Skip to main content

Up to this point this text has focused primarily on materials themselves and not how to produce them. A major aspect of materials science is the control of the kinetic and thermodynamic conditions under which materials are produced to yield specific properties. This chapter and the ones that follow describe some of the ways semiconductor electronic materials are created as thin films. For comparison, the most popular method of production of bulk materials was covered in Chapter 4. Bulk wafers are useful as substrates but are impractical for many applications, especially where alloys are needed. In current technology, thin films constitute most of the active and passive layers that are used in electronic devices.

This chapter covers the common features of all vapor phase thin film growth techniques – the processes by which atoms land on surfaces, move about, leave the surface, and how surface atoms go on to produce complete films. As with other chapters in this book, whole texts have been written on the subject so this treatment reviews only the highlights. Following chapters will cover specific classes of processes. Subjects of this chapter and include adsorption, desorption, surface structure and energy and how they are related to surface diffusion and the evolution of morphology, and adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References:

  1. Rockett, A.; Greene, J.E.; Jiang, H.; Ostling, M.; Petersson, C.S. “Dopant redistribution during the solid-phase growth of CrSi2 on Si (100).” J. Appl. Phys. 1988; 64: 4187-93.

    Article  CAS  ADS  Google Scholar 

  2. Madhukar, A. and Ghaisas, S.V. “Implications of the configuration-dependent reactive incorporation growth process for the group V pressure and substrate temperature dependence of III-V molecular beam epitaxial growth and the dynamics of the reflection high-energy electron diffraction intensity.” Appl. Phys. Lett. 1985; 47: 247-9.

    Article  CAS  ADS  Google Scholar 

  3. Hasan, M.-A.; Barnett, S.A.; Sundgren, J.-E.; Greene, J.E. “Nucleation and initial growth of In deposited on Si3N4 using low-energy (≤300 eV) accelerated beams in ultrahigh vacuum.” J. Vac. Sci. Technol. A 1987; 5: 1883-7.

    Article  CAS  ADS  Google Scholar 

  4. Jun Wang; Drabold, D.A.; and Rockett, A. “Binding and diffusion of a Si adatom around type B steps on Si (001) c(4*2).” Surf. Sci. 1995; 344: 251-7.

    Article  CAS  ADS  Google Scholar 

  5. Ehrlich, G. and Hudda, F.G., “Atomic view of surface self-diffusion - tungsten on tungsten” J. Chem. Phys. 1966; 44: 1039-40.

    Article  CAS  ADS  Google Scholar 

  6. Schwoebel, R.L. and Shipsey, E.J. “Step motion on crystal surfaces.” J. Appl. Phys. 1966; 37: 3682-6.

    Article  CAS  ADS  Google Scholar 

  7. Takayanagi, K.; Tanishiro, Y. “Dimer-chain model for the 7*7 and 2*8 reconstructed surfaces of Si (111) and Ge (111).” Phys. Rev. B 1986; 34: 1034-40.

    Article  CAS  ADS  Google Scholar 

  8. Eaglesham, D.J.; White, A.E.; Feldman, L.C.; Moriya, N.; and Jacobson, D.C., “Equilibrium shape of Si.” Phys. Rev. Lett. 1993; 70: 1643-6.

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Dong Liao and A. Rockett, (110) paper.

    Google Scholar 

  10. Eshelby, J.D., Solid State Physics, ed. by. Seitz, F. and Turnbull, D. (Academic Press, New York: 1956) v. 3.

    Google Scholar 

  11. Gilmer, G.H. and Grabow, M.H.; “Models of thin film growth modes.” J. of Metals, 1987: 39: 19-23.

    CAS  Google Scholar 

  12. Sakurai, Toshio and Hagstrum, Homer D.; “Interplay of the monohydride phase and a newly discovered dihydride phase in chemisorption of H on Si (100)2x1.” Phys. Rev. B 1976; 14: 1593-6.

    Article  CAS  ADS  Google Scholar 

  13. Bratu, P.; Brenig, W.; Groβ, A.; Hartmann, M.; Höfer, U.; Kratzer, P.; and Russ, R.; “Reaction dynamics of molecular hydrogen on silicon surfaces.” Phys. Rev. B 1996; 54: 5978-91.

    Article  CAS  ADS  Google Scholar 

  14. Kim, Hyungjun; “H-mediated film growth and dopant incorporation kinetics during Si1-xGex(100):B gas-source molecular beam epitaxy.” Thesis, PH.D. University of Illinois at Urbana-Champaign, 1998.

    Google Scholar 

  15. Sinniah, Kummar; Sherman, Michael G.; Lewis, Lisa B.; Weinberg, W. Henry; Yates, John T; and Janda, Kenneth C.; “Hydrogen desorption from the monohydride phase on Si(100).” J. Chem. Phys. 1990; 92: 5700-11.

    Article  CAS  ADS  Google Scholar 

  16. Atkins, P.W. Physical Chemistry. Oxford: Oxford University Press, 1978.

    Google Scholar 

  17. Joyce, B.A.; “Molecular beam epitaxy.” Rep. Prog. Phys. 1985; 48: 1637-97.

    Article  CAS  ADS  Google Scholar 

  18. Zhang, J.; Gibson, E.M.; Foxon, C.T.; and Joyce, B.A.; “Modulated molecular beam study of group III desorption during growth by MBE.” J. Cryst. Growth 1991; 111; 93-97.

    Article  CAS  ADS  Google Scholar 

  19. DeLuca, P.M.; Labanda, J.G.C.; and Barnett, S.A.; “An ion-beam technique for measuring surface diffusion coefficients.” Appl. Phys. Letters 1999: 74: 1719-21.

    Article  CAS  ADS  Google Scholar 

  20. Kangawa, Y.; Ito, T.; Taguchi, A.; Shiraishi, K.; Irisawa, T.; and Ohachi, T.; “Monte Carlo simulation for temperature dependence of Ga diffusion length on GaAs (001)”. Appl. Surf. Sci. 2002; 190: 517-520.

    Article  CAS  ADS  Google Scholar 

  21. Braun, Wolfgang; Kaganer, Vladimir M.; Jenichen, Bernd; and Ploog, Klaus H.; “NonOstwald coarsening of the GaAs (001) surface.” Phys. Rev. B 2004; 69: 165405-7.

    Article  ADS  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2008). Thin Film Growth Processes. In: The Materials Science of Semiconductors. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68650-9_10

Download citation

Publish with us

Policies and ethics