydride”, Nanotechnology 16 2261–2274.CrossRefGoogle Scholar
  125. 125.
    M.S.L. Hudson, D. Pukazhselvan, G. Irene Sheeja, O.N. Srivastava, “Studies on the synthesis and dehydrogenation behavior of magnesium alanate and magnesium-sodium alanate mixture”, Int. J. Hydrogen Energ. (in press; doi:10.1016/j.ijhydene.2007.07.068).Google Scholar
  126. 126.
    K. Komiya, N. Morisaku, Y. Shinzato, K. Ikeda, S. Orimo, Y. Ohki, K. Tatsumi, H. Yukawa, M. Morinaga, “Synthesis and dehydrogenation of M(AlH4)2 (M = Mg, Ca)”, J. Alloys Compd. 446–447 (2007) 237–241.Google Scholar
  127. 127.
    Chen, P. Xiong, Z. Luo, J. Lin, J. Tan, K. L. (2002) “Interaction of hydrogen with metal nitrides and imides”, Nature 420 302–304.CrossRefGoogle Scholar
  128. 128.
    Chen, P. Xiong, Z. Luo, J. Lin, J. Tan, K.L. (2003) “Interaction between lithium amide and lithium hydride”, J. Phys. Chem. B 107 10967–10970.CrossRefGoogle Scholar
  129. 129.
    Xiong, Z. Wu, G. Hu, J. Chen, P. (2004) “Ternary imides for hydrogen storage”, Adv. Mater. 16 1522–1524.CrossRefGoogle Scholar
  130. 130.
    Ichikawa, T. Hanada, N. Isobe, S. Leng, H. Fujii, H. (2004) “Mechanism of novel reaction from LiNH2, and LiH to Li2NH and H2 as a promising hydrogen storage system”, J. Phys. Chem. B 108 7887–7892.CrossRefGoogle Scholar
  131. 131.
    Ichikawa, T. Isobe, S. Hanada, N. Fujii, H. (2004) “Lithium nitride for reversible hydrogen storage”, J. Alloys Compd. 365 271–276.CrossRefGoogle Scholar
  132. 132.
    Orimo, S. Nakamori, Y. Kitahara, G. Miwa, K. Ohba, N. Noritake, T. Towata, S. (2004) “Destabilization and enhanced dehydriding reaction of LiNH2,: an electronic structure viewpoint”, Appl. Phys. A 79 1765–1767.CrossRefGoogle Scholar
  133. 133.
    Kojima, Y. Kawai, Y. (2005) “IR characterization of lithium imide and amide”, J. Alloys Compd. 395 236–239.CrossRefGoogle Scholar
  134. 134.
    H.Y. Leng, T. Ichikawa, S. Isobe, S. Hino, N. Hanada, H. Fujii, (2005) “Desorption behaviors from metal-N–H systems synthesized by ball milling”, J. Alloys Compd. 404–406 443–447.Google Scholar
  135. 135.
    Pinkerton, F.E. (2005) “Decomposition kinetics of lithium amide for hydrogen storage materials”, J. Alloys Compd. 400 76–82.CrossRefGoogle Scholar
  136. 136.
    G.P. Meisner, F.E. Pinkerton, M.S. Meyer, M.P. Balogh, M.D. Kundrat, “Study of the lithium–nitrogen–hydrogen system”, J. Alloys Compd. 404–406 (2005) 24–26.Google Scholar
  137. 137.
    S. Isobe, T. Ichikawa, N. Hanada, H.Y. Leng, M. Fichtner, O. Fuhr, H. Fujii, “Effect of Ti catalyst with different chemical form on Li–N–H hydrogen storage properties”, J. Alloys Compd. 404–406 (2005) 439–442.Google Scholar
  138. 138.
    T. Ichikawa, N. Hanada, S. Isobe, H.Y. Leng, H. Fujii, “Hydrogen storage properties in Ti catalyzed Li–N–H system”, J. Alloys Compd. 404–406 (2005) 435–438.Google Scholar
  139. 139.
    Y. Nakamori, G. Kitahara, K. Miwa, N. Ohba, T. Noritake, S. Towata, S. Orimo, “Hydrogen storage properties of Li–Mg–N–H systems”, J. Alloys Compd. 404–406 (2005) 396–398.Google Scholar
  140. 140.
    Yao, J.H. Shang, C. Aguey-Zinsou, K.F. Guo, Z.X. (2007) “Desorption characteristics of mechanically and chemically modified LiNH2, and (LiNH2 + LiH)”, J. Alloys Compd. 432 277–282.CrossRefGoogle Scholar
  141. 141.
    Hu, Y. H. Ruckenstein, E. (2003) “Ultrafast reaction between LiH and NH3, during H2 storage in Li3N”, J. Phys.Chem. A 107 9737–9739.CrossRefGoogle Scholar
  142. 142.
    Shaw, L.L. Ren, R. Markmaitree, T. Osborn, W. (2008) “Effects of mechanical activation on dehydrogenation of the lithium amide and lithium hydride system”, J. Alloys Compd. 448 263–271.CrossRefGoogle Scholar
  143. 143.
    Luo, W. (2004) “(LiNH2,–MgH2): a viable hydrogen storage system”, J. Alloys Compd. 381 284–287.CrossRefGoogle Scholar
  144. 144.
    Luo, W. (2004) “Corrigendum to “(LiNH2,–MgH2): a viable hydrogen storage system J. Alloys Compd. 385 316.[J. Alloys Compd. 381(2004) 284–287]”Google Scholar
  145. 145.
    W. Luo, E. Rönnebro, “Towards a viable hydrogen storage system for transportation application”, J. Alloys Compd. 404–406 (2005) 392–395.Google Scholar
  146. 146.
    Xiong, Z. Hu, J. Wu, G. Chen, P. Luo, W. Gross, K. Wang, J. (2005) “Thermodynamic and kinetic investigations of the hydrogen storage in the Li–Mg–N–H system”, J. Alloys Compd. 398 235–239.CrossRefGoogle Scholar
  147. 147.
    Chen, Y. Wu, C.Z. Wang, P. Cheng, H.M. (2006) “Structure and hydrogen storage property of ball-milled LiNH2,/MgH2 mixture”, Int. J. Hydrogen Energ. 31 1236–1240.CrossRefGoogle Scholar
  148. 148.
    Luo, W. Sickafoose, S. (2006) “Thermodynamic and structural characterization of the Mg–Li–N–H system”, J. Alloys Compd. 407 274–281.CrossRefGoogle Scholar
  149. 149.
    Yang, J. Sudik, A. Wolverton, C. (2007) “Activation of hydrogen storage materials in the Li–Mg–N–H system: Effect on storage properties”, J. Alloys Compd. 430 334–338.CrossRefGoogle Scholar
  150. 150.
    Luo, S. Flanagan, T.B. Luo, W. (2007) “The effect of exposure of the H-storage system (LiNH2, + MgH2) to water saturated air”, J. Alloys Compd. 440 L13–L17.CrossRefGoogle Scholar
  151. 151.
    W. Lohstroh, M. Fichtner, “Reaction steps in the Li–Mg–N–H hydrogen storage system”, J. Alloys Compd. 446–447 (2007) 332–335.Google Scholar
  152. 152.
    Luo, W. Stewart, K. (2007) “Characterization of NH3, formation in desorption of Li–Mg–N–H storage system”, J. Alloys Compd. 440 357–361.CrossRefGoogle Scholar
  153. 153.
    W. Luo, J. Wang, K. Stewart, M. Clift, K. Gross, “Li–Mg–N–H: Recent investigations and development”, J. Alloys Compd. 446–447 (2007) 336–341.Google Scholar
  154. 154.
    S. Barison, F. Agresti, S.L. Russo, A. Maddalena, P. Palade, G. Principi, G. Torzo, “A study of the LiNH2–MgH2 system for solid state hydrogen storage”, J. Alloys Compd. (in press; doi:10.1016/j.jallcom.2007.04.278).Google Scholar
  155. 155.
    Nakamori, Y. Kitahara, G. Orimo, S. (2004) “Synthesis and dehydriding studies of Mg–N–H system”, J. Power Sourc. 138 309–312.CrossRefGoogle Scholar
  156. 156.
    Leng, H.Y. Ichikawa, T. Hino, S. Hanada, N. Isobe, S. Fujii, H. (2004) “New metal–N–H system composed of Mg(NH2,)2 and LiH for hydrogen storage”, J. Phys. Chem. B 108 8763–8765.CrossRefGoogle Scholar
  157. 157.
    Materials Matters™ 2 (2007) 18, 22 (Sigma-Aldrich Corporation).Google Scholar
  158. 158.
    Hu, J. Xiong, Z. Wu, G. Chen, P. Murata, K. Sakata, K. (2006) “Effects of ball milling on dehydrogenation of Mg(NH2,)2–MgH2”, J. Power Sourc. 159 120–125.CrossRefGoogle Scholar
  159. 159.
    Leng, H.Y. Ichikawa, T. Hino, S. Nakagawa, T. Fujii, H. (2005) “Mechanism of hydrogenation reaction in the Li–Mg–N–H system”, J. Phys. Chem. B 109 10744–10748.CrossRefGoogle Scholar
  160. 160.
    Ichikawa, T. Tokoyoda, K. Leng, H. Fujii, H. (2005) “Hydrogen absorption properties of Li–Mg–N–H system”, J. Alloys Compd. 400 245–248.CrossRefGoogle Scholar
  161. 161.
    Ichikawa, T. Leng, H.Y. Isobe, S. Hanada, N. Fujii, H. (2006) “Recent development on hydrogen storage properties in metal-N–H systems”, J. Power Sourc. 159 126–131.CrossRefGoogle Scholar
  162. 162.
    Nakagawa, T. Ichikawa, T. Iida, R. Leng, H. Takeichi, N. Kiyobayashi, T. Fujii, H. (2007) “Observation on hydrogen absorption/desorption reaction processes in Li–Mg–N–H system by in-situ X-ray diffractometry”, J. Alloys Compd. 430 217–221.CrossRefGoogle Scholar
  163. 163.
    Okamoto, K. Tokoyoda, K. Ichikawa, T. Fujii, H. (2007) “A process for synthesizing the Li–Mg–N–H hydrogen storage system from Mg and LiNH2”, J. Alloys Compd. 432 289–292.CrossRefGoogle Scholar
  164. 164.
    Aoki, M. Noritake, T. Kitahara, G. Nakamori, Y. Towata, S. Orimo, S. (2007) “Dehydriding reaction of Mg(NH2,)2–LiH system under hydrogen pressure”, J. Alloys Compd. 428 307–311.CrossRefGoogle Scholar
  165. 165.
    M. Aoki, T. Noritake, Y. Nakamori, S. Towata, S. Orimo, (2007) “Dehydriding and rehydriding properties of Mg(NH2,)–LiH systems”J. Alloys Compd. 446–447 328–331.Google Scholar
  166. 166.
    Xiong, Z. Hu, J. Wu, G. Chen, P. (2005) “Hydrogen absorption and desorption in Mg–Na–N–H system”, J. Alloys Compd. 395 209–212.CrossRefGoogle Scholar
  167. 167.
    Xiong, Z. Wu, G. Hu, J. Chen, P. (2006) “Investigation on chemical reaction between LiAlH4, and LiNH2”, J. Power Sourc. 159 167–170.CrossRefGoogle Scholar
  168. 168.
    J. Yang, A. Sudik, D.J. Siegel, D. Halliday, A. Drews, R.O. Carter III, C. Wolverton, G.J. Lewis, J.W.A. Sachtler, J.J. Low, S.A. Faheem, D.A. Lesch, V. Ozolins, “Hydrogen storage properties of 2LiNH2 + LiBH4 + MgH2”, J. Alloys Compd. 446–447 (2007) 345–349.Google Scholar
  169. 169.
    Xiong, Z. Wu, G. Hu, J. Chen, P. (2007) “Ca–Na–N–H system for reversible hydrogen storage”, J. Alloys Compd. 441 152–156.CrossRefGoogle Scholar
  170. 170.
    Tokoyoda, K. Hino, S. Ichikawa, T. Okamoto, K. Fujii, H. (2007) “Hydrogen desorption/absorption properties of Li–Ca–N–H system”, J. Alloys Compd. 439 337–341.CrossRefGoogle Scholar
  171. 171.
    Liu, Y. Hu, J. Xiong, Z. Wu, G. Chen, P. Murata, K. Sakata, K. (2007) “Investigations on hydrogen desorption from the mixture of Mg(NH2,)2 and CaH2”, J. Alloys Compd. 432 298–302.CrossRefGoogle Scholar
  172. 172.
    D. Goerrig, “Verfahren zur Herstellung von Boranaten”, German Patent DE 1 077644 (1958).Google Scholar
  173. 173.
    Nakamori, Y. Miwa, K. Ninomiya, A. Li, H. Ohba, N. Towata, S.-I. Züttel, A. Orimo, S.-I. (2006) “Correlation between thermodynamical stabilities of metal borohydrides and cation electronegatives: First principles calculations and experiments”, Phys. Rev. B 74 45126.CrossRefGoogle Scholar
  174. 174.
    Y. Nakamori, H.W. Li, K. Kikuchi, M. Aoki, K. Miwa, S. Towata, S. Orimo, “Thermodynamical stabilities of metal-borohydrides”, J. Alloys Compd. (in press, doi:10.1016/j.jallcom.2007.03.144).Google Scholar
  175. 175.
    R.A. Varin, C. Chiu, Z.S. Wronski, “Mechano-chemical activation synthesis (MCAS) of disordered Mg(BH4)2 using NaBH4”, J. Alloys Compd. (in press: doi:10.1016/j.jallcom.2007.07.110)Google Scholar
  176. 176.
    Li, Z.P. Morigazaki, N. Liu, B.H. Suda, S. (2003) “Preparation of sodium borohydride by the reaction of MgH2, with dehydrated borax through ball milling at room temperature”, J. Alloys Compd. 349 232–236.CrossRefGoogle Scholar
  177. 177.
    Stasinevich, D.S. Egorenko, G.A. Gnedina, G.N. (1966) “Tiermograficzieskoie issliedovanie systiemy gidridoborat natrija-gidrid natrija”, Dokl. Akad. Nauk SSSR 168 610–612.Google Scholar
  178. 178.
    Stasinevich, D.S. Egorenko, G.A. (1968) “Thermographic investigation of alkali metal and magnesium tetrahydroborates at pressures up to 10atm”, Russ. J. Inorg. Chem. 13 341–343.Google Scholar
  179. 179.
    Varin, R.A. Chiu, Ch. (2005) “Structural stability of sodium borohydride (NaBH4,) during controlled mechanical milling”, J. Alloys Compd. 397 276–281.CrossRefGoogle Scholar
  180. 180.
    Züttel, A. Wenger, P. Rentsch, S. Sudan, P. Mauron, Ph. Emmenegger, Ch. (2003) “LiBH4, a new hydrogen storage material”, J. Power Sourc. 118 1–7.CrossRefGoogle Scholar
  181. 181.
    S. Orimo, Y. Nakamori, G. Kitahara, K. Miwa, N. Ohba, S. Towata, A. Züttel, “Dehydriding and rehydriding reactions of LiBH4”, J. Alloys Compd. 404–406 (2005) 427–430.Google Scholar
  182. 182.
    L. Mosegaard, B. Møller, J.E. Jørgensen, U. Bösenberg, M. Dornheim, J.C. Hanson, Y. Cerenius, G. Walker, H.J. Jakobsen, F. Besenbacher, T.R. Jensen,”Intermediate phases observed during decomposition of LiBH4”, J. Alloys Compd. 446–447 (2007) 301–305.Google Scholar
  183. 183.
    Konoplev, V.N. Bakulina, V.M. (1971) “Some properties of magnesium borohydride”, Acad. Sci. USSR: Gen. Inorg. Chem. 1) 159–161.(English translation) (Google Scholar
  184. 184.
    Vajeeston, P. Ravindran, P. Kjekshus, A. Fjellvåg, H. (2006) “High hydrogen content complex hydrides: A density-functional study”, Appl. Phys. Lett. 89 71906.CrossRefGoogle Scholar
  185. 185.
    Varin, R.A. Chiu, Ch. Wronski, Z. Calka, A. (2007) “The effects of oxidized and oxide-free boron on the Mg–B–H nanohydrides transformation in the nearly nanosized powders”, Solid State Phenom. 128 47–52.CrossRefGoogle Scholar
  186. 186.
    Chase M.W. Jr., 1998, p. Journal of Physical and Chemical Reference Data Monographs, Fourth Editon, ACS, AIP, NIST, Washingtone, DC, 268. No.9; NIS T-JANAF Thermochemical TablesGoogle Scholar
  187. 187.
    Askeland, D.R. Phulé: P.P. 2003, pp. The Science and Engineering of Materials, Fourth Edition, Brooks/Cole-Thomson Learning Inc., Pacific Grove, 980–981.Google Scholar
  188. 188.
    T. Matsunaga, F. Buchter, P. Mauron, M. Bielman, Y. Nakamori, S. Orimo, N. Ohba, K. Miwa, S. Towata, A. Züttel, “Hydrogen storage properties of Mg(BH4)2”, J. Alloys Compd. (in press; doi:10.1016/j.jallcom.2007.05.054).Google Scholar
  189. 189.
    Jeon, E. Cho, Y.W. (2006) “Mechanochemical synthesis and thermal decomposition of zinc borohydride”, J. Alloys Compd. 422 273–275.CrossRefGoogle Scholar
  190. 190.
    K. Miwa, N. Ohba, S. Towata, Y. Nakamori, A. Züttel, S. Orimo, “First-principles study on thermodynamical stability of metal borohydrides: Aluminum borohydride Al(BH4)2”, J. Alloys Compd. 446–447 (2007) 310–314.Google Scholar
  191. 191.
    H.W. Li, S. Orimo, Y. Nakamori, K. Miwa, N. Ohba, S. Towata, A. Züttel, “Materials designing of metal borohydrides: Viewpoints from thermodynamical stabilities”, J. Alloys Compd. 446–447 (2007) 315–318.Google Scholar
  192. 192.
    S. Srinivasan, E. Stefanakos, Y. Goswami, “New transition metal assisted complex borohydrides for hydrogen storage”, Proc. World Hydrogen Energy Congress, 13–16 June 2006, Lyon, France, pp. 1/6–6/6.Google Scholar
  193. 193.
    S. Srinivasan, D. Escobar, M. Jurczyk, Y. Goswami, E. Stefanakos, “Nanocatalysts doping of Zn(BH4)2 for on-board hydrogen storage”, J. Alloys Compd. (in press; doi:10.1016/j.jallcom.2007.08.028).Google Scholar
  194. 194.
    Zaluska, A. Zaluski, L. Ström-Olsen, J.O. (1999) “Synergy of hydrogen sorption in ball-milled hydrides of Mg and Mg2,Ni”, J. Alloys Compd. 289 197–206.CrossRefGoogle Scholar
  195. 195.
    Johnson, S.R. Anderson, P.A. Edwards, P.P. Gameson, I. Prendergast, J.W. Al-Mamouri, A. Book, D. Rex Harris, I. Speight, J.D. Walton, A. (2005) “Chemical activation of MgH2,; a new route to superior hydrogen storage materials”, Chem. Commun. 281 2823–2825.CrossRefGoogle Scholar
  196. 196.
    Vajo, J.J. Mertens, F. Ahn, C.C. Bowman R.C. Jr., Fultz, B. (2004) “Altering hydrogen storage properties by hydride destabilization through alloy formation: LiH and MgH2, destabilized with Si”, J. Phys. Chem. B 108 13977–13983.CrossRefGoogle Scholar
  197. 197.
    Vajo, J.J. Skeith, S.L. Mertens, F. (2005) “Reversible storage of hydrogen in destabilized LiBH4”, Phys. Chem. B Lett. 109 3719–3722.Google Scholar
  198. 198.
    J.J. Vajo, T.T. Salguero, A.F. Gross, S.L. Skeith, G.L. Olsen, “Thermodynamic destabilization and reaction kinetics in light metal hydride systems”, J. Alloys Compd. 446–447 (2007) 409–414.Google Scholar
  199. 199.
    Hanada, N. Lohstroh, W. Fichtner, M. (2008) “Comparison of the calculated and experimental scenarios for solid-state reactions involving Ca(AlH4,)2”, J. Phys. Chem. C 112 131–138.CrossRefGoogle Scholar
  200. 200.
    Varin, R.A. Czujko, T. Wronski, Z.S. April 29–May 2, 2007, “Hydrogen storage properties of mechanically milled MgH2, + NaBH4 hydride composite”Presented by R.A. Varin at the 2007 Hydrogen and Fuel Cell Conference, Vancouver, Canada.Google Scholar
  201. 201.
    Varin, R.A. Czujko, T. Chiu, C. Pulz, R. Wronski, Z. August 26–30, 2007, “Synthesis of nanocomposite hydrides for solid state hydrogen storage by controlled mechanical milling techniques”, Presented by R.A. Varin at the 14th Int. Symposium on Metastable and Nanomaterials, ISMANAM 2007, Corfu, Greece.Google Scholar
  202. 202.
    Y. Makihara, K. Umeda, F. Shoji, K. Kato, Y. Miyairi, “Cooperative dehydriding mechanism in a mechanically milled Mg-50mass%ZrMn2 composite”, J. Alloys Compd. (in press; doi:10.1016/j.jallcom.2007.01.109).Google Scholar
  203. 203.
    Czujko, T. Varin, R.A. Wronski, Z. Zaranski, Z. Durejko, T. (2007) “Synthesis and hydrogen desorption properties of nanocomposite magnesium hydride with sodium borohydride (MgH2, + NaBH4)”, J. Alloys Compd. 427 291–299.CrossRefGoogle Scholar
  204. 204. Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Personalised recommendations