Skip to main content

Immunotherapy of Angiogenesis with DNA Vaccines

  • Chapter
Angiogenesis

The understanding of the molecular mechanisms of tumor neovascularization has identified several important molecular targets that are specifically expressed on tumor neovasculature but not on physiological neovasculature. These molecular targets can potentially be used in the development of novel therapeutic approaches against tumor angiogenesis. Immunotherapy targeting angiogenesis has emerged as a potentially promising approach compared to the use of angiogenesis inhibitors due to its ability to afford long-term therapeutic protection. This presents remarkable opportunities for the development of innovative cancer therapies.Immunotherapy using DNA vaccines has gained momentum for antiangiogenesis therapy due to their stability, simplicity and excellent safety profile, and may prove to be a potentially useful strategy for targeting angiogenesis. In the current review, we discuss the various strategies and molecular targets employed in the form of DNA vaccines to target: (1) the endothelial cells within the tumor; (2) biological factors important for angiogenesis; and (3) the extracellular matrix and stromal cells associated with the tumor in order to control tumor angiogenesis in preclinical models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000; 6(4):389–95.

    Article  PubMed  CAS  Google Scholar 

  2. Papetti M, Herman IM. Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol 2002; 282(5):C947–70.

    PubMed  CAS  Google Scholar 

  3. Scappaticci FA. The therapeutic potential of novel antiangiogenic therapies. Expert Opin Investig Drugs 2003; 12(6):923–32.

    Article  PubMed  CAS  Google Scholar 

  4. Boehm T, Folkman J, Browder T, et al. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 1997; 390(6658):404–7.

    Article  PubMed  CAS  Google Scholar 

  5. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86(3): 353–64.

    Article  PubMed  CAS  Google Scholar 

  6. Li Y, Bohlen P, Hicklin DJ. Vaccination against angiogenesis-associated antigens: a novel cancer immunotherapy strategy. Current molecular medicine 2003; 3(8):773–9.

    Article  PubMed  CAS  Google Scholar 

  7. Boyd D, Hung CF, Wu TC. DNA vaccines for cancer. IDrugs 2003; 6(12):1155–64.

    PubMed  CAS  Google Scholar 

  8. Liu JY, Wei YQ, Yang L, et al. Immunotherapy of tumors with vaccine based on quail homologous vascular endothelial growth factor receptor-2. Blood 2003; 102(5):1815–23.

    Article  PubMed  CAS  Google Scholar 

  9. Su JM, Wei YQ, Tian L, et al. Active immunogene therapy of cancer with vaccine on the basis of chicken homologous matrix metalloproteinase-2. Cancer Res 2003; 63(3):600–7.

    PubMed  CAS  Google Scholar 

  10. Lu Y, Wei YQ, Tian L, et al. Immunogene therapy of tumors with vaccine based on xenogeneic epidermal growth factor receptor. J Immunol 2003; 170(6):3162–70.

    PubMed  CAS  Google Scholar 

  11. Wei YQ, Huang MJ, Yang L, et al. Immunogene therapy of tumors with vaccine based on Xenopus homologous vascular endothelial growth factor as a model antigen. Proc Natl Acad Sci USA 2001; 98(20):11545–50.

    Article  PubMed  CAS  Google Scholar 

  12. Luo Y, Markowitz D, Xiang R, et al. FLK-1-based minigene vaccines induce T cell-mediated suppression of angiogenesis and tumor protective immunity in syngeneic BALB/c mice. Vaccine 2007; 25(8):1409–15.

    Article  PubMed  CAS  Google Scholar 

  13. Keke F, Hongyang Z, Hui Q, et al. A combination of flk1-based DNA vaccine and an immunomodulatory gene (IL-12) in the treatment of murine cancer. Cancer Biother Radiopharm 2004; 19(5):649–57.

    PubMed  Google Scholar 

  14. He QM, Wei YQ, Tian L, et al. Inhibition of tumor growth with a vaccine based on xenogeneic homologous fibroblast growth factor receptor-1 in mice. J Biol Chem 2003; 278(24):21831–6.

    Article  PubMed  CAS  Google Scholar 

  15. Lee SH, Mizutani N, Mizutani M, et al. Endoglin (CD105) is a target for an oral DNA vaccine against breast cancer. Cancer Immunol Immunother 2006; 55(12):1565–74.

    Article  PubMed  CAS  Google Scholar 

  16. Jiao JG, Li YN, Wang H, et al. A plasmid DNA vaccine encoding the extracellular domain of porcine endoglin induces anti-tumour immune response against self-endoglin-related angiogenesis in two liver cancer models. Dig Liver Dis 2006; 38(8):578–87.

    Article  PubMed  CAS  Google Scholar 

  17. Lou YY, Wei YQ, Yang L, et al. Immunogene therapy of tumors with a vaccine based on the ligand-binding domain of chicken homologous integrin beta3. Immunological investigations 2002; 31(1):51–69.

    Article  PubMed  CAS  Google Scholar 

  18. Xiang R, Mizutani N, Luo Y, et al. A DNA vaccine targeting survivin combines apoptosis with suppression of angiogenesis in lung tumor eradication. Cancer Res 2005; 65(2):553–61.

    PubMed  CAS  Google Scholar 

  19. Kaplan CD, Kruger JA, Zhou H, et al. A novel DNA vaccine encoding PDGFRbeta suppresses growth and dissemination of murine colon, lung and breast carcinoma. Vaccine 2006; 24 (47–48):6994–7002.

    Article  PubMed  CAS  Google Scholar 

  20. Perales MA, Blachere NE, Engelhorn ME, et al. Strategies to overcome immune ignorance and tolerance. Semin Cancer Biol 2002; 12(1):63–71.

    Article  PubMed  CAS  Google Scholar 

  21. tuLeitner WW, Hwang LN, deVeer MJ, et al. Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways. Nat Med 2003; 9(1):33–9.

    Article  CAS  Google Scholar 

  22. Xiang R, Lode HN, Chao TH, et al. An autologous oral DNA vaccine protects against murine melanoma. Proc Natl Acad Sci USA 2000; 97(10):5492–7.

    Article  PubMed  CAS  Google Scholar 

  23. Niethammer AG, Primus FJ, Xiang R, et al. An oral DNA vaccine against human carcinoembryonic antigen (CEA) prevents growth and dissemination of Lewis lung carcinoma in CEA transgenic mice. Vaccine 2001; 20(3–4):421–9.

    Article  PubMed  CAS  Google Scholar 

  24. Niethammer AG, Xiang R, Becker JC, et al. A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nat Med 2002; 8(12):1369–75.

    Article  PubMed  CAS  Google Scholar 

  25. Niethammer AG, Xiang R, Ruehlmann JM, et al. Targeted interleukin 2 therapy enhances protective immunity induced by an autologous oral DNA vaccine against murine melanoma. Cancer Res 2001; 61(16):6178–84.

    PubMed  CAS  Google Scholar 

  26. Luo Y, Zhou H, Mizutani M, et al. Transcription factor Fos-related antigen 1 is an effective target for a breast cancer vaccine. Proc Natl Acad Sci USA 2003; 100(15):8850–5.

    Article  PubMed  CAS  Google Scholar 

  27. Darji A, Guzman CA, Gerstel B, et al. Oral somatic transgene vaccination using attenuated S. typhimurium. Cell 1997; 91(6):765–75.

    Article  PubMed  CAS  Google Scholar 

  28. Zhou H, Luo Y, Mizutani M, et al. T cell-mediated suppression of angiogenesis results in tumor protective immunity. Blood 2005; 106(6):2026–32.

    Article  PubMed  CAS  Google Scholar 

  29. Lu F, Qin ZY, Yang WB, et al. A DNA vaccine against extracellular domains 1–3 of flk-1 and its immune preventive and therapeutic effects against H22 tumor cell in vivo. World J Gastroenterol 2004; 10(14):2039–44.

    PubMed  Google Scholar 

  30. Peters KG, Coogan A, Berry D, et al. Expression of Tie2/Tek in breast tumour vasculature provides a new marker for evaluation of tumour angiogenesis. Br J Cancer 1998; 77(1):51–6.

    PubMed  CAS  Google Scholar 

  31. Wong AL, Haroon ZA, Werner S, et al. Tie2 expression and phosphorylation in angiogenic and quiescent adult tissues. Circulation Res 1997; 81(4):567–74.

    PubMed  CAS  Google Scholar 

  32. Kaipainen A, Vlaykova T, Hatva E, et al. Enhanced expression of the tie receptor tyrosine kinase mesenger RNA in the vascular endothelium of metastatic melanomas. Cancer Res 1994; 54(24):6571–7.

    PubMed  CAS  Google Scholar 

  33. Takahama M, Tsutsumi M, Tsujiuchi T, et al. Enhanced expression of Tie2, its ligand angiopoietin-1, vascular endothelial growth factor, and CD31 in human non-small cell lung carcinomas. Clin Cancer Res 1999; 5(9):2506–10.

    PubMed  CAS  Google Scholar 

  34. Koga K, Todaka T, Morioka M, et al. Expression of angiopoietin-2 in human glioma cells and its role for angiogenesis. Cancer Res 2001; 61(16):6248–54.

    PubMed  CAS  Google Scholar 

  35. Ramage JM, Metheringham R, Conn A, et al. Identification of an HLA-A*0201 cytotoxic T lymphocyte epitope specific to the endothelial antigen Tie2. Int J Cancer 2004; 110(2):245–50.

    Article  PubMed  CAS  Google Scholar 

  36. Presta M, Dell’Era P, Mitola S, et al. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine & growth factor reviews 2005; 16(2):159–78.

    Article  CAS  Google Scholar 

  37. Folkman J. Tumor angiogenesis and tissue factor. Nat Med 1996; 2(2):167–8.

    Article  PubMed  CAS  Google Scholar 

  38. Fonsatti E, Altomonte M, Nicotra MR, et al. Endoglin (CD105): a powerful therapeutic target on tumor-associated angiogenetic blood vessels. Oncogene 2003; 22(42):6557–63.

    Article  PubMed  CAS  Google Scholar 

  39. Fonsatti E, Altomonte M, Arslan P, et al. Endoglin (CD105): a target for anti-angiogenetic cancer therapy. Current drug targets 2003; 4(4):291–6.

    Article  PubMed  CAS  Google Scholar 

  40. Eliceiri BP, Cheresh DA. Adhesion events in angiogenesis. Current opinion in cell biology 2001; 13(5):563–8.

    Article  PubMed  CAS  Google Scholar 

  41. Levchenko T, Bratt A, Arbiser JL, et al. Angiomotin expression promotes hemangioendothelioma invasion. Oncogene 2004; 23(7):1469–73.

    Article  PubMed  CAS  Google Scholar 

  42. Bratt A, Birot O, Sinha I, et al. Angiomotin regulates endothelial cell-cell junctions and cell motility. J Biol Chem 2005; 280(41):34859–69.

    Article  PubMed  CAS  Google Scholar 

  43. Bratt A, Wilson WJ, Troyanovsky B, et al. Angiomotin belongs to a novel protein family with conserved coiled-coil and PDZ binding domains. Gene 2002; 298(1):69–77.

    Article  PubMed  CAS  Google Scholar 

  44. Holmgren L, Ambrosino E, Birot O, et al. A DNA vaccine targeting angiomotin inhibits angiogenesis and suppresses tumor growth. Proc Natl Acad Sci USA 2006; 103(24):9208–13.

    Article  PubMed  CAS  Google Scholar 

  45. Altieri DC. Validating survivin as a cancer therapeutic target. Nat Rev Cancer 2003; 3(1):46–54.

    Article  PubMed  CAS  Google Scholar 

  46. van Cruijsen H, Giaccone G, Hoekman K. Epidermal growth factor receptor and angiogenesis: Opportunities for combined anticancer strategies. Int J Cancer 2005; 117(6):883–8.

    Article  PubMed  CAS  Google Scholar 

  47. Hou J, Tian L, Wei Y. Cancer immunotherapy of targeting angiogenesis. Cellular & molecular immunology 2004; 1(3):161–6.

    CAS  Google Scholar 

  48. Sanz L, Alvarez-Vallina L. Antibody-based antiangiogenic cancer therapy. Expert opinion on therapeutic targets 2005; 9(6):1235–45.

    Article  PubMed  CAS  Google Scholar 

  49. Herbst RS. Therapeutic options to target angiogenesis in human malignancies. Expert opinion on emerging drugs 2006; 11(4):635–50.

    Article  PubMed  CAS  Google Scholar 

  50. Willett CG, Boucher Y, di Tomaso E, et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 2004; 10(2):145–7.

    Article  PubMed  CAS  Google Scholar 

  51. Plum SM, Holaday JW, Ruiz A, et al. Administration of a liposomal FGF-2 peptide vaccine leads to abrogation of FGF-2-mediated angiogenesis and tumor development. Vaccine 2000; 19(9–10):1294–303.

    Article  PubMed  CAS  Google Scholar 

  52. Sottile J. Regulation of angiogenesis by extracellular matrix. Biochim Biophys Acta 2004; 1654(1):13–22.

    PubMed  CAS  Google Scholar 

  53. Wang D, Anderson JC, Gladson CL. The role of the extracellular matrix in angiogenesis in malignant glioma tumors. Brain pathology (Zurich, Switzerland) 2005; 15(4):318–26.

    CAS  Google Scholar 

  54. John A, Tuszynski G. The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol Oncol Res 2001; 7(1):14–23.

    Article  PubMed  CAS  Google Scholar 

  55. Vacca A, Moretti S, Ribatti D, et al. Progression of mycosis fungoides is associated with changes in angiogenesis and expression of the matrix metalloproteinases 2 and 9. Eur J Cancer 1997; 33(10):1685–92.

    Article  PubMed  CAS  Google Scholar 

  56. Kim JB, Stein R, O’Hare MJ. Tumour-stromal interactions in breast cancer: the role of stroma in tumourigenesis. Tumour Biol 2005; 26(4):173–85.

    Article  PubMed  Google Scholar 

  57. Bergsten E, Uutela M, Li X, et al. PDGF-D is a specific, protease-activated ligand for the PDGF beta-receptor. Nature cell biology 2001; 3(5):512–6.

    Article  PubMed  CAS  Google Scholar 

  58. Ostman A, Heldin CH. Involvement of platelet-derived growth factor in disease: development of specific antagonists. Adv Cancer Res 2001; 80:1–38.

    Article  PubMed  CAS  Google Scholar 

  59. Coltrera MD, Wang J, Porter PL, et al. Expression of platelet-derived growth factor B-chain and the platelet-derived growth factor receptor beta subunit in human breast tissue and breast carcinoma. Cancer Res 1995; 55(12):2703–8.

    PubMed  CAS  Google Scholar 

  60. Kawai T, Hiroi S, Torikata C. Expression in lung carcinomas of platelet-derived growth factor and its receptors. Lab Invest 1997; 77(5):431–6.

    PubMed  CAS  Google Scholar 

  61. Singer CF, Hudelist G, Lamm W, et al. Expression of tyrosine kinases in human malignancies as potential targets for kinase-specific inhibitors. Endocrine-related cancer 2004; 11(4):861–9.

    Article  PubMed  CAS  Google Scholar 

  62. Pietras K, Ostman A, Sjoquist M, et al. Inhibition of platelet-derived growth factor receptors reduces interstitial hypertension and increases transcapillary transport in tumors. Cancer Res 2001; 61(7):2929–34.

    PubMed  CAS  Google Scholar 

  63. Mills CD, Kincaid K, Alt JM, et al. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 2000; 164(12):6166–73.

    PubMed  CAS  Google Scholar 

  64. Mantovani A, Sozzani S, Locati M, et al. Infiltration of tumours by macrophages and dendritic cells: tumour-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Novartis Foundation symposium 2004; 256:137–45; discussion 46–8, 259–69.

    Article  PubMed  Google Scholar 

  65. Sica A, Schioppa T, Mantovani A, et al. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 2006; 42(6):717–27.

    Article  PubMed  CAS  Google Scholar 

  66. Luo Y, Zhou H, Krueger J, et al. Targeting tumor-associated macrophages as a novel strategy against breast cancer. J Clin Invest 2006; 116(8):2132–41.

    Article  PubMed  CAS  Google Scholar 

  67. Quinn DI, Henshall SM, Sutherland RL. Molecular markers of prostate cancer outcome. Eur J Cancer 2005; 41(6):858–87.

    Article  PubMed  CAS  Google Scholar 

  68. Peale FV, Jr., Gerritsen ME. Gene profiling techniques and their application in angiogenesis and vascular development. J Pathol 2001; 195(1):7–19.

    Article  PubMed  CAS  Google Scholar 

  69. Hung CF, Wu TC. Improving DNA vaccine potency via modification of professional antigen presenting cells. Curr Opin Mol Ther 2003; 5(1):20–4.

    PubMed  CAS  Google Scholar 

  70. Tsen S-WD, Paik A, Hung C-F, et al. Enhancing DNA Vaccine Potency by Modifying the Properties of Antigen-Presenting Cells Expert Review of Vaccines 2007; (in press).

    Google Scholar 

  71. Cheng WF, Hung CF, Chai CY, et al. Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J Clin Invest 2001; 108(5):669–78.

    PubMed  CAS  Google Scholar 

  72. Xiao F, Wei Y, Yang L, et al. A gene therapy for cancer based on the angiogenesis inhibitor, vasostatin. Gene Ther 2002; 9(18):1207–13.

    Article  PubMed  CAS  Google Scholar 

  73. Cheng WF, Hung CF, Chen CA, et al. Characterization of DNA vaccines encoding the domains of calreticulin for their ability to elicit tumor-specific immunity and antiangiogenesis. Vaccine 2005; 23(29):3864–74.

    Article  PubMed  CAS  Google Scholar 

  74. Zhao KJ, Cheng H, Zhu KJ, et al. Recombined DNA vaccines encoding calreticulin linked to HPV6bE7 enhance immune response and inhibit angiogenic activity in B16 melanoma mouse model expressing HPV 6bE7 antigen. Arch Dermatol Res 2006; 298(2):64–72.

    Article  PubMed  CAS  Google Scholar 

  75. Pike SE, Yao L, Jones KD, et al. Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. J Exp Med 1998; 188(12):2349–56.

    Article  PubMed  CAS  Google Scholar 

  76. Pike SE, Yao L, Setsuda J, et al. Calreticulin and calreticulin fragments are endothelial cell inhibitors that suppress tumor growth. Blood 1999; 94(7):2461–8.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hung, CF., Monie, A., Wu, T.C. (2008). Immunotherapy of Angiogenesis with DNA Vaccines. In: Figg, W.D., Folkman, J. (eds) Angiogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71518-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71518-6_39

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-71517-9

  • Online ISBN: 978-0-387-71518-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics