Skip to main content

Reliability and Defect Tolerance in Metallic Quantum-Dot Cellular Automata

  • Chapter
Emerging Nanotechnologies

Part of the book series: Frontiers in Electronic Testing ((FRET,volume 37))

  • 605 Accesses

Conventional transistor-based CMOS technology faces great challenges with the down-scaling of device sizes in recent years. Issues such as quantum effects, dopant-induced disorder, and power dissipation may hinder further progress in scaling microelectronics. As the scaling approaches a molecular level, a new paradigm beyond using current switches to encode binary information may be needed. Quantum-dot cellular automata (QCA) [1–3, 5, 11, 12, 15, 18] emerges as one such a paradigm. In the QCA approach bit information is encoded in the charge configuration within a cell. Columbic interaction between cells is sufficient to accomplish the computation; no current flows out of the cell. It has been shown that very low power dissipation is possible [14].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Amlani, A. Orlov, G. Toth, G. H. Bernstein, C. S. Lent, G. L. Snider, “Digital logic gate using quantum-dot cellular automata,” Science 284: 289-291, 1999.

    Article  Google Scholar 

  2. R. K. Kummamuru, J. Timler, G. Toth, C. S. Lent, R. Ramasubramaniam, A. O. Orlov, G. H. Bernstein, G. L. Snider, “Power gain in a quantum-dot cellular automata latch,” Applied Physics Letters 81: 1332-1334, 2002.

    Article  Google Scholar 

  3. R. K. Kummamuru, A. O. Orlov, C. S. Lent, G. H. Bernstein, G. L. Snider, “Operation of a quantum-dot cellular automata (QCA) shift register and analysis of errors,” IEEE Transactions on Electron Devices 50: 1906-1913, 2003.

    Article  Google Scholar 

  4. C. S. Lent, B. Isaksen, “Clocked molecular quantum-dot cellular automata,” IEEE Transctions on Electron Devices 50: 1890-1896, 2003.

    Article  Google Scholar 

  5. C. S. Lent, P. D. Tougaw, W. Porod, G. H. Bernstein, “Quantum cellular automata,” Nanotechnology 4: 49-57, 1993.

    Article  Google Scholar 

  6. C. S. Lent, P. D. Tougaw, W. Porod, “Quantum cellular automata: the physics of computing with quantum dot molecules,” PhysComp’94, Proceedings of the Workshop on Physics and Computing, IEEE Computer Society Press, pp. 5-13, 1994.

    Google Scholar 

  7. C. S. Lent, B. Isaksen, M. Lieberman, “Molecular quantum-dot cellular automata,” Journal of American Chemical Society 125: 1056-1063, 2003.

    Article  Google Scholar 

  8. A. Li, T. P. Fehlner, “Molecular QCA Cells. 2. Characterization of an unsymmetrical dinuclear mixed-valence complex bound to a Au surface by an organic linker,” Inorganic Chemistry 42: 5715-5721, 2003.

    Article  Google Scholar 

  9. Z. Li, A. M. Beatty, T. P. Fehlner, “Molecular QCA Cells. 1. Structure and functionalization of an unsymmetrical dinuclear mixed-valence complex for surface binding,” Inorganic Chemistry 42: 5707-5714, 2003.

    Article  Google Scholar 

  10. M. Lieberman, S. Chellamma, B. Varughese, Y. L. Wang, C. S. Lent, G. H. Bernstein, G. L. Snide, F. C. Peiris, “Quantum-dot cellular automata at a molecular scale,” Annals of the New York Academy of Sciences 960: 225-239, 2002.

    Article  Google Scholar 

  11. A. O. Orlov, I. Amlani, G. H. Bernstein, C. S. Lent, G. L. Snider, “Realization of a functional cell for quantum-dot cellular automata,” Science 277: 928-930, 1997.

    Article  Google Scholar 

  12. A. O. Orlov, I. Amlani, R. K. Kummamuru, R. Ramasurbramaniam, G. Toth, C. S. Lent, G. H. Bernstein, G. L. Snider, “Experimental demonstration of clocked single-electron switching in quantum-dot cellular automata,” Applied Physics Letters 77: 295-297, 2000.

    Article  Google Scholar 

  13. H. Qi, S. Sharma, Z. Li, G. L. Snider, A. O. Orlov, C. S. Lent, T. P. Fehlner, “Molecular quantum cellular automata cells. Electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata,” Journal of American Chemical Socety 125: 15250-15259, 2003.

    Article  Google Scholar 

  14. J. Timler, C. S. Lent, “Power gain and dissipation in quantum-dot cellular automata,” Journal of Applied Physics 91: 823-831, 2002.

    Article  Google Scholar 

  15. P. D. Tougaw, C. S. Lent, “Logical devices implemented using quantum cellular automata,” Journal of Applied Physics 75: 1818-1825, 1994.

    Article  Google Scholar 

  16. C. Wasshuber, Computational single-electronics, Springer, Berlin Heidelberg New York, 2001.

    MATH  Google Scholar 

  17. C. Wasshuber, H. Kosina, S. Selberherr, “SIMON: A simulator for singleelectron tunnel devices and circuits,” 16: 937-944, 1997.

    Google Scholar 

  18. K. K. Yadavalli, A. O. Orlov, R. K. Kummamuru, C. S. Lent, G. H. Bernstein, G. L. Snider, “Fanout in quantum dot cellular automata,” 63rd Device Research Conference 1: 121-122, 2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Liu, M., Lent, C.S. (2008). Reliability and Defect Tolerance in Metallic Quantum-Dot Cellular Automata. In: Tehranipoor, M. (eds) Emerging Nanotechnologies. Frontiers in Electronic Testing, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74747-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-74747-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-74746-0

  • Online ISBN: 978-0-387-74747-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics