Skip to main content
Book cover

The Materials Science of Semiconductors

  • Textbook
  • © 2008

Overview

  • Describes semiconductors from a materials science perspective rather than from condensed matter physics or electrical engineering viewpoints
  • Includes discussion of current approaches to organic materials for electronic devices
  • Describes the fundamental aspects of thin film nucleation and growth and the most common physical and chemical vapor deposition techniques
  • Chapters conclude with problems and suggested readings.
  • Includes supplementary material: sn.pub/extras
  • Request lecturer material: sn.pub/lecturer-material

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (12 chapters)

Keywords

About this book

OBJECTIVES The primary purpose of this book is to convey insight into why semiconductors are the way they are, either because of how their atoms bond with one another, because of mistakes in their structure, or because of how they are produced or processed. The approach is to explore both the science of how atoms interact and to connect the results to real materials properties, and to show the engineering concepts that can be used to produce or improve a semiconductor by design. Along with this I hope to show some applications for the topics under discussion so that one may see how the concepts are applied in the laboratory. The intended audience of this book is senior undergraduate students and graduate students early in their careers or with limited background in the subject. I intend this book to be equally useful to those teaching in electrical engineering, materials science, or even chemical engineering or physics curricula, although the book is written for a materials science audience primarily. To try to maintain the focus on materials concepts the details of many of the derivations and equations are left out of the book. Likewise I have not delved into the details of electrical engineering topics in as much detail as an electrical engineer might wish. It is assumed that students are familiar with these topics from earlier courses.

Reviews

From the reviews:

"This textbook on semiconductors for students at advanced undergraduate or graduate level covers the basis of electronic band structures, engineering of alloys, and the effect of defects. Concentrating on semiconductors materials science rather than devices, Rockett also includes discussion of organic electronic materials, amorphous semiconductors, and methods for growth and deposition. Each chapter includes recommended reading suggestions and problems for study." (Materials Today, Vol. 11 (5), May, 2008)

"The 12 summarized chapters of The Materials Science of Semiconductors by Rockett … provide excellent coverage for practicing engineers or students interrelating the underlying materials considerations with semiconductor devices. Each chapter contains diagrams, problems, substantial references, and additional readings; the book also includes an appendix and a dozen tables. … Summing Up: Recommended. Upper-division undergraduate through professional collections." (S. M. Pilgrim, Choice, Vol. 46 (2), October, 2008)

Authors and Affiliations

  • University of Illinois, Urbana, USA

    Angus Rockett

About the author

Angus Rockett is a Professor of Materials Science and Engineering at the University of Illinois at Urbana-Champaign. He is a fellow of the AVS and teaches short courses and tuitorials for the AVS, MRS and IEEE. He has in excess of 120 published journal articles and conference proceedings and has conducted research in a wide variety of thin film and electronic materials topics. He received a B.S. in Physics from Brown University in 1980 and a Ph.D. from the University of Illinois in Materials Science in 1986. He has been a visiting scientist at the Uppsala University in Sweden, the Hahn Meitner Institute in Berlin, Germany and has served as a senior program administrator at the U.S. Department of Energy in Germantown, Maryland.

Bibliographic Information

Publish with us