Skip to main content

Tissue Engineered Myocardium

  • Chapter
  • First Online:
Myocardial Tissue Engineering

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 6))

  • 862 Accesses

Abstract

Myocardial tissue engineering is equally attractive for basic and translational cardiovascular research as it may ultimately provide “realistic” in vitro heart muscle models and therapeutic myocardial substitutes. A prerequisite for successful cardiac muscle engineering is simulation of natural cardiomyogenesis in vitro to yield true myocardial structures with appropriate macro- and micro-morphology as well as function. This requires an assembly of the various cellular and extracellular components of the living heart under so called biomimetic culture conditions. This chapter will give an introduction into different tissue engineering modalities and discuss essential cellular and extracellular components as well as other biomimetic factors, controlling myocardial assembly in vitro. Finally, potential in vitro and in vivo applications such as modeling of heart muscle development, applications in functional genomics and disease modeling, drug development and safety assessment as well as cardiac repair will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cohen, S., Leor, J.: Rebuilding broken hearts. Biologists and engineers working together in the fledgling field of tissue engineering are within reach of one of their greatest goals: Constructing a living human heart patch. Sci. Am. 291(5), 44–51 (2004)

    Article  Google Scholar 

  2. Khademhosseini, A., Vacanti, J.P., Langer, R.: Progress in tissue engineering. Sci. Am. 300(5), 64–71 (2009)

    Article  Google Scholar 

  3. Zimmermann, W.H., Melnychenko, I., Eschenhagen, T.: Engineered heart tissue for regeneration of diseased hearts. Biomaterials 25(9), 1639–1647 (2004)

    Article  Google Scholar 

  4. Eschenhagen, T., Zimmermann, W.H.: Engineering myocardial tissue. Circ. Res. 97(12), 1220–1231 (2005)

    Article  Google Scholar 

  5. Jawad, H., Lyon, A.R., Harding, S.E., Ali, N.N., Boccaccini, A.R.: Myocardial tissue engineering. Br. Med. Bull. 87, 31–47 (2008)

    Article  Google Scholar 

  6. Zimmermann, W.H.: Remuscularizing failing hearts with tissue engineered myocardium. Antioxid. Redox Signal. 11(8), 2011–2023 (2009)

    Article  Google Scholar 

  7. Burrows, M.T.: Rhythmical activity of isolated heart muscle cells in vitro. Science 36(916), 90–92 (1912)

    Article  Google Scholar 

  8. Moscona, A.: Rotation-mediated histogenetic aggregation of dissociated cells. A quantifiable approach to cell interactions in vitro. Exp. Cell Res. 22, 455–475 (1961)

    Article  Google Scholar 

  9. Sperelakis, N.: Cultured heart cell reaggregate model for studying cardiac toxicology. Environ. Health Perspect. 26, 243–267 (1978)

    Article  Google Scholar 

  10. Kelm, J.M., Ehler, E., Nielsen, L.K., Schlatter, S., Perriard, J.C., Fussenegger, M.: Design of artificial myocardial microtissues. Tissue Eng. 10(1–2), 201–214 (2004)

    Article  Google Scholar 

  11. Zimmermann, W.H., Eschenhagen, T.: Cardiac tissue engineering for replacement therapy. Heart Fail Rev. 8(3), 259–269 (2003)

    Article  Google Scholar 

  12. Shimizu, T., Yamato, M., Isoi, Y., Akutsu, T., Setomaru, T., Abe, K., Kikuchi, A., Umezu, M., Okano, T.: Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ. Res. 90(3), e40 (2002)

    Article  Google Scholar 

  13. Ott, H.C., Matthiesen, T.S., Goh, S.K., Black, L.D., Kren, S.M., Netoff, T.I., Taylor, D.A.: Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nat. Med. 14(2), 213–221 (2008)

    Article  Google Scholar 

  14. Shimizu, T., Sekine, H., Yang, J., Isoi, Y., Yamato, M., Kikuchi, A., Kobayashi, E., Okano, T.: Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. FASEB J. 20(6), 708–710 (2006)

    Google Scholar 

  15. Morritt, A.N., Bortolotto, S.K., Dilley, R.J., Han, X., Kompa, A.R., McCombe, D., Wright, C.E., Itescu, S., Angus, J.A., Morrison, W.A.: Cardiac tissue engineering in an in vivo vascularized chamber. Circulation 115(3), 353–360 (2007)

    Article  Google Scholar 

  16. Langer, R., Vacanti, J.P.: Tissue engineering. Science 260(5110), 920–926 (1993)

    Article  Google Scholar 

  17. Bursac, N., Papadaki, M., Cohen, R.J., Schoen, F.J., Eisenberg, S.R., Carrier, R., Vunjak-Novakovic, G., Freed, L.E.: Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies. Am. J. Physiol. 277(2 Pt 2), H433–H444 (1999)

    Google Scholar 

  18. Carrier, R.L., Papadaki, M., Rupnick, M., Schoen, F.J., Bursac, N., Langer, R., Freed, L.E., Vunjak-Novakovic, G.: Cardiac tissue engineering: Cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol. Bioeng. 64(5), 580–589 (1999)

    Article  Google Scholar 

  19. Leor, J., Aboulafia-Etzion, S., Dar, A., Shapiro, L., Barbash, I.M., Battler, A., Granot, Y., Cohen, S.: Bioengineered cardiac grafts: A new approach to repair the infarcted myocardium? Circulation 102(19 Suppl 3), III56–III61 (2000)

    Google Scholar 

  20. Sakai, T., Li, R.K., Weisel, R.D., Mickle, D.A., Kim, E.T., Jia, Z.Q., Yau, T.M.: The fate of a tissue-engineered cardiac graft in the right ventricular outflow tract of the rat. J. Thorac. Cardiovasc. Surg. 121(5), 932–942 (2001)

    Article  Google Scholar 

  21. Kofidis, T., Akhyari, P., Boublik, J., Theodorou, P., Martin, U., Ruhparwar, A., Fischer, S., Eschenhagen, T., Kubis, H.P., Kraft, T., Leyh, R., Haverich, A.: In vitro engineering of heart muscle: Artificial myocardial tissue. J. Thorac. Cardiovasc. Surg. 124(1), 63–69 (2002)

    Article  Google Scholar 

  22. van Luyn, M.J., Tio, R.A., Gallego y van Seijen, X.J., Plantinga, J.A., de Leij, L.F., DeJongste, M.J., van Wachem, P.B.: Cardiac tissue engineering: characteristics of in unison contracting two- and three-dimensional neonatal rat ventricle cell (co)-cultures. Biomaterials 23(24), 4793–4801 (2002)

    Google Scholar 

  23. Radisic, M., Park, H., Shing, H., Consi, T., Schoen, F.J., Langer, R., Freed, L.E., Vunjak-Novakovic, G.: Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc. Natl. Acad. Sci. USA 101(52), 18129–18134 (2004)

    Article  Google Scholar 

  24. Caspi, O., Lesman, A., Basevitch, Y., Gepstein, A., Arbel, G., Habib, I.H., Gepstein, L., Levenberg, S.: Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ. Res. 100(2), 263–272 (2007)

    Article  Google Scholar 

  25. Engelmayr Jr., G.C., Cheng, M., Bettinger, C.J., Borenstein, J.T., Langer, R., Freed, L.E.: Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat. Mater. 7(12), 1003–1010 (2008)

    Article  Google Scholar 

  26. Zimmermann, W.H., Schneiderbanger, K., Schubert, P., Didie, M., Munzel, F., Heubach, J.F., Kostin, S., Neuhuber, W.L., Eschenhagen, T.: Tissue engineering of a differentiated cardiac muscle construct. Circ. Res. 90(2), 223–230 (2002)

    Article  Google Scholar 

  27. Eschenhagen, T., Fink, C., Remmers, U., Scholz, H., Wattchow, J., Weil, J., Zimmermann, W., Dohmen, H.H., Schafer, H., Bishopric, N., Wakatsuki, T., Elson, E.L.: Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: A new heart muscle model system. FASEB J. 11(8), 683–694 (1997)

    Google Scholar 

  28. Zimmermann, W.H., Fink, C., Kralisch, D., Remmers, U., Weil, J., Eschenhagen, T.: Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol. Bioeng. 68(1), 106–114 (2000)

    Article  Google Scholar 

  29. Birla, R.K., Borschel, G.H., Dennis, R.G., Brown, D.L.: Myocardial engineering in vivo: Formation and characterization of contractile, vascularized three-dimensional cardiac tissue. Tissue Eng. 11(5–6), 803–813 (2005)

    Article  Google Scholar 

  30. Bakunts, K., Gillum, N., Karabekian, Z., Sarvazyan, N.: Formation of cardiac fibers in matrigel matrix. Biotechniques 44(3), 341–348 (2008)

    Article  Google Scholar 

  31. Baar, K., Birla, R., Boluyt, M.O., Borschel, G.H., Arruda, E.M., Dennis, R.G.: Self-organization of rat cardiac cells into contractile 3-d cardiac tissue. FASEB J. 19(2), 275–277 (2005)

    Google Scholar 

  32. Huang, Y.C., Khait, L., Birla, R.K.: Contractile three-dimensional bioengineered heart muscle for myocardial regeneration. J. Biomed. Mater. Res. A 80(3), 719–731 (2007)

    Google Scholar 

  33. Haraguchi, Y., Shimizu, T., Yamato, M., Kikuchi, A., Okano, T.: Electrical coupling of cardiomyocyte sheets occurs rapidly via functional gap junction formation. Biomaterials 27(27), 4765–4774 (2006)

    Article  Google Scholar 

  34. Schmidt, C.E., Baier, J.M.: Acellular vascular tissues: Natural biomaterials for tissue repair and tissue engineering. Biomaterials 21(22), 2215–2231 (2000)

    Article  Google Scholar 

  35. Korecky, B., Hai, C.M., Rakusan, K.: Functional capillary density in normal and transplanted rat hearts. Can. J. Physiol. Pharmacol. 60(1), 23–32 (1982)

    Article  Google Scholar 

  36. Kofidis, T., Lebl, D.R., Martinez, E.C., Hoyt, G., Tanaka, M., Robbins, R.C.: Novel injectable bioartificial tissue facilitates targeted, less invasive, large-scale tissue restoration on the beating heart after myocardial injury. Circulation 112(9 Suppl), I173–I177 (2005)

    Google Scholar 

  37. Landa, N., Miller, L., Feinberg, M.S., Holbova, R., Shachar, M., Freeman, I., Cohen, S., Leor, J.: Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation 117(11), 1388–1396 (2008)

    Article  Google Scholar 

  38. Leor, J., Tuvia, S., Guetta, V., Manczur, F., Castel, D., Willenz, U., Petnehazy, O., Landa, N., Feinberg, M.S., Konen, E., Goitein, O., Tsur-Gang, O., Shaul, M., Klapper, L., Cohen, S.: Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in swine. J. Am. Coll. Cardiol. 54(11), 1014–1023 (2009)

    Article  Google Scholar 

  39. Radisic, M., Park, H., Gerecht, S., Cannizzaro, C., Langer, R., Vunjak-Novakovic, G.: Biomimetic approach to cardiac tissue engineering. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362(1484), 1357–1368 (2007)

    Article  Google Scholar 

  40. Zak, R.: Development and proliferative capacity of cardiac muscle cells. Circ. Res. 35((2) suppl II), 17–26 (1974)

    MathSciNet  Google Scholar 

  41. Nag, A.C., Zak, R.: Dissociation of adult mammalian heart into single cell suspension: An ultrastructural study. J. Anat. 129(Pt 3), 541–559 (1979)

    Google Scholar 

  42. Naito, H., Melnychenko, I., Didie, M., Schneiderbanger, K., Schubert, P., Rosenkranz, S., Eschenhagen, T., Zimmermann, W.H.: Optimizing engineered heart tissue for therapeutic applications as surrogate heart muscle. Circulation 114(1 Suppl), I72–I78 (2006)

    Google Scholar 

  43. Banerjee, I., Fuseler, J.W., Price, R.L., Borg, T.K., Baudino, T.A.: Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am. J. Physiol. Heart Circ. Physiol. 293(3), H1883–H1891 (2007)

    Article  Google Scholar 

  44. Radisic, M., Park, H., Martens, T.P., Salazar-Lazaro, J.E., Geng, W., Wang, Y., Langer, R., Freed, L.E., Vunjak-Novakovic, G.: Pre-treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue. J. Biomed. Mater. Res. A 86(3), 713–724 (2008)

    Google Scholar 

  45. Kakkar, R., Lee, R.T.: Intramyocardial fibroblast myocyte communication. Circ. Res. 106(1), 47–57

    Google Scholar 

  46. Ieda, M., Tsuchihashi, T., Ivey, K.N., Ross, R.S., Hong, T.T., Shaw, R.M., Srivastava, D.: Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev. Cell. 16(2), 233–244 (2009)

    Article  Google Scholar 

  47. Souders, C.A., Bowers, S.L., Baudino, T.A.: Cardiac fibroblast: the renaissance cell. Circ. Res. 105(12), 1164–1176 (2009)

    Article  Google Scholar 

  48. Sekine, H., Shimizu, T., Hobo, K., Sekiya, S., Yang, J., Yamato, M., Kurosawa, H., Kobayashi, E., Okano, T.: Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation 118(14 Suppl), S145–S152 (2008)

    Article  Google Scholar 

  49. Moldovan, N.I., Goldschmidt-Clermont, P.J., Parker-Thornburg, J., Shapiro, S.D., Kolattukudy, P.E.: Contribution of monocytes/macrophages to compensatory neovascularization: The drilling of metalloelastase-positive tunnels in ischemic myocardium. Circ. Res. 87(5), 378–384 (2000)

    Google Scholar 

  50. Leor, J., Rozen, L., Zuloff-Shani, A., Feinberg, M.S., Amsalem, Y., Barbash, I.M., Kachel, E., Holbova, R., Mardor, Y., Daniels, D., Ocherashvilli, A., Orenstein, A., Danon, D.: Ex vivo activated human macrophages improve healing, remodeling, and function of the infarcted heart. Circulation 114(1 Suppl), I94–I100 (2006)

    Google Scholar 

  51. Ieda, M., Kanazawa, H., Kimura, K., Hattori, F., Ieda, Y., Taniguchi, M., Lee, J.K., Matsumura, K., Tomita, Y., Miyoshi, S., Shimoda, K., Makino, S., Sano, M., Kodama, I., Ogawa, S., Fukuda, K.: Sema3a maintains normal heart rhythm through sympathetic innervation patterning. Nat. Med. 13(5), 604–612 (2007)

    Article  Google Scholar 

  52. Ieda, M., Fukuda, K.: New aspects for the treatment of cardiac diseases based on the diversity of functional controls on cardiac muscles: The regulatory mechanisms of cardiac innervation and their critical roles in cardiac performance. J. Pharmacol. Sci. 109(3), 348–353 (2009)

    Article  Google Scholar 

  53. Bowers, S.L., Banerjee, I., Baudino, T.A.: The extracellular matrix: at the center of it all. J. Mol. Cell. Cardiol. 48(3), 474–482

    Google Scholar 

  54. Michel, J.B.: Anoikis in the cardiovascular system: Known and unknown extracellular mediators. Arterioscler Thromb. Vasc. Biol. 23(12), 2146–2154 (2003)

    Article  Google Scholar 

  55. Corda, S., Samuel, J.L., Rappaport, L.: Extracellular matrix and growth factors during heart growth. Heart Fail Rev. 5(2), 119–130 (2000)

    Article  Google Scholar 

  56. Barczyk, M., Carracedo, S., Gullberg, D.: Integrins. Cell Tissue Res. 339(1), 269–280

    Google Scholar 

  57. Ross, R.S., Borg, T.K.: Integrins and the myocardium. Circ. Res. 88(11), 1112–1119 (2001)

    Article  Google Scholar 

  58. von der Mark, K., Park, J., Bauer, S., Schmuki, P.: Nanoscale engineering of biomimetic surfaces: Cues from the extracellular matrix. Cell Tissue Res. 339(1), 131–153

    Google Scholar 

  59. Fassler, R., Rohwedel, J., Maltsev, V., Bloch, W., Lentini, S., Guan, K., Gullberg, D., Hescheler, J., Addicks, K., Wobus, A.M.: Differentiation and integrity of cardiac muscle cells are impaired in the absence of beta 1 integrin. J. Cell Sci. 109(Pt 13), 2989–2999 (1996)

    Google Scholar 

  60. Manner, J., Wessel, A., Yelbuz, T.M.: How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube. Dev. Dyn. 239(4), 1035–1046

    Google Scholar 

  61. Opie, L.H., Commerford, P.J., Gersh, B.J., Pfeffer, M.A.: Controversies in ventricular remodelling. Lancet 367(9507), 356–367 (2006)

    Article  Google Scholar 

  62. Keller, B.B., Liu, L.J., Tinney, J.P., Tobita, K.: Cardiovascular developmental insights from embryos. Ann. N. Y. Acad. Sci. 1101, 377–388 (2007)

    Article  Google Scholar 

  63. Depre, C., Shipley, G.L., Chen, W., Han, Q., Doenst, T., Moore, M.L., Stepkowski, S., Davies, P.J., Taegtmeyer, H.: Unloaded heart in vivo replicates fetal gene expression of cardiac hypertrophy. Nat. Med. 4(11), 1269–1275 (1998)

    Article  Google Scholar 

  64. Korte, F.S., Herron, T.J., Rovetto, M.J., McDonald, K.S.: Power output is linearly related to myhc content in rat skinned myocytes and isolated working hearts. Am. J. Physiol. Heart Circ. Physiol. 289(2), H801–H812 (2005)

    Article  Google Scholar 

  65. Fink, C., Ergun, S., Kralisch, D., Remmers, U., Weil, J., Eschenhagen, T.: Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB J. 14(5), 669–679 (2000)

    Google Scholar 

  66. Zimmermann, W.H., Melnychenko, I., Wasmeier, G., Didie, M., Naito, H., Nixdorff, U., Hess, A., Budinsky, L., Brune, K., Michaelis, B., Dhein, S., Schwoerer, A., Ehmke, H., Eschenhagen, T.: Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat. Med. 12(4), 452–458 (2006)

    Article  Google Scholar 

  67. Radisic, M., Park, H., Chen, F., Salazar-Lazzaro, J.E., Wang, Y., Dennis, R., Langer, R., Freed, L.E., Vunjak-Novakovic, G.: Biomimetic approach to cardiac tissue engineering: Oxygen carriers and channeled scaffolds. Tissue Eng. 12(8), 2077–2091 (2006)

    Article  Google Scholar 

  68. Radisic, M., Marsano, A., Maidhof, R., Wang, Y., Vunjak-Novakovic, G.: Cardiac tissue engineering using perfusion bioreactor systems. Nat. Protoc. 3(4), 719–738 (2008)

    Article  Google Scholar 

  69. Katschinski, D.M.: In vivo functions of the prolyl-4-hydroxylase domain oxygen sensors: Direct route to the treatment of anaemia and the protection of ischaemic tissues. Acta Physiol. (Oxf) 195(4), 407–414 (2009)

    Article  Google Scholar 

  70. Radisic, M., Deen, W., Langer, R., Vunjak-Novakovic, G.: Mathematical model of oxygen distribution in engineered cardiac tissue with parallel channel array perfused with culture medium containing oxygen carriers. Am. J. Physiol. Heart Circ. Physiol. 288(3), H1278–H1289 (2005)

    Article  Google Scholar 

  71. Radisic, M., Malda, J., Epping, E., Geng, W., Langer, R., Vunjak-Novakovic, G.: Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. Biotechnol. Bioeng. 93(2), 332–343 (2006)

    Article  Google Scholar 

  72. Zimmermann, W.H., Didie, M., Wasmeier, G.H., Nixdorff, U., Hess, A., Melnychenko, I., Boy, O., Neuhuber, W.L., Weyand, M., Eschenhagen, T.: Cardiac grafting of engineered heart tissue in syngenic rats. Circulation 106(12 Suppl 1), I151–I157 (2002)

    Google Scholar 

  73. Kattman, S.J., Adler, E.D., Keller, G.M.: Specification of multipotential cardiovascular progenitor cells during embryonic stem cell differentiation and embryonic development. Trends Cardiovasc. Med. 17(7), 240–246 (2007)

    Article  Google Scholar 

  74. Guo, X.M., Zhao, Y.S., Chang, H.X., Wang CY, E.L.L., Zhang, X.A., Duan, C.M., Dong, L.Z., Jiang, H., Li, J., Song, Y., Yang, X.J.: Creation of engineered cardiac tissue in vitro from mouse embryonic stem cells. Circulation 113(18), 2229–2237 (2006)

    Article  Google Scholar 

  75. Peerani, R., Zandstra, P.W.: Enabling stem cell therapies through synthetic stem cell-niche engineering. J. Clin. Invest. 120(1), 60–70

    Google Scholar 

  76. Mummery, C., Ward-van Oostwaard, D., Doevendans, P., Spijker, R., van den Brink, S., Hassink, R., van der Heyden, M., Opthof, T., Pera, M., de la Riviere, A.B., Passier, R., Tertoolen, L.: Differentiation of human embryonic stem cells to cardiomyocytes: Role of coculture with visceral endoderm-like cells. Circulation 107(21), 2733–2740 (2003)

    Article  Google Scholar 

  77. Kattman, S.J., Huber, T.L., Keller, G.M.: Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev. Cell 11(5), 723–732 (2006)

    Article  Google Scholar 

  78. Yang, L., Soonpaa, M.H., Adler, E.D., Roepke, T.K., Kattman, S.J., Kennedy, M., Henckaerts, E., Bonham, K., Abbott, G.W., Linden, R.M., Field, L.J., Keller, G.M.: Human cardiovascular progenitor cells develop from a kdr+ embryonic-stem-cell-derived population. Nature 453(7194), 524–528 (2008)

    Article  Google Scholar 

  79. Bhana, B., Iyer, R.K., Chen, W.L., Zhao, R., Sider, K.L., Likhitpanichkul, M., Simmons, C.A., Radisic, M.: Influence of substrate stiffness on the phenotype of heart cells. Biotechnol. Bioeng. 105(6), 1148–1160

    Google Scholar 

  80. Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E.: Matrix elasticity directs stem cell lineage specification. Cell 126(4), 677–689 (2006)

    Article  Google Scholar 

  81. Song, H., Yoon, C., Kattman, S.J., Dengler, J., Masse, S., Thavaratnam, T., Gewarges, M., Nanthakumar, K., Rubart, M., Keller, G.M., Radisic, M., Zandstra, P.W.: Interrogating functional integration between injected pluripotent stem cell-derived cells and surrogate cardiac tissue. Proc. Natl. Acad. Sci. USA 107(8), 3329–3334

    Google Scholar 

  82. Moretti, A., Caron, L., Nakano, A., Lam, J.T., Bernshausen, A., Chen, Y., Qyang, Y., Bu, L., Sasaki, M., Martin-Puig, S., Sun, Y., Evans, S.M., Laugwitz, K.L., Chien, K.R.: Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127(6), 1151–1165 (2006)

    Article  Google Scholar 

  83. Domian, I.J., Chiravuri, M., van der Meer, P., Feinberg, A.W., Shi, X., Shao, Y., Wu, S.M., Parker, K.K., Chien, K.R.: Generation of functional ventricular heart muscle from mouse ventricular progenitor cells. Science 326(5951), 426–429 (2009)

    Article  Google Scholar 

  84. Knoll, R., Kostin, S., Klede, S., Savvatis, K., Klinge, L., Stehle, I., Gunkel, S., Kotter, S., Babicz, K., Sohns, M., Miocic, S., Didie, M., Knoll, G., Zimmermann, W.H., Thelen, P., Bickeboller, H., Maier, L.S., Schaper, W., Schaper, J., Kraft, T., Tschope, C., Linke, W.A., Chien, K.R.: A common mlp (muscle lim protein) variant is associated with cardiomyopathy. Circ. Res. 106(4), 695–704

    Google Scholar 

  85. Wehrens, X.H., Lehnart, S.E., Huang, F., Vest, J.A., Reiken, S.R., Mohler, P.J., Sun, J., Guatimosim, S., Song, L.S., Rosemblit, N., D’Armiento, J.M., Napolitano, C., Memmi, M., Priori, S.G., Lederer, W.J., Marks, A.R.: Fkbp12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell 113(7), 829–840 (2003)

    Article  Google Scholar 

  86. El-Armouche, A., Rau, T., Zolk, O., Ditz, D., Pamminger, T., Zimmermann, W.H., Jackel, E., Harding, S.E., Boknik, P., Neumann, J., Eschenhagen, T.: Evidence for protein phosphatase inhibitor-1 playing an amplifier role in beta-adrenergic signaling in cardiac myocytes. FASEB J. 17(3), 437–439 (2003)

    Google Scholar 

  87. El-Armouche, A., Singh, J., Naito, H., Wittkopper, K., Didie, M., Laatsch, A., Zimmermann, W.H., Eschenhagen, T.: Adenovirus-delivered short hairpin rna targeting pkcalpha improves contractile function in reconstituted heart tissue. J. Mol. Cell. Cardiol. 43(3), 371–376 (2007)

    Article  Google Scholar 

  88. Carvajal-Vergara, X., Sevilla, A., D’Souza, S.L., Ang, Y.S., Schaniel, C., Lee, D.F., Yang, L., Kaplan, A.D., Adler, E.D., Rozov, R., Ge, Y., Cohen, N., Edelmann, L.J., Chang, B., Waghray, A., Su, J., Pardo, S., Lichtenbelt, K.D., Tartaglia, M., Gelb, B.D., Lemischka, I.R.: Patient-specific induced pluripotent stem-cell-derived models of leopard syndrome. Nature 465(7299), 808–812

    Google Scholar 

  89. Finlayson, K., Witchel, H.J., McCulloch, J., Sharkey, J.: Acquired qt interval prolongation and herg: Implications for drug discovery and development. Eur. J. Pharmacol. 500(1–3), 129–142 (2004)

    Article  Google Scholar 

  90. Force, T., Krause, D.S., Van Etten, R.A.: Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat. Rev. Cancer 7(5), 332–344 (2007)

    Article  Google Scholar 

  91. Zimmermann, W.H., Kehat, I., Boy, O., Gepstein, A., Neuhuber, W.L., Gepstein, L.: Three-dimensional culture induces advanced differentiation of primary rat and human embryonic stem cell derived cardiomyocytes: Implications for cardiac tissue engineering. In: Scientific Sessions of the American Heart Association, 2003. Circulation, pp IV-243 Abtract

    Google Scholar 

  92. Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., Jones, J.M.: Embryonic stem cell lines derived from human blastocysts. Science 282(5391), 1145–1147 (1998)

    Article  Google Scholar 

  93. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., Yamanaka, S.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5), 861–872 (2007)

    Article  Google Scholar 

  94. Kehat, I., Kenyagin-Karsenti, D., Snir, M., Segev, H., Amit, M., Gepstein, A., Livne, E., Binah, O., Itskovitz-Eldor, J., Gepstein, L.: Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108(3), 407–414 (2001)

    Google Scholar 

  95. Zwi, L., Caspi, O., Arbel, G., Huber, I., Gepstein, A., Park, I.H., Gepstein, L.: Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation 120(15), 1513–1523 (2009)

    Article  Google Scholar 

  96. Hansen, A., Eder, A., Bonstrup, M., Flato, M., Mewe, M., Schaaf, S., Aksehirlioglu, B., Schworer, A., Uebeler, J., Eschenhagen, T.: Development of a drug screening platform based on engineered heart tissue. Circ Res

    Google Scholar 

  97. Jonsson, M.K., Duker, G., Tropp, C., Andersson, B., Sartipy, P., Vos, M.A., van Veen, T.A.: Quantified proarrhythmic potential of selected human embryonic stem cell-derived cardiomyocytes. Stem Cell Res. 4(3), 189–200

    Google Scholar 

  98. Caspi, O., Itzhaki, I., Kehat, I., Gepstein, A., Arbel, G., Huber, I., Satin, J., Gepstein, L.: In vitro electrophysiological drug testing using human embryonic stem cell derived cardiomyocytes. Stem Cells Dev. 18(1), 161–172 (2009)

    Article  Google Scholar 

  99. Bergmann, O., Bhardwaj, R.D., Bernard, S., Zdunek, S., Barnabe-Heider, F., Walsh, S., Zupicich, J., Alkass, K., Buchholz, B.A., Druid, H., Jovinge, S., Frisen, J.: Evidence for cardiomyocyte renewal in humans. Science 324(5923), 98–102 (2009)

    Article  Google Scholar 

  100. Sharples, L.D., Cafferty, F., Demitis, N., Freeman, C., Dyer, M., Banner, N., Birks, E.J., Khaghani, A., Large, S.R., Tsui, S., Caine, N., Buxton, M.: Evaluation of the clinical effectiveness of the ventricular assist device program in the United Kingdom (evad UK). J. Heart Lung Transplant. 26(1), 9–15 (2007)

    Article  Google Scholar 

  101. Rose, E.A., Gelijns, A.C., Moskowitz, A.J., Heitjan, D.F., Stevenson, L.W., Dembitsky, W., Long, J.W., Ascheim, D.D., Tierney, A.R., Levitan, R.G., Watson, J.T., Meier, P., Ronan, N.S., Shapiro, P.A., Lazar, R.M., Miller, L.W., Gupta, L., Frazier, O.H., Desvigne-Nickens, P., Oz, M.C., Poirier, V.L.: Long-term mechanical left ventricular assistance for end-stage heart failure. N. Engl. J. Med. 345(20), 1435–1443 (2001)

    Article  Google Scholar 

  102. Zimmermann, W.H., Cesnjevar, R.: Cardiac tissue engineering: Implications for pediatric heart surgery. Pediatr. Cardiol. 30(5), 716–723 (2009)

    Article  Google Scholar 

  103. Oz, M.C., Gelijns, A.C., Miller, L., Wang, C., Nickens, P., Arons, R., Aaronson, K., Richenbacher, W., van Meter, C., Nelson, K., Weinberg, A., Watson, J., Rose, E.A., Moskowitz, A.J.: Left ventricular assist devices as permanent heart failure therapy: the price of progress. Ann. Surg. 238(4), 577–583 (2003). discussion 583–575

    Google Scholar 

  104. Gepstein, L.: Derivation and potential applications of human embryonic stem cells. Circ. Res. 91(10), 866–876 (2002)

    Article  Google Scholar 

  105. Zandstra, P.W., Bauwens, C., Yin, T., Liu, Q., Schiller, H., Zweigerdt, R., Pasumarthi, K.B., Field, L.J.: Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng. 9(4), 767–778 (2003)

    Article  Google Scholar 

  106. Kim, K., Lerou, P., Yabuuchi, A., Lengerke, C., Ng, K., West, J., Kirby, A., Daly, M.J., Daley, G.Q.: Histocompatible embryonic stem cells by parthenogenesis. Science 315(5811), 482–486 (2007)

    Article  Google Scholar 

  107. Athanasuleas, C.L., Stanley Jr., A.W., Buckberg, G.D., Dor, V., DiDonato, M., Blackstone, E.H.: Surgical anterior ventricular endocardial restoration (saver) in the dilated remodeled ventricle after anterior myocardial infarction. Restore group. Reconstructive endoventricular surgery, returning torsion original radius elliptical shape to the lv. J. Am. Coll. Cardiol. 37(5), 1199–1209 (2001)

    Article  Google Scholar 

  108. Matsubayashi, K., Fedak, P.W., Mickle, D.A., Weisel, R.D., Ozawa, T., Li, R.K.: Improved left ventricular aneurysm repair with bioengineered vascular smooth muscle grafts. Circulation 108(Suppl 1), II219–II225 (2003)

    Google Scholar 

  109. Ozawa, T., Mickle, D.A., Weisel, R.D., Matsubayashi, K., Fujii, T., Fedak, P.W., Koyama, N., Ikada, Y., Li, R.K.: Tissue-engineered grafts matured in the right ventricular outflow tract. Cell Transplant. 13(2), 169–177 (2004)

    Google Scholar 

  110. Bredin, F., Franco-Cereceda, A., Midterm results of passive containment surgery using the acorn cor cap cardiac support device in dilated cardiomyopathy. J Card Surg 25(1):107-112

    Google Scholar 

  111. Walsh, R.G.: Design and features of the acorn corcap cardiac support device: The concept of passive mechanical diastolic support. Heart Fail Rev. 10(2), 101–107 (2005)

    Article  Google Scholar 

  112. Yildirim, Y., Naito, H., Didie, M., Karikkineth, B.C., Biermann, D., Eschenhagen, T., Zimmermann, W.H.: Development of a biological ventricular assist device: Preliminary data from a small animal model. Circulation 116(11 Suppl), I16–I23 (2007)

    Google Scholar 

  113. Chachques, J.C., Trainini, J.C., Lago, N., Masoli, O.H., Barisani, J.L., Cortes-Morichetti, M., Schussler, O., Carpentier, A.: Myocardial assistance by grafting a new bioartificial upgraded myocardium (magnum clinical trial): one year follow-up. Cell Transplant. 16(9), 927–934 (2007)

    Article  Google Scholar 

  114. Archer, R., Williams, D.J.: Why tissue engineering needs process engineering. Nat. Biotechnol. 23(11), 1353–1355 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

WHZ is supported by the German Research Council (Zi 708/7–1, 8–1, 10–1), the Federal Ministry of Science and Education (DLR FKZ: 01GN0827 and 01GN0957), and the European Union (EU FP7 CARE-MI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram-Hubertus Zimmermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zimmermann, WH. (2010). Tissue Engineered Myocardium. In: Boccaccini, A., Harding, S. (eds) Myocardial Tissue Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2010_41

Download citation

  • DOI: https://doi.org/10.1007/8415_2010_41

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18055-2

  • Online ISBN: 978-3-642-18056-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics