Skip to main content

Overview of Angiogenesis During Tumor Growth

  • Chapter
Angiogenesis

In tumors, the phenotypic switch to angiogenesis involves more than simple up-regulation of angiogenic activity and is thought to be the result of a net balance of positive and negative regulators. Tumor angiogenesis is regulated by several factors, including growth factors for the endothelial cells secreted by both the tumor and stromal inflammatory cells, and mobilized from extracellular matrix stores by proteases secreted by tumor cells. Regulatory factors also include the extracellular matrix components and endothelial cell integrins, hypoxia, oncogenes and tumor suppressor genes. Angiogenesis is mandatory for tumor progression, in the form of growth, invasion and metastasis; hence it has prognostic value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Folkman J. Tumour angiogenesis: therapeutic implications. N Engl J Med 1971; 285: 1182–1186.

    PubMed  CAS  Google Scholar 

  2. Folkman J, Merler E, Abernathy C, et al. Isolation of a tumor fraction responsible for angiogenesis. J Exp Med 1971; 133: 275–288.

    Article  PubMed  CAS  Google Scholar 

  3. Mc Auslan BR, Hoffman H. Endothelium stimulating factor from Walker carcinoma cells. Relation to tumor angiogenic factor. Exp Cell Res 1979; 119: 181–190.

    Article  CAS  Google Scholar 

  4. Weiss JB, Brown RA, Kumar S, et al. An angiogenic factor isolated from tumours: a potent low-molecular weight compound. Brit J Cancer1979; 40: 493–496.

    PubMed  CAS  Google Scholar 

  5. Fenselau A, Kaiser D, Wallis K. Nucleoside requirements for the in vivo growth of bovine aortic endothelial cells. J Cell Physiol 1981; 108: 375–384.

    Article  PubMed  CAS  Google Scholar 

  6. Ribatti D, Vacca A, Dammacco F. The role of the vascular phase in solid tumor growth: a historical review. Neoplasia 1999; 1: 293–302.

    Article  PubMed  CAS  Google Scholar 

  7. Papetti M, Herman IM. Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol 2002; 282: C947–C970.

    PubMed  CAS  Google Scholar 

  8. Hlatky L, Hahnfeldt P, Folkman J. Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J Natl Cancer Inst 2002; 94: 883–893.

    PubMed  Google Scholar 

  9. Mignatti P, Rifkin DB. Biology and biochemistry of proteinases in tumor invasion. Physiol Rev 1993; 73: 161–195.

    PubMed  CAS  Google Scholar 

  10. Aznavoorian S, Murphy AN, Stetler-Stevenson WG, Liotta LA. Molecular aspects of tumor cell invasion and metastasis. Cancer 1993; 71: 1638–1683.

    Article  Google Scholar 

  11. Black WC, Welch HG. Advances in diagnostic imaging and overestimations of disease prevalence and the benefits of therapy. N Engl J Med 1993; 328: 1237–1243.

    Article  PubMed  CAS  Google Scholar 

  12. Holash J, Maisonpierre PC, Compton D, et al. Vessel cooption, regression and growth in tumors mediated by angiopoietins and VEGF. Science 1999; 284: 1994–1998.

    Article  PubMed  CAS  Google Scholar 

  13. Pezzella F, Pastorino U, Tagliabue E, et al. Non-small-lung carcinoma tumor growth without morphological evidence of neo-angiogenesis. Am J Pathol 1997; 151: 1417–1423.

    PubMed  CAS  Google Scholar 

  14. Vacca A, Ribatti D. Bone marrow angiogenesis in multiple myeloma. Leukemia 2006; 20: 193–199.

    Article  PubMed  CAS  Google Scholar 

  15. Hanahan D. Heritable formation of pancreatic beta-cell tumors in transgenic mice expressing recombinant unsylin/simian virus 40 oncogene. Nature 1985; 315: 115–122.

    Article  PubMed  CAS  Google Scholar 

  16. Ribatti D, Nico B, Crivellato E, et al. The history of the angiogenic switch comcept. Leukemia 2007; 21: 44–52.

    Article  PubMed  CAS  Google Scholar 

  17. Burri PH, Djonov V. Intussusceptive angiogenesis, the alternative to capillary sprouting. Mol Aspects Med 2002; 23: S1–S27.

    Article  PubMed  Google Scholar 

  18. Patan S, Munn LL, Jain RK. Intussusceptive microvascular growth in a human colon adenocarcinoma xenograft: a novel mechanism of tumor angiogenesis. Microvasc Res 1996; 51: 260–272.

    Article  PubMed  CAS  Google Scholar 

  19. Djonov V Andres AC, Ziemiecki A. Vascular remodelling during the normal and malignant life cycle of the mammary gland. Microsc Res Techn 2001; 52: 182–189.

    Article  Google Scholar 

  20. Patan, S, Tanda S, Roberge S, et al. Vascular morphogenesis and remodeling in a human tumor xenograft: blood vessel formation and growth after ovariectomy and tumor implantation. Circ Res 2001; 89: 732–739.

    Article  PubMed  CAS  Google Scholar 

  21. Eberhard A, Kahlert S, Goede V, et al. Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res 2002; 60: 1388–1393.

    Google Scholar 

  22. Turner HE, Nagy Z, Gatter KC, et al. Angiogenesis in pituitary adenomas and in the normal pituitary gland. J Clin Endocrinol Metab 2000; 85: 1159–1162.

    Article  PubMed  CAS  Google Scholar 

  23. Sterinberg F, Rohrborn HJ, Otto T, et al. NIR reflection measurements of hemoglobin and cytochrome da3 in healthy tissue and tumors. Correlation to oxygen consuption: preclinical and clinical data. Adv Exp Med Biol 1997; 428: 69–77.

    Google Scholar 

  24. Graeber TG, Osmanian C, Jacks T, et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 1996; 379: 88–91.

    Article  PubMed  CAS  Google Scholar 

  25. Zagzag D, Hooper A, Friedlander DR, et al. In situ expression of angiopoietins in astrocytomas identifies angiopoietin-2 as an early marker of tumor angiogenesis. Exp Neurol 1999; 159: 391–400.

    Article  PubMed  CAS  Google Scholar 

  26. Holash J, Wiegand SJ, Yancopoulos GF. New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 1999; 18: 5356–5362.

    Article  PubMed  CAS  Google Scholar 

  27. Yancopoulos GD, Davis S, Gale NW, et al. Vascular specific growth factors and blood vessels formation. Nature 2000; 407: 242–248.

    Article  PubMed  CAS  Google Scholar 

  28. Vajkoczy P, Farhadi M, Gaumann A, et al. Microtumor growth initiates angiogenic sprouting with simulatenous expression of VEGF, VEGF receptor-2, and angiopoietin-2. J Clin Invest 2002; 109: 777–785.

    PubMed  CAS  Google Scholar 

  29. Kusters B, Leenders WP, Wesseling P, et al. Vascular endothelial growth factor-A(165) induces progression of melanoma brain metastases without induction of sprouting angiogenesis. Cancer Res 2002; 62: 341–345.

    PubMed  CAS  Google Scholar 

  30. Dvorak H. Tumors: wounds that not heal. Similarities between tumor stroma generation and wound healing. New Engl J Med 1986; 315: 1650–1659.

    Article  PubMed  CAS  Google Scholar 

  31. Ribatti D, Nico B, Crivellato E, et al. The structure of the vascular networks of tumors. Cancer Letters; 2007; 248: 18–23.

    Article  PubMed  CAS  Google Scholar 

  32. Jain RK, Munn LL. Leaky vessels? Call Ang1! Nat Med 2000; 6: 131–132.

    Article  PubMed  CAS  Google Scholar 

  33. Stromblad S, Cheresh DA. Cell adhesion and angiogenesis. Trends Cell Biol 1996; 6: 462–468.

    Article  PubMed  CAS  Google Scholar 

  34. Neri D, Caremolla B, Nissim A, et al. Targeting by affinity-matured recombinant antibody fragments of an angiogenesis associated fibronectin isoform. Nat Biotechnol 1997; 15: 1271–1275.

    Article  PubMed  CAS  Google Scholar 

  35. Bischoff J. Approaches to studying cell adhesion molecules in angiogenesis. Trends Cell Biol 1995; 5: 69–74.

    Article  PubMed  CAS  Google Scholar 

  36. St Croix B, Rago C, Velculescu V, et al. Genes expressed in human tumor endothelium. Science 2000; 289: 1197–1202.

    Article  PubMed  CAS  Google Scholar 

  37. Madden SL, Cook BP, Nacht M, et al. Vascular gene expression in nonneoplastic and malignant brain. Am J Pathol 2004; 165: 601–608.

    PubMed  CAS  Google Scholar 

  38. Parker BS, Argani P, Cook BP, et al. Alterations in vascular gene expression in invasive breast carcinoma. Cancer Res 2004; 64: 7857–7866.

    Article  PubMed  CAS  Google Scholar 

  39. Van Beijnum J, Dings RP, van der Linden E, et al. Gene expression of tumor angiogenesis dissected; specific targeting of colon cancer angiogenic vasculature. Blood 2006; 108: 2339–2348.

    Article  PubMed  CAS  Google Scholar 

  40. Levy AP, Levy NS, Wegner S, et al. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem 1995; 270: 13333–13340.

    Article  PubMed  CAS  Google Scholar 

  41. Plate KH, Breier G, Widch HA, et al. Vascular endothelial growth factor is a potent tumour angiogenesis factor in human gliomas in vivo. Nature 1992; 359: 845–848.

    Article  PubMed  CAS  Google Scholar 

  42. Shweiki D, Itin A, Soffer D, et al. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992; 359: 843–845.

    Article  PubMed  CAS  Google Scholar 

  43. Potgens AJ, Lubsen NH, van Altena MC, et al. Vascular permeability factor expression influences tumor angiogenesis in human melanoma lines xenografted to nude mice. Am J Pathol 1995; 146: 197–209.

    PubMed  CAS  Google Scholar 

  44. Claffey KP, Brown LF, Del Aguila LF, et al. Expression of vascular permeability factor/vascular endothelial growth factor by melanoma cells increases tumor growth, angiogenesis, and experimental metastasis. Cancer Res 1996; 56: 172–181.

    PubMed  CAS  Google Scholar 

  45. Damert A, Machein M, Breier G, et al. Up-regulation of vascular endothelial growth factor expression in a rat glioma is conferred by two distinct hypoxia-driven mechanisms. Cancer Res 1997; 57: 3860–3864.

    PubMed  CAS  Google Scholar 

  46. Semenza GL. Transcriptional regulation by hypoxia-inducible factor-1. Trends Cardiovasc Med 1996; 6: 151–157.

    Article  CAS  Google Scholar 

  47. Carmeliet P, Dor Y, Herbert JM, Fukumura D, et al. Role of HIF-1 in hypoxia-mediated apoptosis, cell proliferation and tumor angiogenesis. Nature 1998; 394: 485–490.

    Article  PubMed  CAS  Google Scholar 

  48. Abramsson A, Lindblom P, Betshowz C. Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J Clin Invest 2003; 112: 1142–1151.

    PubMed  CAS  Google Scholar 

  49. Guo P, Hu B, Gu W, Xu L, et al. Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am J Pathol 2003; 162: 1083–1093.

    PubMed  CAS  Google Scholar 

  50. Chae SS, Paik JH, Furneaux H, et al. Requirement for sphingosine 1-phosphate receptor-1 in tumor angiogenesis demonstrated by in vivo RNA interference. J Clin Invest 2004; 114: 1082–1089.

    PubMed  CAS  Google Scholar 

  51. Machein MR, Knedla A, Knoth R, et al. Angiopoietin-1 promotes tumor angiogenesis in a rat glioma model. Am J Pathol 2004; 165: 1557–1570.

    PubMed  CAS  Google Scholar 

  52. Ahmad SA, Liu W, Jung YD, et al. The effects of angiopoietin-1 and -2 on tumor growth and angiogenesis in human colon cancer. Cancer Res 2001; 61: 1255–1259.

    PubMed  CAS  Google Scholar 

  53. Stoeltzing O, Ahmad SA, Liu W, et al. Angiopoietin-1 inhibits vascular permeability, angiogenesis, and growth of hepatic colon cancer tumors. Cancer Res 2003; 63: 3370–3377.

    PubMed  CAS  Google Scholar 

  54. Chantrain CF, Shimada H, Jodele S, et al. Stromal matrix metalloproteinase-9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment. Cancer Res 2004; 64: 1675–1686.

    Article  PubMed  CAS  Google Scholar 

  55. Spurbeck WW, NG CY, Strom TS, et al. Enforced expression of tissue inhibitor of matrix metalloproteinase-3 affects functional capillary morphogenesis and inhibits tumor growth in a murine tumor model. Blood 2002; 100: 3361–3368.

    Article  PubMed  CAS  Google Scholar 

  56. Park CC, Bissell MJ, Barcellos-Hoff MH. The influence of the microenvironment on the malignant phenotype. Mol Med Today 2000; 6: 324–329.

    Article  PubMed  CAS  Google Scholar 

  57. Leek RD, Lander RJ, Harris AL, et al. Necrosis correlates with high vascular density and focal macrophages infiltration in invasive carcinoma of the breast. Br J Cancer 1999; 79: 991–995.

    Article  PubMed  CAS  Google Scholar 

  58. Bingle L, Brown NJ, Lewis CE. The role of tumor associated macrophages in tumor progression; implications for new anticancer therapies. J Pathol 2002; 196: 254–265.

    Article  PubMed  CAS  Google Scholar 

  59. Jenkins DC, Charles IG, Thomsen LL, et al. Role of nitric oxide in tumor growth. Proc Natl Acad Sci USA 1995; 92: 4392–4396.

    Article  PubMed  CAS  Google Scholar 

  60. Gruber BL, Marchase MJ, Kaw R. Angiogenic factors stimulate mast cell migration. Blood, 86: 2488–2493.

    Google Scholar 

  61. Lin EY, Pollard JW. Role of infiltrated leucocytes in tumour growth and spread. Br J Cancer 2004; 90: 2053–2058.

    Article  PubMed  CAS  Google Scholar 

  62. Ribatti D, Crivellato E, Roccaro AM, et al. Mast cell contribution to angiogenesis related to tumor progression. Clin Exp Allergy 2004; 34: 1660–1664.

    Article  PubMed  CAS  Google Scholar 

  63. Kessler DA, Langer RS, Pless NA, et al. Mast cell and tumor angiogenesis. Int J Cancer 1977; 18: 703–709.

    Article  Google Scholar 

  64. Starkey JR, Crowle PK, Taubenberger S. Mast cell-deficient W/W mice exhibit a decreased rate of tumor angiogenesis. Int J Cancer 1998; 42: 48–52.

    Article  Google Scholar 

  65. Rak J, Mitsuhashi Y, Bayko L et al. Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res 1995; 55: 4575–4580.

    PubMed  CAS  Google Scholar 

  66. Ellis LM, Staley CA, Liu W et al. Downregulation of vascular endothelial growth factor in a human colon carcinoma cell line transfected with an antisense expression vector specific for c-src. J Biol Chem 1998; 273: 1052–1057.

    Article  PubMed  CAS  Google Scholar 

  67. Tang Y, Kim M, Carrasco D et al. In vivo assessment of RAS-dependent maintenance of tumor angiogenesis by real-time magnetic resonance imaging. Cancer Res 2005; 65: 8324–8330.

    Article  PubMed  CAS  Google Scholar 

  68. Watnick RS, Cheng YN, Rangarajan A, et al. Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell 2003; 3: 219–231.

    Article  PubMed  CAS  Google Scholar 

  69. Fernandez A, Udagawa T, Schwesinger C, et al. Angiogenic potential of prostate carcinoma cells overexpressing bcl-2. J Natl Cancer Inst 2001; 93: 208–213.

    Article  PubMed  CAS  Google Scholar 

  70. Maniotis AJ, Folberg R, Hess A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 1999; 155: 739–752.

    PubMed  CAS  Google Scholar 

  71. Seftor RB, Seftor EA, Koshikawa N, et al Cooperative interactions of laminin 5 gamma-2 chain, matrix metalloproteinase-2, and membrane type-1-matrix/metalloproteinase are required for mimicry of embryonic vasculogenesis by aggressive melanoma. Cancer Res 2001; 61: 6322–6327.

    PubMed  CAS  Google Scholar 

  72. Mc Donald DM, Munn L, Jain RK. Vasculogenic mimicry: how convincing, how novel, and how significant. Am J Pathol 2000; 156: 383–388.

    CAS  Google Scholar 

  73. Chang YS, di Tomaso E, Mc Donald DM, et al. Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci USA 2000; 97: 14608–14613.

    Article  PubMed  CAS  Google Scholar 

  74. Asahara T, Takahashi T, Masuda H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 1999; 18: 3964–3972.

    Article  PubMed  CAS  Google Scholar 

  75. Takahashi T, Kalka C, Masuda H, et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 1999; 5: 434–438.

    Article  PubMed  CAS  Google Scholar 

  76. De Palma M, Venneri MA, Naldini L. In vivo targeting of tumor endothelial cells by systemic delivery of lentiviral vectors. Hum Gene Ther 2003; 14: 1193–1206.

    Article  PubMed  CAS  Google Scholar 

  77. De Palma M, Venneri MA, Roca C, et al. Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat Med 2003; 9: 789–795.

    Article  PubMed  CAS  Google Scholar 

  78. Orimo A, Gupta PB, Sgroi DC, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005; 121: 335–348.

    Article  PubMed  CAS  Google Scholar 

  79. Lyden D, Hattori K, Dias S, et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med, 7: 1194–1201.

    Google Scholar 

  80. Davidoff AM, Ng CY, Brown P, et al. Bone marrow-derived cells contribute to tumor neovasculature and, when modified to express an angiogenesis inhibitor, can restrict tumor growth in mice. Clin Cancer Res 2001; 7: 2870–2879.

    PubMed  CAS  Google Scholar 

  81. Weidner N, Sample JP, Welch WR, et al. Tumor angiogenesis correlates with metastasis in invasive breast carcinoma. N Engl J Med 1991; 324: 1–8.

    PubMed  CAS  Google Scholar 

  82. Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2002; 2: 727–739.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ribatti, D., Vacca, A. (2008). Overview of Angiogenesis During Tumor Growth. In: Figg, W.D., Folkman, J. (eds) Angiogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71518-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71518-6_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-71517-9

  • Online ISBN: 978-0-387-71518-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics