Advertisement

Reliability and Defect Tolerance in Metallic Quantum-Dot Cellular Automata

  • M. Liu
  • C. S. Lent
Part of the Frontiers in Electronic Testing book series (FRET, volume 37)

Conventional transistor-based CMOS technology faces great challenges with the down-scaling of device sizes in recent years. Issues such as quantum effects, dopant-induced disorder, and power dissipation may hinder further progress in scaling microelectronics. As the scaling approaches a molecular level, a new paradigm beyond using current switches to encode binary information may be needed. Quantum-dot cellular automata (QCA) [1–3, 5, 11, 12, 15, 18] emerges as one such a paradigm. In the QCA approach bit information is encoded in the charge configuration within a cell. Columbic interaction between cells is sufficient to accomplish the computation; no current flows out of the cell. It has been shown that very low power dissipation is possible [14].

Keywords

Defect Tolerance Shift Register Versus Cell Power Gain Clock Period 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Amlani, A. Orlov, G. Toth, G. H. Bernstein, C. S. Lent, G. L. Snider, “Digital logic gate using quantum-dot cellular automata,” Science 284: 289-291, 1999.CrossRefGoogle Scholar
  2. 2.
    R. K. Kummamuru, J. Timler, G. Toth, C. S. Lent, R. Ramasubramaniam, A. O. Orlov, G. H. Bernstein, G. L. Snider, “Power gain in a quantum-dot cellular automata latch,” Applied Physics Letters 81: 1332-1334, 2002.CrossRefGoogle Scholar
  3. 3.
    R. K. Kummamuru, A. O. Orlov, C. S. Lent, G. H. Bernstein, G. L. Snider, “Operation of a quantum-dot cellular automata (QCA) shift register and analysis of errors,” IEEE Transactions on Electron Devices 50: 1906-1913, 2003.CrossRefGoogle Scholar
  4. 4.
    C. S. Lent, B. Isaksen, “Clocked molecular quantum-dot cellular automata,” IEEE Transctions on Electron Devices 50: 1890-1896, 2003.CrossRefGoogle Scholar
  5. 5.
    C. S. Lent, P. D. Tougaw, W. Porod, G. H. Bernstein, “Quantum cellular automata,” Nanotechnology 4: 49-57, 1993.CrossRefGoogle Scholar
  6. 6.
    C. S. Lent, P. D. Tougaw, W. Porod, “Quantum cellular automata: the physics of computing with quantum dot molecules,” PhysComp’94, Proceedings of the Workshop on Physics and Computing, IEEE Computer Society Press, pp. 5-13, 1994.Google Scholar
  7. 7.
    C. S. Lent, B. Isaksen, M. Lieberman, “Molecular quantum-dot cellular automata,” Journal of American Chemical Society 125: 1056-1063, 2003.CrossRefGoogle Scholar
  8. 8.
    A. Li, T. P. Fehlner, “Molecular QCA Cells. 2. Characterization of an unsymmetrical dinuclear mixed-valence complex bound to a Au surface by an organic linker,” Inorganic Chemistry 42: 5715-5721, 2003.CrossRefGoogle Scholar
  9. 9.
    Z. Li, A. M. Beatty, T. P. Fehlner, “Molecular QCA Cells. 1. Structure and functionalization of an unsymmetrical dinuclear mixed-valence complex for surface binding,” Inorganic Chemistry 42: 5707-5714, 2003.CrossRefGoogle Scholar
  10. 10.
    M. Lieberman, S. Chellamma, B. Varughese, Y. L. Wang, C. S. Lent, G. H. Bernstein, G. L. Snide, F. C. Peiris, “Quantum-dot cellular automata at a molecular scale,” Annals of the New York Academy of Sciences 960: 225-239, 2002.CrossRefGoogle Scholar
  11. 11.
    A. O. Orlov, I. Amlani, G. H. Bernstein, C. S. Lent, G. L. Snider, “Realization of a functional cell for quantum-dot cellular automata,” Science 277: 928-930, 1997.CrossRefGoogle Scholar
  12. 12.
    A. O. Orlov, I. Amlani, R. K. Kummamuru, R. Ramasurbramaniam, G. Toth, C. S. Lent, G. H. Bernstein, G. L. Snider, “Experimental demonstration of clocked single-electron switching in quantum-dot cellular automata,” Applied Physics Letters 77: 295-297, 2000.CrossRefGoogle Scholar
  13. 13.
    H. Qi, S. Sharma, Z. Li, G. L. Snider, A. O. Orlov, C. S. Lent, T. P. Fehlner, “Molecular quantum cellular automata cells. Electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata,” Journal of American Chemical Socety 125: 15250-15259, 2003.CrossRefGoogle Scholar
  14. 14.
    J. Timler, C. S. Lent, “Power gain and dissipation in quantum-dot cellular automata,” Journal of Applied Physics 91: 823-831, 2002.CrossRefGoogle Scholar
  15. 15.
    P. D. Tougaw, C. S. Lent, “Logical devices implemented using quantum cellular automata,” Journal of Applied Physics 75: 1818-1825, 1994.CrossRefGoogle Scholar
  16. 16.
    C. Wasshuber, Computational single-electronics, Springer, Berlin Heidelberg New York, 2001.MATHGoogle Scholar
  17. 17.
    C. Wasshuber, H. Kosina, S. Selberherr, “SIMON: A simulator for singleelectron tunnel devices and circuits,” 16: 937-944, 1997.Google Scholar
  18. 18.
    K. K. Yadavalli, A. O. Orlov, R. K. Kummamuru, C. S. Lent, G. H. Bernstein, G. L. Snider, “Fanout in quantum dot cellular automata,” 63rd Device Research Conference 1: 121-122, 2005.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • M. Liu
    • 1
  • C. S. Lent
    • 1
  1. 1.Department of Electrical EngineeringUniversity of Notre DameNotre Dame

Personalised recommendations