Skip to main content

Imaging of Angiogenesis

  • Chapter
Angiogenesis

The imaging of angiogenesis has advanced from a scientific curiosity to an important tool in the assessment of new drugs. Virtually every imaging modality has a potential role to play in this arena. The best understood and widely available are dynamic contrast enhanced magnetic resonance imaging (MRI) and computed tomography (CT), but these modalities are by no means the only methods. Here, we discuss other MRI techniques, as well as ultrasound, optical and positron emission tomography (PET), as potential tools in assessing angiogenesis. We also consider the future role of molecular imaging methods that rely on targeting probes of biomarkers of angiogenesis. Finally, we review the considerations in implementing imaging methods into clinical trials of angiogenic inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hahnfeldt P, Panigrahy D, Folkman J, et al. Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res 1999;59:4770–5.

    PubMed  CAS  Google Scholar 

  2. Sinusas AJ. Imaging of angiogenesis. J Nucl Cardiol. 2004 Sep-Oct;11(5):617–33.

    Article  PubMed  Google Scholar 

  3. Li S, Peck-Radosavljevic M, Kienast O, et al. Imaging gastrointestinal tumours using vascular endothelial growth factor-165 (VEGF165) receptor scintigraphy. Ann Oncol. 2003 Aug;14(8):1274–7.

    Article  PubMed  CAS  Google Scholar 

  4. Santimaria M, Moscatelli G, Viale GL, et al. Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin Cancer Res. 2003 Feb;9(2):571–9.

    PubMed  CAS  Google Scholar 

  5. Miller JC, Pien HH, Sahani D, et al. Imaging angiogenesis: applications and potential for drug development. J Natl Cancer Inst. 2005 Feb 2;97(3):172–87.

    PubMed  CAS  Google Scholar 

  6. Padhani AR, Husband JE. Dynamic contrast-enhanced MRI studies in oncology with an emphasis on quantification, validation and human studies. Clin Radiol 2001; 56: 607–620.

    Article  PubMed  CAS  Google Scholar 

  7. Igarashi H, Hamamoto M, Yamaguchi H, et al. Cerebral blood flow index: dynamic perfusion MRI delivers a simple and good predictor for the outcome of acute-stage ischemic lesion. J Comput Assist Tomogr. 2003 Nov-Dec;27(6):874–81.

    Article  PubMed  Google Scholar 

  8. Galbraith SM, Lodge MA, Taylor NJ, et al. Reproducibility of dynamic contrast-enhanced MRI in human muscle and tumours: comparison of quantitative and semi-quantitative analysis. NMR Biomed. 2002 Apr;15(2):132–42.

    Article  PubMed  Google Scholar 

  9. Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging. 1999 Sep;10(3):223–32.

    Article  PubMed  CAS  Google Scholar 

  10. Turetschek K, Huber S, Floyd E, et al. MR imaging characterization of microvessels in experimental breast tumors by using a particulate contrast agent with histopathologic correlation. Radiology. 2001 Feb;218(2):562–9.

    PubMed  CAS  Google Scholar 

  11. van Dijke CF, Brasch RC, Roberts TP, et al. Mammary carcinoma model: correlation of macromolecular contrast-enhanced MR imaging characterizations of tumor microvasculature and histologic capillary density.Radiology. 1996 Mar;198(3): 813–8.

    PubMed  Google Scholar 

  12. Arbab A, Bashaw L, Miller B, et al. Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation: methods and techniques. Transplantation. 2003;76: 1123–1130.

    Article  PubMed  CAS  Google Scholar 

  13. Arbab AS, Yocum GT, Wilson LB, et al. Comparison of transfection agents in forming complexes with ferumoxides, cell labeling efficiency, and cellular viability. Mol Imaging. 2004 Jan;3(1):24–32.

    Article  PubMed  CAS  Google Scholar 

  14. Britten MB, Abolmaali ND, Assmus B, et al. Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation. 2003 Nov 4;108(18):2212–8.

    Article  PubMed  CAS  Google Scholar 

  15. Strauer BE, Brehm M, Zeus T, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation. 2002 Oct 8;106(15):1913–8.

    Article  PubMed  Google Scholar 

  16. Anderson S, Glod J, Arbab A, et al. Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood. 2005 Jan 1;105(1):420–5.

    Article  PubMed  CAS  Google Scholar 

  17. Arbab AS, Frenkel V, Pandit SD, et al. Magnetic resonance imaging and confocal microscopy studies of magnetically labeled endothelial progenitor cells trafficking to sites of tumor angiogenesis. Stem Cells. 2006 Mar;24(3):671–8.

    Article  PubMed  CAS  Google Scholar 

  18. Detre JA, Alsop DC. Perfusion magnetic resonance imaging with continuous arterial spin labeling: methods and clinical applications in the central nervous system. Eur J Radiol 1999;30: 115–124.

    Article  PubMed  CAS  Google Scholar 

  19. Jahng GH, Song E, Zhu XP, et al. Human brain: reliability and reproducibility of pulsed arterial spin-labeling perfusion MR imaging. Radiology. 2005 Mar;234(3):909–16.

    Article  PubMed  Google Scholar 

  20. Kimura H, Takeuchi H, Koshimoto Y, et al. Perfusion imaging of meningioma by using continuous arterial spin-labeling: comparison with dynamic susceptibility-weighted contrast-enhanced MR images and histopathologic features. AJNR Am J Neuroradiol. 2006 Jan;27(1):85–93.

    PubMed  CAS  Google Scholar 

  21. Kim T, Kim SG. Quantification of cerebral arterial blood volume and cerebral blood flow using MRI with modulation of tissue and vessel (MOTIVE) signals. Magn Reson Med. 2005 Aug;54(2):333–42.

    Article  PubMed  Google Scholar 

  22. Kim T, Kim SG. Quantification of cerebral arterial blood volume using arterial spin labeling with intravoxel incoherent motion-sensitive gradients. Magn Reson Med. 2006 May;55(5): 1047–57.

    Article  PubMed  Google Scholar 

  23. Boss A, Martirosian P, Schraml C, et al. Morphological, contrast-enhanced and spin labeling perfusion imaging for monitoring of relapse after RF ablation of renal cell carcinomas. Eur Radiol. 2006 Jan 27:1–11.

    Google Scholar 

  24. Kan Z, Phongkitkarun S, Kobayashi S, et al. Functional CT for quantifying tumor perfusion in antiangiogenic therapy in a rat model. Radiology. 2005 Oct;237(1):151–8.

    Article  PubMed  Google Scholar 

  25. Fournier LS, Cuenod CA, de Bazelaire C, et al. Early modifications of hepatic perfusion measured by functional CT in a rat model of hepatocellular carcinoma using a blood pool contrast agent. Eur Radiol. 2004 Nov;14(11):2125–33.

    Article  PubMed  Google Scholar 

  26. Tateishi U, Nishihara H, Watanabe S, et al. Tumor angiogenesis and dynamic CT in lung adenocarcinoma: radiologic-pathologic correlation. J Comput Assist Tomogr. 2001 Jan-Feb;25(1):23–7.

    Article  PubMed  CAS  Google Scholar 

  27. Gillard JH, Minhas PS, Hayball MP, et al. Assessment of quantitative computed tomographic cerebral perfusion imaging with H2(15) O positron emission tomography. Neurol Res. 2000 Jul;22(5):457–64.

    PubMed  CAS  Google Scholar 

  28. Lee TY, Purdie TG, Stewart E. CT imaging of angiogenesis. Q J Nucl Med. 2003 Sep;47(3):171–87.

    PubMed  Google Scholar 

  29. Miles KA, Griffiths MR, Fuentes MA. Standardized perfusion value: universal CT contrast enhancement scale that correlates with FDG PET in lung nodules. Radiology 2001;220:548–53.

    PubMed  CAS  Google Scholar 

  30. Miles KA. Perfusion CT for the assessment of tumour vascularity: which protocol? Brit J of Radiology (2003) 76, S36–S42.

    Article  Google Scholar 

  31. Yi CA, Lee KS, Kim EA, et al. Solitary pulmonary nodules: dynamic enhanced multi-detector row CT study and comparison with vascular endothelial growth factor and microvessel density. Radiology. 2004 Oct;233(1):191–9.

    Article  PubMed  Google Scholar 

  32. D Cosgrove. Angiogenesis imaging–ultrasound. Brit J of Radiology (2003) 76, S43–S49.

    Article  Google Scholar 

  33. Kedar RP, Cosgrove D, McCready, et al. Microbubble contrast agent for color Doppler US: effect on breast masses. Work in progress. Radiology 1996;198:679–86.

    PubMed  CAS  Google Scholar 

  34. Krix M, Kiessling F, Farhan N, et al. A multivessel model describing replenishment kinetics of ultrasound contrast agent for quantification of tissue perfusion. Ultrasound Med Biol. 2003 Oct;29(10):1421–30.

    Article  PubMed  Google Scholar 

  35. Wei K, Jayaweera AR, Firoozan S, et al. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation. 1998 Feb 10;97(5):473–83.

    PubMed  CAS  Google Scholar 

  36. Brown EB, Campbell RB, Tsuzuki Y, et al. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med. 2001 Jul;7(7):864–8.

    Article  PubMed  CAS  Google Scholar 

  37. Dunn AK, Devor A, Bolay H, et al. Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation. Opt Lett 2003;28:28–30.

    Article  PubMed  CAS  Google Scholar 

  38. Pahernik S, Harris AG, Schmitt-Sody M, et al. Orthogonal polarisation spectral imaging as a new tool for the assessment of antivascular tumour treatment in vivo: a validation study. Br J Cancer 2002;86:1622–7.

    Article  PubMed  CAS  Google Scholar 

  39. Ntziachristos V, Yodh A, Schnall M, et al. Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc Natl Acad Sci USA 2000;97: 2767–72.

    Article  PubMed  CAS  Google Scholar 

  40. Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology. 2004 May;231(2):305–32.

    Article  PubMed  Google Scholar 

  41. Phelps ME, Huang SC, Hoffman EJ, et al. Validation of tomographic measurement of cerebral blood volume with C11-labeled carboxyhemoglobin. J Nucl Med 1979;20:328–34.

    PubMed  CAS  Google Scholar 

  42. McDonald DM, PL Choyke. Imaging of angiogenesis: from microscope to clinic. Nat Med, 2003. 9(6): p. 713–25.

    Article  PubMed  CAS  Google Scholar 

  43. Saha GB, MacIntyre WJ, Go RT. Radiopharmaceuticals for brain imaging. Semin Nucl Med. 1994 Oct;24(4):324–49.

    Article  PubMed  CAS  Google Scholar 

  44. Raichle ME. Measurement of local cerebral blood flow and metabolism in man with positron emission tomography. Fed Proc. 1981 Jun;40(8):2331–4.

    PubMed  CAS  Google Scholar 

  45. Frackowiak RS, Friston KJ. Functional neuroanatomy of the human brain: positron emission tomography–a new neuroanatomical technique. J Anat. 1994 Apr;184 ( Pt 2):211–25.

    PubMed  Google Scholar 

  46. Raichle ME. Positron emission tomography. Annu Rev Neurosci. 1983;6:249–67.

    Article  PubMed  CAS  Google Scholar 

  47. Latchaw RE. Cerebral perfusion imaging in acute stroke. J Vasc Interv Radiol. 2004;15(1 Pt 2):S29–S46.

    PubMed  Google Scholar 

  48. Matsuda H, Tsuji S, Shuke N, et al. A quantitative approach to technetium-99 m hexamethylpropylene amine oxime. Eur J Nucl Med 1992. 19:195.

    Article  PubMed  CAS  Google Scholar 

  49. Suess E, Malessa S, Ungersbock K, et al. Technetium-99 m-d, 1-hexamethylpropyleneamine oxime (HMPAO) uptake and glutathione content in brain tumors. J Nucl Med. 1991 Sep;32(9):1675–81.

    PubMed  CAS  Google Scholar 

  50. Kirkness CJ. Cerebral blood flow monitoring in clinical practice. AACN Clin Issues. 2005 Oct-Dec;16(4):476–87.

    Article  PubMed  Google Scholar 

  51. Sabatini U, Celsis P, Viallard G, et al. Quantitative assessment of cerebral blood volume by single-photon emission computed tomography. Stroke. 1991 Mar;22(3):324–30.

    PubMed  CAS  Google Scholar 

  52. Schaefer JF, Schneider V, Vollmar J, et al. Solitary pulmonary nodules: association between signal characteristics in dynamic contrast enhanced MRI and tumor angiogenesis.Lung Cancer. 2006 Jul;53(1):39–49.

    Article  PubMed  Google Scholar 

  53. Mayr NA, Hawighorst H, Yuh WT, et al. MR microcirculation assessment in cervical cancer: correlations with histomorphological tumor markers and clinical outcome. J Magn Reson Imaging. 1999 Sep;10(3):267–76.

    Article  PubMed  CAS  Google Scholar 

  54. Galbraith SM, Maxwell RJ, Lodge MA, et al. Combretastatin A4 phosphate has tumor antivascular activity in rat and man as demonstrated by dynamic magnetic resonance imaging. J Clin Oncol. 2003 Aug 1;21(15):2831–42.

    Article  PubMed  CAS  Google Scholar 

  55. Morgan B, Thomas AL, Drevs J, et al. Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J Clin Oncol. 2003 Nov 1;21(21):3955–64.

    Article  PubMed  CAS  Google Scholar 

  56. Mross K, Drevs J, Muller M, et al. Phase I clinical and pharmacokinetic study of PTK/ZK, a multiple VEGF receptor inhibitor, in patients with liver metastases from solid tumours. Eur J Cancer. 2005 Jun;41(9):1291–9.

    Article  PubMed  CAS  Google Scholar 

  57. Lee L, Sharma S, Morgan B, et al. Biomarkers for assessment of pharmacologic activity for a vascular endothelial growth factor (VEGF) receptor inhibitor, PTK787/ZK 222584 (PTK/ZK): translation of biological activity in a mouse melanoma metastasis model to phase I studies in patients with advanced colorectal cancer with liver metastases. Cancer Chemother Pharmacol. 2006 Jun;57(6):761–71.

    Article  PubMed  CAS  Google Scholar 

  58. Anderson HL, Yap JT, Miller MP, et al. Assessment of pharmacodynamic vascular response in a phase I trial of combretastatin A4 phosphate. J Clin Oncol. 2003 Aug 1;21(15): 2823–30.

    Article  PubMed  CAS  Google Scholar 

  59. Lassau N, Chawi I, Rouffiac V, et al. Interest of color Doppler ultrasonography to evaluate a new anti-angiogenic treatment with thalidomide in metastatic renal cell carcinoma. Bull Cancer. 2004 Jul-Aug;91(7–8):629–35.

    PubMed  Google Scholar 

  60. Ostergaard L, Hochberg FH, Rabinov JD, et al. Early changes measured by magnetic resonance imaging in cerebral blood flow, blood volume, and blood-brain barrier permeability following dexamethasone treatment in patients with brain tumors. J Neurosurg. 1999 Feb;90(2):300–5.

    Article  PubMed  CAS  Google Scholar 

  61. Shen BQ, Lee DY, Zioncheck TF. Vascular endothelial growth factor governs endothelial nitric-oxide synthase expression via a KDR/Flk-1 receptor and protein kinase C signaling pathway. J Biol Chem 1999;274:3057–63.

    Google Scholar 

  62. Granger JP, Alexander BT. Abnormal pressure-natriuresis in hypertension: role of nitric oxide. Acta Physiol Scand 2000;168:161–68.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Barrett, T., Choyke, P.L. (2008). Imaging of Angiogenesis. In: Figg, W.D., Folkman, J. (eds) Angiogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71518-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71518-6_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-71517-9

  • Online ISBN: 978-0-387-71518-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics