Skip to main content

Overview and Clinical Applications of VEGF-A

  • Chapter
Angiogenesis

Vascular endothelial growth factor (VEGF)-A is an endothelial cell-specific mitogen and an angiogenic inducer. Two tyrosine kinases, VEGFR1 and VEGFR-2, are VEGF receptors. Loss of a single VEGF-A allele results in defective vascularization and embryonic lethality. Anti-VEGF-A monoclonal antibodies or other VEGF inhibitors block growth and neovascularization in tumor models. We developed a humanized anti- VEGF-A monoclonal antibody (bevacizumab). Bevacizumab demonstrated clinical efficacy, including a survival advantage, in multiple tumor types. Bevacizumab has been approved by the FDA for the treatment of previously untreated and relapsed metastatic colorectal cancer, non-small-cell lung cancer, and previously untreated metastatic breast cancer, in combination with chemotherapy. Also, two small molecule inhibitors of VEGF receptor tyrosine kinase activity have been approved by the FDA for the treatment of metastatic renal cell carcinoma. Furthermore, VEGF-A is implicated in intraocular neovascularization associated with active proliferative retinopathies and the wet form of age-related macular degeneration (AMD). A humanized anti- VEGF-A Fab (ranibizumab) has been developed for the treatment of the neovascular form of AMD. Ranibizumab administration maintained and even improved visual acuity and was approved by the FDA for the treatment of AMD in June 2006.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Folkman J, Klagsbrun M. Angiogenic factors. Science 1987;235:442–7.

    Article  PubMed  CAS  Google Scholar 

  2. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature 2000;407(6801):242–8.

    Article  PubMed  CAS  Google Scholar 

  3. Sund M, Hamano Y, Sugimoto H, et al. Function of endogenous inhibitors of angiogenesis as endothelium-specific tumor suppressors. Proc Natl Acad Sci USA 2005;102(8):2934–9.

    Article  PubMed  CAS  Google Scholar 

  4. Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2002;2(10):795–803.

    Article  PubMed  CAS  Google Scholar 

  5. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nature Med 2003;9:669–76.

    Article  PubMed  CAS  Google Scholar 

  6. Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human disease. Nature 2005;438:946–53.

    Article  PubMed  CAS  Google Scholar 

  7. Ferrara N, Mass RD, Campa C, Kim R. Targeting VEGF-A to treat cancer and age-related macular degeneration. Annu Rev Med 2007;58:491–504.

    Article  PubMed  CAS  Google Scholar 

  8. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983;219:983–5.

    Article  PubMed  CAS  Google Scholar 

  9. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 1989;161(2):851–8.

    Article  PubMed  CAS  Google Scholar 

  10. Connolly DT, Olander JV, Heuvelman D, et al. Human vascular permeability factor. Isolation from U937 cells. J Biol Chem 1989;264:20017–24.

    PubMed  CAS  Google Scholar 

  11. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989;246(4935):1306–9.

    Article  PubMed  CAS  Google Scholar 

  12. Keck PJ, Hauser SD, Krivi G, et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 1989;246(4935):1309–12.

    Article  PubMed  CAS  Google Scholar 

  13. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 2004;25:581–611.

    Article  PubMed  CAS  Google Scholar 

  14. Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 2002;20(21):4368–80.

    Article  PubMed  CAS  Google Scholar 

  15. Ferrara N, Carver Moore K, Chen H, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996;380(6573):439–42 issn: 0028–836.

    Article  PubMed  CAS  Google Scholar 

  16. Gerber HP, Hillan KJ, Ryan AM, et al. VEGF is required for growth and survival in neonatal mice. Development 1999;126:1149–59.

    PubMed  CAS  Google Scholar 

  17. Malik AK, Baldwin ME, Peale F, et al. Redundant roles of VEGF-B and PlGF during selective VEGF-A blockade in mice. Blood 2006;107(550–557).

    Google Scholar 

  18. Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 1999;5:623–8.

    Article  PubMed  CAS  Google Scholar 

  19. Ferrara N, Chen H, Davis-Smyth T, et al. Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat Med 1998;4:336–40.

    Article  PubMed  CAS  Google Scholar 

  20. Alon T, Hemo I, Itin A, Pe’er J, Stone J, Keshet E. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1995;1(10):1024–8 i.

    Article  PubMed  CAS  Google Scholar 

  21. Gerber HP, Dixit V, Ferrara N. Vascular Endothelial Growth Factor Induces Expression of the Antiapoptotic Proteins Bcl-2 and A1 in Vascular Endothelial Cells. J Biol Chem 1998;273:13313–6.

    Article  PubMed  CAS  Google Scholar 

  22. Gerber HP, McMurtrey A, Kowalski J, et al. VEGF Regulates Endothelial Cell Survival by the PI3-kinase/Akt Signal Transduction Pathway. Requirement for Flk-1/KDR Activation. J Biol Chem 1998;273:30336–43.

    Article  PubMed  CAS  Google Scholar 

  23. Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal [see comments]. J Clin Invest 1999;103(2):159–65.

    Article  PubMed  CAS  Google Scholar 

  24. Tran J, Master Z, Yu JL, Rak J, Dumont DJ, Kerbel RS. A role for survivin in chemoresistance of endothelial cells mediated by VEGF. Proc Natl Acad Sci USA 2002;99(7):4349–54.

    Article  PubMed  CAS  Google Scholar 

  25. Carmeliet P. Angiogenesis in life, disease and medicine. Nature 2005;438(7070):932–6.

    Article  PubMed  CAS  Google Scholar 

  26. Clauss M, Gerlach M, Gerlach H, et al. Vascular permeability factor: a tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration. J Exp Med 1990;172(6):1535–45.

    Article  PubMed  CAS  Google Scholar 

  27. Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marme D. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 1996;87(8):3336–43.

    PubMed  CAS  Google Scholar 

  28. Gerber H-P, Malik A, Solar GP, et al. Vascular endothelial growth factor regulates hematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 2002;417:954–8.

    Article  PubMed  CAS  Google Scholar 

  29. Houck KA, Ferrara N, Winer J, Cachianes G, Li B, Leung DW. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol 1991;5(12):1806–14.

    Article  PubMed  CAS  Google Scholar 

  30. Tischer E, Mitchell R, Hartman T, et al. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem 1991;266(18):11947–54.

    PubMed  CAS  Google Scholar 

  31. Plouet J, Schilling J, Gospodarowicz D. Isolation and characterization of a newly identified endothelial cell mitogen produced by AtT20 cells. EMBO J1989;8:3801–8.

    PubMed  CAS  Google Scholar 

  32. Houck KA, Leung DW, Rowland AM, Winer J, Ferrara N. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem 1992;267(36):26031–7.

    PubMed  CAS  Google Scholar 

  33. Park JE, Keller G-A, Ferrara N. The vascular endothelial growth factor isoforms (VEGF): Differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell 1993;4:1317–26.

    PubMed  CAS  Google Scholar 

  34. Keyt BA, Berleau LT, Nguyen HV, et al. The carboxyl-terminal domain (111–165) of vascular endothelial growth factor is critical for its mitogenic potency. J Biol Chem 1996;271(13):7788–95.

    Article  PubMed  CAS  Google Scholar 

  35. Lee S, Jilani SM, Nikolova GV, Carpizo D, Iruela-Arispe ML. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol 2005;169(4):681–91.

    Article  PubMed  CAS  Google Scholar 

  36. Shibuya M, Yamaguchi S, Yamane A, et al. Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase (flt) closely related to the fms family. Oncogene 1990;8:519–27.

    Google Scholar 

  37. Terman BI, Dougher-Vermazen M, Carrion ME, et al. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem Biophys Res Commun 1992;187(3):1579–86.

    Article  PubMed  CAS  Google Scholar 

  38. de Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 1992;255(5047):989–91.

    Article  PubMed  Google Scholar 

  39. Park JE, Chen HH, Winer J, Houck KA, Ferrara N. Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J Biol Chem 1994;269(41):25646–54 issn: 0021–9258.

    PubMed  CAS  Google Scholar 

  40. Olofsson B, Korpelainen E, Pepper MS, et al. Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. Proc Natl Acad Sci USA 1998;95(20):11709–14.

    Article  PubMed  CAS  Google Scholar 

  41. LeCouter J, Moritz DR, Li B, et al. Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science 2003;299:890–3.

    Article  PubMed  CAS  Google Scholar 

  42. Hiratsuka S, Nakamura K, Iwai S, et al. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2002;2(4):289–300.

    Article  PubMed  CAS  Google Scholar 

  43. Hattori K, Heissig B, Wu Y, et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat Med 2002;8(8):841–9.

    PubMed  CAS  Google Scholar 

  44. Quinn TP, Peters KG, De Vries C, Ferrara N, Williams LT. Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc Natl Acad Sci USA 1993;90(16):7533–7.

    Article  PubMed  CAS  Google Scholar 

  45. Shalaby F, Rossant J, Yamaguchi TP, et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 1995;376(6535):62–6.

    Article  PubMed  CAS  Google Scholar 

  46. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol 2006;7(5):359–71.

    Article  PubMed  CAS  Google Scholar 

  47. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 1998;92(6):735–45.

    Article  PubMed  CAS  Google Scholar 

  48. Safran M, Kaelin WJ, Jr. HIF hydroxylation and the mammalian oxygen-sensing pathway. J Clin Invest 2003;111:779–83.

    PubMed  CAS  Google Scholar 

  49. Dor Y, Porat R, Keshet E. Vascular endothelial growth factor and vascular adjustments to perturbations in oxygen homeostasis. Am J Physiol 2001;280:C1367–74.

    CAS  Google Scholar 

  50. Semenza GL. Angiogenesis in ischemic and neoplastic disorders. Annu Rev Med 2003;54:17–28.

    Article  PubMed  CAS  Google Scholar 

  51. Madan A, Curtin PT. A 24-base-pair sequence 3′ to the human erythropoietin gene contains a hypoxia-responsive transcriptional enhancer. Proc Natl Acad Sci USA 1993;90(9):3928–32.

    Article  PubMed  CAS  Google Scholar 

  52. Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J-Biol-Chem 1995;270(3):1230–7 issn: 0021–9258.

    Article  PubMed  CAS  Google Scholar 

  53. Mole DR, Maxwell PH, Pugh CW, Ratcliffe PJ. Regulation of HIF by the von Hippel-Lindau tumour suppressor: implications for cellular oxygen sensing. IUBMB Life 2001;52(1–2):43–7.

    PubMed  CAS  Google Scholar 

  54. Lonser RR, Glenn GM, Walther M, et al. von Hippel-Lindau disease. Lancet 2003;361(9374):2059–67.

    Article  PubMed  CAS  Google Scholar 

  55. Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001;292(5516):468–72.

    Article  PubMed  CAS  Google Scholar 

  56. Ivan M, Kondo K, Yang H, et al. HIF-alpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 2001;292(5516):464–8.

    Article  PubMed  CAS  Google Scholar 

  57. Maxwell PH, Ratcliffe PJ. Oxygen sensors and angiogenesis. Semin Cell Dev Biol 2002;13(1):29–37.

    Article  PubMed  CAS  Google Scholar 

  58. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 2003;9(6):677–84.

    Article  PubMed  CAS  Google Scholar 

  59. Frank S, Hubner G, Breier G, Longaker MT, Greenhalg DG, Werner S. Regulation of VEGF expression in cultured keratinocytes. Implications for normal and impaited wound healing. J Biol Chem 1995;270:12607–13.

    Article  PubMed  CAS  Google Scholar 

  60. Pertovaara L, Kaipainen A, Mustonen T, et al. Vascular endothelial growth factor is induced in response to transforming growth factor-beta in fibroblastic and epithelial cells. J Biol Chem 1994;269(9):6271–4.

    PubMed  CAS  Google Scholar 

  61. Warren RS, Yuan H, Matli MR, Ferrara N, Donner DB. Induction of vascular endothelial growth factor by insulin-like growth factor 1 in colorectal carcinoma. J Biol Chem 1996;271(46):29483–8.

    Article  PubMed  CAS  Google Scholar 

  62. Ben-Av P, Crofford LJ, Wilder RL, Hla T. Induction of vascular endothelial growth factor expression in synovial fibroblasts. FEBS Lett 1995;372:83–7.

    Article  PubMed  CAS  Google Scholar 

  63. Cohen T, Nahari D, Cerem LW, Neufeld G, Levi BZ. Interleukin 6 induces the expression of vascular endothelial growth factor. J Biol Chem 1996;271(2):736–41 issn: 0021–9258.

    Article  PubMed  CAS  Google Scholar 

  64. Grugel S, Finkenzeller G, Weindel K, Barleon B, Marme D. Both v-Ha-Ras and v-Raf stimulate expression of the vascular endothelial growth factor in NIH 3T3 cells. J Biol Chem 1995;270(43):25915–9 issn: 0021–9258.

    Article  PubMed  CAS  Google Scholar 

  65. Okada F, Rak JW, Croix BS, et al. Impact of oncogenes in tumor angiogenesis: mutant K-ras up-regulation of vascular endothelial growth factor/vascular permeability factor is necessary, but not sufficient for tumorigenicity of human colorectal carcinoma cells. Proc Natl Acad Sci USA 1998;95(7):3609–14.

    Article  PubMed  CAS  Google Scholar 

  66. Zhang X, Gaspard JP, Chung DC. Regulation of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia. Cancer Res 2001;61(16):6050–4.

    PubMed  CAS  Google Scholar 

  67. Seno H, Oshima M, Ishikawa TO, et al. Cyclooxygenase 2- and prostaglandin E(2) receptor EP(2)-dependent angiogenesis in Apc(Delta716) mouse intestinal polyps. Cancer Res 2002;62(2):506–11.

    PubMed  CAS  Google Scholar 

  68. Korsisaari N, Kasman IM, Forrest WF, et al. Inhibition of VEGF-A prevents the angiogenic switch and results in increased survival of Apc+/min mice. Proc Natl Acad Sci USA 2007;104(25):10625–30.

    Article  PubMed  CAS  Google Scholar 

  69. Kim KJ, Li B, Winer J, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumor growth in vivo. Nature 1993;362:841–4.

    Article  PubMed  CAS  Google Scholar 

  70. Manley PW, Martiny-Baron G, Schlaeppi JM, Wood JM. Therapies directed at vascular endothelial growth factor. Expert Opin Investig Drugs 2002;11(12):1715–36.

    Article  PubMed  CAS  Google Scholar 

  71. Prewett M, Huber J, Li Y, et al. Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis. Cancer Res 1999;59:5209–18.

    PubMed  CAS  Google Scholar 

  72. Gerber HP, Kowalski J, Sherman D, Eberhard DA, Ferrara N. Complete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor. Cancer Res 2000;60:6253–8.

    PubMed  CAS  Google Scholar 

  73. Holash J, Davis S, Papadopoulos N, et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA 2002;99(17):11393–8.

    Article  PubMed  CAS  Google Scholar 

  74. Dong J, Grunstein J, Tejada M, et al. VEGF-null cells require PDGFR alpha signaling-mediated stromal fibroblast recruitment for tumorigenesis. EMBO J 2004;23:2800–10.

    Article  PubMed  CAS  Google Scholar 

  75. Tejada M, Yu L, Dong J, et al. Tumor-driven paracrine PDGF receptor -a signaling is a key determinent of stromal cell recruitment in a model of human lung carcinoma. Clin Cancer Res 2006;12:2676–88.

    Article  PubMed  CAS  Google Scholar 

  76. Klement G, Baruchel S, Rak J, et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity [see comments]. J Clin Invest 2000;105(8):R15–24.

    Article  PubMed  CAS  Google Scholar 

  77. Lee CG, Heijn M, di Tomaso E, et al. Anti-Vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res 2000;60:5565–70.

    PubMed  CAS  Google Scholar 

  78. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005;307(5706):58–62.

    Article  PubMed  CAS  Google Scholar 

  79. Presta LG, Chen H, O’Connor SJ, et al. Humanization of an anti-VEGF monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 1997;57:4593–9.

    PubMed  CAS  Google Scholar 

  80. Ferrara N, Hillan KJ, Gerber HP, Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 2004;3(5):391–400.

    Article  PubMed  CAS  Google Scholar 

  81. Gasparini G, Longo R, Toi M, Ferrara N. Angiogenic inhibitors: a new therapeutic strategy in oncology. Nat Clin Pract 2005;2(11):562–77.

    CAS  Google Scholar 

  82. Ferrara N, Kerbel RS. Angiogenesis as a therapeutic target. Nature 2005;438:967–74.

    Article  PubMed  CAS  Google Scholar 

  83. Jain RK, Duda DG, Clark JW, Loeffler JS. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract 2006;3(1):24–40.

    CAS  Google Scholar 

  84. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004;350:2335–42.

    Article  PubMed  CAS  Google Scholar 

  85. Sandler A, Gray R, Perry MC, et al. Paclitaxel-Carboplatin Alone or with Bevacizumab for Non-Small-Cell-Lung Cancer. N Engl J Med 2006;355:2542–50.

    Article  PubMed  CAS  Google Scholar 

  86. Johnson DH, Fehrenbacher L, Novotny WF, et al. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 2004;22(11):2184–91.

    Article  PubMed  CAS  Google Scholar 

  87. Giantonio BJ, Catalano PJ, Meropol NJ, et al. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol 2007;25(12):1539–44.

    Article  PubMed  CAS  Google Scholar 

  88. Yang JC, Haworth L, Sherry RM, et al. A randomized trial of bevacizumab, an anti-VEGF antibody, for metastatic renal cancer. N Engl J Med 2003;349:427–34.

    Article  PubMed  CAS  Google Scholar 

  89. Smith JK, Mamoon NM, Duhe RJ. Emerging roles of targeted small molecule protein-tyrosine kinase inhibitors in cancer therapy. Oncol Res 2004;14(4–5):175–225.

    PubMed  Google Scholar 

  90. Maki RG, Fletcher JA, Heinrich MC, et al. Results from a continuation trial of SU11248 in patients (pts) with imatinib (IM)-resistant gastrointestinal stromal tumor (GIST). ASCO Annual Meeting Proceedings 2005;Abstract 9011.

    Google Scholar 

  91. Rini B, Rixe O, Bukowski R, et al. AG-013736, a multi-target tyrosine kinase receptor inhibitor, demonstrates anti-tumor activity in a Phase 2 study of cytokine-refractory, metastatic renal cell cancer (RCC). ASCO Annual Meeting Proceedings 2005;Abstract 4509.

    Google Scholar 

  92. Motzer RJ, Hutson TE, Tomczak P, et al. Sunitinib versus Interferon Alfa in Metastatic Renal-Cell Carcinoma. N Engl J Med 2007;356(2):115–24.

    Article  PubMed  CAS  Google Scholar 

  93. Escudier B, Eisen T, Stadler WM, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 2007;356(2):125–34.

    Article  PubMed  CAS  Google Scholar 

  94. Miller JW, Adamis AP, Shima DT, et al. Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am J Pathol 1994;145(3):574–84.

    PubMed  CAS  Google Scholar 

  95. Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. [see comments]. N Eng J Med 1994;331(22):1480–7.

    Article  CAS  Google Scholar 

  96. Malecaze F, Clemens S, Simorer-Pinotel V, et al. Detection of vascular endothelial growth factor mRNA and vascular endothelial growth factor-like activity in proliferative diabetic retinopathy. Arch Ophthalmol 1994;112:1476–82.

    PubMed  CAS  Google Scholar 

  97. Aiello LP, Pierce EA, Foley ED, et al. Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci USA 1995;92(23):10457–61.

    Article  PubMed  CAS  Google Scholar 

  98. Adamis AP, Shima DT, Tolentino MJ, et al. Inhibition of vascular endothelial growth factor prevents retinal ischemia-associated iris neovascularization in a nonhuman primate. Arch Ophthalmol 1996;114(1):66–71.

    PubMed  CAS  Google Scholar 

  99. Ozaki H, Seo MS, Ozaki K, et al. Blockade of vascular endothelial cell growth factor receptor signaling is sufficient to completely prevent retinal neovascularization. Am J Pathol 2000;156(2):697–707.

    PubMed  CAS  Google Scholar 

  100. Congdon N, O’Colmain B, Klaver CC, et al. Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol 2004;122(4):477–85.

    Article  PubMed  Google Scholar 

  101. Ferris FL, 3rd, Fine SL, Hyman L. Age-related macular degeneration and blindness due to neovascular maculopathy. Arch Ophthalmol 1984;102(11):1640–2.

    PubMed  Google Scholar 

  102. Photodynamic Therapy of Subfoveal Choroidal Neovascularization in Age-related Macular Degeneration With Verteporfin. One-Year Results of 2 Randomized Clinical Trials—TAP Report 1. Arch Ophthalmol 1999;117:1329–45.

    Google Scholar 

  103. Gragoudas ES, Adamis AP, Cunningham ET, Jr., Feinsod M, Guyer DR. Pegaptanib for neovascular age-related macular degeneration. N Engl J Med 2004;351(27):2805–16.

    Article  PubMed  CAS  Google Scholar 

  104. Ferrara N, Damico L, Shams N, Lowman H, Kim R. Developmemt of Ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina 2006;26:859–70.

    Article  PubMed  Google Scholar 

  105. Ng EW, Sima DT, Calias P, Cunningham ET, Jr., Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 2006;5:123–32.

    Article  PubMed  CAS  Google Scholar 

  106. Chen Y, Wiesmann C, Fuh G, et al. Selection and analysis of an optimized anti-VEGF antibody: crystal structure of an affinity-matured Fab in complex with antigen. J Mol Biol 1999;293(4):865–81.

    Article  PubMed  CAS  Google Scholar 

  107. Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 2006;355:1419–31.

    Article  PubMed  CAS  Google Scholar 

  108. Brown DM, Kaiser PK, Michels M, et al. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med 2006;355(14):1432–44.

    Article  PubMed  CAS  Google Scholar 

  109. Casanovas O, Hicklin DJ, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 2005;8(4):299–309.

    Article  PubMed  CAS  Google Scholar 

  110. Kerbel RS, Yu J, Tran J, et al. Possible mechanisms of acquired resistance to anti-angiogenic drugs: implications for the use of combination therapy approaches. Cancer Metastasis Rev 2001;20(1–2):79–86.

    Article  PubMed  CAS  Google Scholar 

  111. Shojaei F, Wu X, Malik AK, et al. Tumor refrectoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat Biotechnol 2007;25:911–20.

    Article  PubMed  CAS  Google Scholar 

  112. Gerber HP, Ferrara N. Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer research 2005;65(3): 671–80.

    PubMed  CAS  Google Scholar 

  113. Jubb AM, Hurwitz HI, Bai W, et al. Impact of Vascular Endothelial Growth Factor-A Expression, Thrombospondin-2 Expression, and Microvessel Density on the Treatment Effect of Bevacizumab in Metastatic Colorectal Cancer. J Clin Oncol 2006;24:217–27.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ferrara, N. (2008). Overview and Clinical Applications of VEGF-A. In: Figg, W.D., Folkman, J. (eds) Angiogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71518-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71518-6_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-71517-9

  • Online ISBN: 978-0-387-71518-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics