Skip to main content

Design and Analysis of Fault-Tolerant Molecular Computing Systems

  • Chapter
Emerging Nanotechnologies

Part of the book series: Frontiers in Electronic Testing ((FRET,volume 37))

  • 608 Accesses

As electronics enters the nanoscopic realm, patterning and fabrication costs to manufacture nanoscale CMOS chips are expected to increase exponentially. Hence, researchers are looking at technologies that can be more viable for the miniaturization of electronics than conventional technologies that require almost perfect control over lithography, etching and other processes. One of the technologies that the microelectronics community has been investigating is chemical self-assembly of devices from elementary and identical molecular units by controlled deposition of molecular monolayers on the substrates, a technology that has given birth to molecular electronics [28].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Aviram and M. Ratner. Molecular rectifiers. Chemical Physics Letters, 29(2):277-283, November 1974

    Article  Google Scholar 

  2. A. Bandyopadhyay and A. Pal. Large conductance switching and memory effects in organic molecules for data storage applications. Applied Physics Letters, 82 (8):1215-1217, 2003

    Article  Google Scholar 

  3. D. Bhaduri and S. Shukla. NANOLAB—a tool for evaluating reliability of defect-tolerant nanoarchitectures. IEEE Transactions on Nanotechnology, 4(4):381-394, 2005

    Article  Google Scholar 

  4. D. Bhaduri, S. Shukla, P. Graham, and M. Gokhale. Comparing reliabilityredundancy trade-offs for two von neumann multiplexing architectures. IEEE Transactions on Nanotechnology, 2006. To appear. Available at http://fermat.ece.vt.edu/Publications/online-papers/Nano/MUX_TNANO.pdf

  5. D. Bhaduri and S. K. Shukla. Comparing the reliability-redundancy tradeoffs for two von neumann multiplexing architectures. Technical report, Fermat Lab, Virginia Tech, 2005. Available at http://fermat.ece.vt.edu/Publications/pubs/techrep/techrep05 01.pdf

  6. D. Bhaduri, S. K. Shukla, P. Graham, and M. Gokhale. Reliability analysis of fault-tolerant reconfigurable architectures. In NANOARCH, May 2005. Available at http://fermat.ece.vt.edu/Publications/pubs/techrep/techrep0415.pdf

  7. Yong Chen et al. Nanoscale molecular-switch crossbar circuits. Nanotechnology, 14:462-468, 2003

    Article  Google Scholar 

  8. Y. K. Dalal and R. M. Metcalfe. Reverse path forwarding of broadcast packets. Communications of the ACM, 21(12):1040-1048, 1978

    Article  MATH  Google Scholar 

  9. A. DeHon. Array-based architecture for fet-based nanoscale electronics. IEEE Transactions on Nanotechnology, 2:223-232, 2003

    Google Scholar 

  10. A. DeHon and M. J. Wilson. Nanowire-based sublithographic programmable logic arrays. In Int’l Symp. on FPGAs, pages 123-132, 2004

    Google Scholar 

  11. A. Flood, J. Stoddart, D. Steuerman, and J. R. Heath. Whence molecular electronics? Science, 306(5704):2055-2056, Dec 2004

    Article  Google Scholar 

  12. S. C. Goldstein and M. Budiu. Nanofabrics: Spatial computing using molecular electronics. In Annual International Symposium on Computer Architecture (ISCA), pages 178-189, July 2001

    Google Scholar 

  13. J. Han and P. Jonker. Fault tolerance in nanocomputers: random interwoven redundancy. IEEE Trans. VLSI. To Appear.

    Google Scholar 

  14. J. Han and P. Jonker. A system architecture solution for unreliable nanoelectronic devices. IEEE Transactions on Nanotechnology, 1:201-208, 2002

    Article  Google Scholar 

  15. J. Heath, P. Kuekes, G. Snider, and R. Williams. A defect tolerant computer architecture: Opportunities for nanotechnology. Science, 80:1716-1721, 1998

    Article  Google Scholar 

  16. M. Jacome, C. He, G. Veciana, and S. Bijansky. Defect tolerant probabilistic design paradigm for nanotechnologies. In DAC, pages 596-601, June 2004

    Google Scholar 

  17. J. Koeter. What’s an lfsr? (rev. a). Tech. report, Texas Instruments, 1996. Available at http://www.ti.com/sc/docs/psheets/abstract/apps/scta036a.htm

  18. S. Krishnaswamy, G. F. Viamontes, I. L. Markov, and J. P. Hayes. Accurate reliability evaluation and enhancement via probabilistic transfer matrices. In Design, Automation and Test in Europe (DATE’05), volume 1, pages 282-287, New York, NY, USA, 2005. ACM Press

    Chapter  Google Scholar 

  19. C.N. Lau, D. R. Stewart, R. S. Williams, and M. Bockrath. Direct observation of nanoscale switching centers in metal/molecule/metal structures. Nano Letters, 4(4):569-572, 2004

    Article  Google Scholar 

  20. H. M. McConnell. Intramolecular charge transfer in aromatic free radicals. The Journal of Chemical Physics, 35(5704):508-515, August 1961

    Article  Google Scholar 

  21. Mahim Mishra and Seth Copen Goldstein. Defect tolerance at the end of the roadmap. In International Test Conference (ITC), Charlotte, NC, Sep 30-Oct 22003

    Google Scholar 

  22. K. Nikolic, A. Sadek, and M. Forshaw. Architectures for reliable computing with unreliable nanodevices. In Proc. IEEE-NANO’01, pages 254-259. IEEE, 2001

    Google Scholar 

  23. G. Norman, D. Parker, M. Kwiatkowska, and S. Shukla. Evaluating the reliability of nand multiplexing with prism. IEEE Transactions on CAD, 24(9). To appear September 2005

    Google Scholar 

  24. J. Patwardhan, C. Dwyer, A. Lebeck, and D. Sorin. Evaluating the connectivity of self-assembled networks of nano-scale processing elements. In IEEE International Workshop on Design and Test of Defect-Tolerant Nanoscale Architectures, May 2005

    Google Scholar 

  25. Daniel P. Siewiorek and Robert S. Swarz. Reliable Computer Systems: Design and Evaluation. Digital Press, Burlington, MA, 2nd edition, 1992

    Google Scholar 

  26. Web Page: http://www.cs.ucr.edu/ciardo/SMART/, 1994

  27. M. B. Tahoori. Defects, yield and design in sublithographic nano-electronics. In IEEE Symposium in Defect and Fault Tolerance, 2005

    Google Scholar 

  28. Victor V. Zhirnov and Daniel J. C. Herr. New frontiers: Self-assembly and nanoelectronics. Computer, 34(1):34-43, January 2001

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bhaduri, D., Shukla, S.K., Quinn, H., Graham, P., Gokhale, M. (2008). Design and Analysis of Fault-Tolerant Molecular Computing Systems. In: Tehranipoor, M. (eds) Emerging Nanotechnologies. Frontiers in Electronic Testing, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74747-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-74747-7_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-74746-0

  • Online ISBN: 978-0-387-74747-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics