Skip to main content

Viral Vector-Based Models of Parkinson’s Disease

  • Chapter
  • First Online:
Behavioral Neurobiology of Huntington's Disease and Parkinson's Disease

Abstract

In order to study the molecular pathways of Parkinson’s disease (PD) and to develop novel therapeutic strategies, scientific investigators rely on animal models. The identification of PD-associated genes has led to the development of genetic PD models as an alternative to toxin-based models. Viral vector-mediated loco-regional gene delivery provides an attractive way to express transgenes in the central nervous system. Several vector systems based on various viruses have been developed. In this chapter, we give an overview of the different viral vector systems used for targeting the CNS. Further, we describe the different viral vector-based PD models currently available based on overexpression strategies for autosomal dominant genes such as α-synuclein and LRRK2, and knockout or knockdown strategies for autosomal recessive genes, such as parkin, DJ-1, and PINK1. Models based on overexpression of α-synuclein are the most prevalent and extensively studied, and therefore the main focus of this chapter. Many efforts have been made to increase the expression levels of α-synuclein in the dopaminergic neurons. The best α-synuclein models currently available have been developed from a combined approach using newer AAV serotypes and optimized vector constructs, production, and purification methods. These third-generation α-synuclein models show improved face and predictive validity, and therefore offer the possibility to reliably test novel therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andres-Mateos E, Perier C, Zhang L, Blanchard-Fillion B, Greco TM, Thomas B, Ko HS, Sasaki M, Ischiropoulos H, Przedborski S, Dawson TM, Dawson VL (2007) DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase. Proc Natl Acad Sci U S A 104(37):14807–14812

    PubMed Central  CAS  PubMed  Google Scholar 

  • Atchison RW, Casto BC, Hammon WM (1965) Adenovirus-associated defective virus particles. Science 149:754–756

    CAS  PubMed  Google Scholar 

  • Azeredo da Silveira S, Schneider BL, Cifuentes-Diaz C, Sage D, Abbas-Terki T, Iwatsubo T, Unser M, Aebischer P (2009) Phosphorylation does not prompt, nor prevent, the formation of alpha-synuclein toxic species in a rat model of Parkinson’s disease. Hum Mol Genet 18(5):872–887

    CAS  PubMed  Google Scholar 

  • Baekelandt V, De Strooper B, Nuttin B, Debyser Z (2000) Gene therapeutic strategies for neurodegenerative diseases. Curr Opin Mol Ther 2(5):540–554

    CAS  PubMed  Google Scholar 

  • Baekelandt V, Claeys A, Eggermont K, Lauwers E, De Strooper B, Nuttin B, Debyser Z (2002) Characterization of lentiviral vector-mediated gene transfer in adult mouse brain. Hum Gene Ther 13(7):841–853

    CAS  PubMed  Google Scholar 

  • Bankiewicz KS, Eberling JL, Kohutnicka M, Jagust W, Pivirotto P, Bringas J, Cunningham J, Budinger TF, Harvey-White J (2000) Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp Neurol 164(1):2–14

    CAS  PubMed  Google Scholar 

  • Belin AC, Westerlund M (2008) Parkinson’s disease: a genetic perspective. FEBS J 275(7):1377–1383

    CAS  PubMed  Google Scholar 

  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3(12):1301–1306

    CAS  PubMed  Google Scholar 

  • Betarbet R, Sherer TB, Greenamyre JT (2002) Animal models of Parkinson’s disease. BioEssays 24(4):308–318

    CAS  PubMed  Google Scholar 

  • Bezard E, Przedborski S (2011) A tale on animal models of Parkinson’s disease. Mov Disord 26(6):993–1002

    PubMed  Google Scholar 

  • Bjorklund LM, Sanchez-Pernaute R, Chung S, Andersson T, Chen IY, McNaught KS, Brownell AL, Jenkins BG, Wahlestedt C, Kim KS, Isacson O (2002) Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci U S A 99(4):2344–2349

    PubMed Central  CAS  PubMed  Google Scholar 

  • Blouin V, Brument N, Toublanc E, Raimbaud I, Moullier P, Salvetti A (2004) Improving rAAV production and purification: towards the definition of a scaleable process. J Gene Med 6(Suppl 1):S223–S228

    CAS  PubMed  Google Scholar 

  • Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211

    PubMed  Google Scholar 

  • Bukovsky AA, Song JP, Naldini L (1999) Interaction of human immunodeficiency virus-derived vectors with wild-type virus in transduced cells. J Virol 73(8):7087–7092

    PubMed Central  CAS  PubMed  Google Scholar 

  • Buller RM, Janik JE, Sebring ED, Rose JA (1981) Herpes simplex virus types 1 and 2 completely help adenovirus-associated virus replication. J Virol 40(1):241–247

    PubMed Central  CAS  PubMed  Google Scholar 

  • Burger C, Gorbatyuk OS, Velardo MJ, Peden CS, Williams P, Zolotukhin S, Reier PJ, Mandel RJ, Muzyczka N (2004) Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther 10(2):302–317

    CAS  PubMed  Google Scholar 

  • Burger C, Nguyen FN, Deng J, Mandel RJ (2005) Systemic mannitol-induced hyperosmolality amplifies rAAV2-mediated striatal transduction to a greater extent than local co-infusion. Mol Ther 11(2):327–331

    CAS  PubMed  Google Scholar 

  • Burton EA, Fink DJ, Glorioso JC (2002) Gene delivery using herpes simplex virus vectors. DNA Cell Biol 21(12):915–936

    CAS  PubMed  Google Scholar 

  • Campos SK, Barry MA (2007) Current advances and future challenges in adenoviral vector biology and targeting. Curr Gene Ther 7 (3):189-204

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, Levecque C, Larvor L, Andrieux J, Hulihan M, Waucquier N, Defebvre L, Amouyel P, Farrer M, Destee A (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364(9440):1167–1169

    CAS  PubMed  Google Scholar 

  • Chen L, Thiruchelvam MJ, Madura K, Richfield EK (2006) Proteasome dysfunction in aged human alpha-synuclein transgenic mice. Neurobiol Dis 23(1):120–126

    CAS  PubMed  Google Scholar 

  • Chesselet MF, Richter F (2011) Modelling of Parkinson’s disease in mice. Lancet Neurol 10(12):1108–1118

    PubMed  Google Scholar 

  • Christine CW, Starr PA, Larson PS, Eberling JL, Jagust WJ, Hawkins RA, VanBrocklin HF, Wright JF, Bankiewicz KS, Aminoff MJ (2009) Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 73(20):1662–1669

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chu D, Thistlethwaite PA, Sullivan CC, Grifman MS, Weitzman MD (2004) Gene delivery to the mammalian heart using AAV vectors. Methods Mol Biol 246:213–224

    CAS  PubMed  Google Scholar 

  • Chung CY, Koprich JB, Siddiqi H, Isacson O (2009) Dynamic changes in presynaptic and axonal transport proteins combined with striatal neuroinflammation precede dopaminergic neuronal loss in a rat model of AAV alpha-synucleinopathy. J Neurosci 29(11):3365–3373

    PubMed Central  CAS  PubMed  Google Scholar 

  • Civiero L, Vancraenenbroeck R, Belluzzi E, Beilina A, Lobbestael E, Reyniers L, Gao F, Micetic I, De Maeyer M, Bubacco L, Baekelandt V, Cookson MR, Greggio E, Taymans JM (2012) Biochemical characterization of highly purified leucine-rich repeat kinases 1 and 2 demonstrates formation of homodimers. PLoS One 7(8)

    Google Scholar 

  • Clark KR, Voulgaropoulou F, Fraley DM, Johnson PR (1995) Cell lines for the production of recombinant adeno-associated virus. Hum Gene Ther 6(10):1329–1341

    CAS  PubMed  Google Scholar 

  • Cunningham J, Oiwa Y, Nagy D, Podsakoff G, Colosi P, Bankiewicz KS (2000) Distribution of AAV-TK following intracranial convection-enhanced delivery into rats. Cell Transplant 9(5):585–594

    CAS  PubMed  Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909

    CAS  PubMed  Google Scholar 

  • Davison AJ, Benko M, Harrach B (2003) Genetic content and evolution of adenoviruses. J Gen Virol 84(Pt 11):2895–2908

    CAS  PubMed  Google Scholar 

  • De Rijck J, Van Maele B, Debyser Z (2005) Positional effects of the central DNA flap in HIV-1-derived lentiviral vectors. Biochem Biophys Res Commun 328(4):987–994

    PubMed  Google Scholar 

  • de Silva S, Bowers WJ (2009) Herpes virus amplicon vectors. Viruses 1(3):594–629

    PubMed Central  PubMed  Google Scholar 

  • Decressac M, Mattsson B, Lundblad M, Weikop P, Bjorklund A (2012) Progressive neurodegenerative and behavioural changes induced by AAV-mediated overexpression of alpha-synuclein in midbrain dopamine neurons. Neurobiol Dis 45(3):939–953

    CAS  PubMed  Google Scholar 

  • Deroose CM, Reumers V, Debyser Z, Baekelandt V (2009) Seeing genes at work in the living brain with non-invasive molecular imaging. Curr Gene Ther 9(3):212–238

    CAS  PubMed  Google Scholar 

  • Dodiya HB, Bjorklund T, Stansell Iii J, Mandel RJ, Kirik D, Kordower JH (2009) Differential transduction following basal ganglia administration of distinct pseudotyped AAV capsid serotypes in nonhuman primates. Mol Ther 18(3):579–587

    Google Scholar 

  • Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, Naldini L (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72(11):8463–8471

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dusonchet J, Kochubey O, Stafa K, Young SM Jr, Zufferey R, Moore DJ, Schneider BL, Aebischer P (2011) A rat model of progressive nigral neurodegeneration induced by the Parkinson’s disease-associated G2019S mutation in LRRK2. J Neurosci 31(3):907–912

    CAS  PubMed  Google Scholar 

  • Edwards TL, Scott WK, Almonte C, Burt A, Powell EH, Beecham GW, Wang L, Zuchner S, Konidari I, Wang G, Singer C, Nahab F, Scott B, Stajich JM, Pericak-Vance M, Haines J, Vance JM, Martin ER (2010) Genome-wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann Hum Genet 74(2):97–109

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eslamboli A, Romero-Ramos M, Burger C, Bjorklund T, Muzyczka N, Mandel RJ, Baker H, Ridley RM, Kirik D (2007) Long-term consequences of human alpha-synuclein overexpression in the primate ventral midbrain. Brain 130(Pt 3):799–815

    PubMed  Google Scholar 

  • Farrer MJ (2006) Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 7(4):306–318

    CAS  PubMed  Google Scholar 

  • Fleming SM, Fernagut PO, Chesselet MF (2005) Genetic mouse models of parkinsonism: strengths and limitations. NeuroRx 2(3):495–503

    PubMed Central  PubMed  Google Scholar 

  • Fox SH, Brotchie JM (2010) The MPTP-lesioned non-human primate models of Parkinson’s disease. Past, present, and future. Prog Brain Res 184:133–157

    CAS  PubMed  Google Scholar 

  • Freichel C, Neumann M, Ballard T, Muller V, Woolley M, Ozmen L, Borroni E, Kretzschmar HA, Haass C, Spooren W, Kahle PJ (2007) Age-dependent cognitive decline and amygdala pathology in alpha-synuclein transgenic mice. Neurobiol Aging 28(9):1421–1435

    CAS  PubMed  Google Scholar 

  • Gao G, Qu G, Burnham MS, Huang J, Chirmule N, Joshi B, Yu QC, Marsh JA, Conceicao CM, Wilson JM (2000) Purification of recombinant adeno-associated virus vectors by column chromatography and its performance in vivo. Hum Gene Ther 11(15):2079–2091

    CAS  PubMed  Google Scholar 

  • Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM (2002) Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci U S A 99(18):11854–11859

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gao G, Alvira MR, Somanathan S, Lu Y, Vandenberghe LH, Rux JJ, Calcedo R, Sanmiguel J, Abbas Z, Wilson JM (2003) Adeno-associated viruses undergo substantial evolution in primates during natural infections. Proc Natl Acad Sci U S A 100(10):6081–6086

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X, Wilson JM (2004) Clades of Adeno-associated viruses are widely disseminated in human tissues. J Virol 78(12):6381–6388

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gao G, Vandenberghe LH, Wilson JM (2005) New recombinant serotypes of AAV vectors. Curr Gene Ther 5(3):285–297

    CAS  PubMed  Google Scholar 

  • Gautier CA, Kitada T, Shen J (2008) Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proc Natl Acad Sci U S A 105(32):11364–11369

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goldberg MS, Fleming SM, Palacino JJ, Cepeda C, Lam HA, Bhatnagar A, Meloni EG, Wu N, Ackerson LC, Klapstein GJ, Gajendiran M, Roth BL, Chesselet MF, Maidment NT, Levine MS, Shen J (2003) Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 278(44):43628–43635

    CAS  PubMed  Google Scholar 

  • Goldberg MS, Pisani A, Haburcak M, Vortherms TA, Kitada T, Costa C, Tong Y, Martella G, Tscherter A, Martins A, Bernardi G, Roth BL, Pothos EN, Calabresi P, Shen J (2005) Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron 45(4):489–496

    CAS  PubMed  Google Scholar 

  • Gorbatyuk OS, Li S, Sullivan LF, Chen W, Kondrikova G, Manfredsson FP, Mandel RJ, Muzyczka N (2008) The phosphorylation state of Ser-129 in human alpha-synuclein determines neurodegeneration in a rat model of Parkinson disease. Proc Natl Acad Sci U S A 105(2):763–768

    PubMed Central  CAS  PubMed  Google Scholar 

  • Graham FL, Prevec L (1995) Methods for construction of adenovirus vectors. Mol Biotechnol 3 (3):207–220

    CAS  PubMed  Google Scholar 

  • Grieger JC, Samulski RJ (2005) Packaging capacity of adeno-associated virus serotypes: impact of larger genomes on infectivity and postentry steps. J Virol 79(15):9933–9944

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grimm D, Kay MA (2003) From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy. Curr Gene Ther 3(4):281–304

    CAS  PubMed  Google Scholar 

  • Hadaczek P, Mirek H, Bringas J, Cunningham J, Bankiewicz K (2004) Basic fibroblast growth factor enhances transduction, distribution, and axonal transport of adeno-associated virus type 2 vector in rat brain. Hum Gene Ther 15(5):469–479

    CAS  PubMed  Google Scholar 

  • Hamza TH, Zabetian CP, Tenesa A, Laederach A, Montimurro J, Yearout D, Kay DM, Doheny KF, Paschall J, Pugh E, Kusel VI, Collura R, Roberts J, Griffith A, Samii A, Scott WK, Nutt J, Factor SA, Payami H (2010) Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nat Genet 42(9):781–785

    PubMed Central  CAS  PubMed  Google Scholar 

  • Haque ME, Mount MP, Safarpour F, Abdel-Messih E, Callaghan S, Mazerolle C, Kitada T, Slack RS, Wallace V, Shen J, Anisman H, Park DS (2012) Inactivation of Pink1 gene in vivo sensitizes dopamine-producing neurons to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and can be rescued by autosomal recessive Parkinson disease genes, Parkin or DJ-1. J Biol Chem 287(27):23162–23170

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hawkes CH, Del Tredici K, Braak H (2010) A timeline for Parkinson’s disease. Parkinsonism Relat Disord 16(2):79–84

    PubMed  Google Scholar 

  • Hellstrom M, Ruitenberg MJ, Pollett MA, Ehlert EM, Twisk J, Verhaagen J, Harvey AR (2009) Cellular tropism and transduction properties of seven adeno-associated viral vector serotypes in adult retina after intravitreal injection. Gene Ther 16(4):521–532

    CAS  PubMed  Google Scholar 

  • Hoglinger GU, Oertel WH, Hirsch EC (2006) The rotenone model of parkinsonism—the five years inspection. J Neural Transm Suppl 70:269–272

    CAS  PubMed  Google Scholar 

  • Howarth JL, Lee YB, Uney JB (2010) Using viral vectors as gene transfer tools (Cell Biology and Toxicology Special Issue: ETCS-UK 1 day meeting on genetic manipulation of cells). Cell Biol Toxicol 26(1):1–20

    Google Scholar 

  • Ibanez P, Bonnet AM, Debarges B, Lohmann E, Tison F, Pollak P, Agid Y, Durr A, Brice A (2004) Causal relation between alpha-synuclein gene duplication and familial Parkinson’s disease. Lancet 364(9440):1169–1171

    CAS  PubMed  Google Scholar 

  • Ilijic E, Guzman JN, Surmeier DJ (2011) The L-type channel antagonist isradipine is neuroprotective in a mouse model of Parkinson’s disease. Neurobiol Dis 43(2):364–371

    PubMed Central  CAS  PubMed  Google Scholar 

  • Itier JM, Ibanez P, Mena MA, Abbas N, Cohen-Salmon C, Bohme GA, Laville M, Pratt J, Corti O, Pradier L, Ret G, Joubert C, Periquet M, Araujo F, Negroni J, Casarejos MJ, Canals S, Solano R, Serrano A, Gallego E, Sanchez M, Denefle P, Benavides J, Tremp G, Rooney TA, Brice A, Garcia de Yebenes J (2003) Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum Mol Genet 12(18):2277–2291

    CAS  PubMed  Google Scholar 

  • Jiang H, Jackson-Lewis V, Muthane U, Dollison A, Ferreira M, Espinosa A, Parsons B, Przedborski S (1993) Adenosine receptor antagonists potentiate dopamine receptor agonist-induced rotational behavior in 6-hydroxydopamine-lesioned rats. Brain Res 613(2):347–351

    CAS  PubMed  Google Scholar 

  • Kahle PJ, Neumann M, Ozmen L, Muller V, Odoy S, Okamoto N, Jacobsen H, Iwatsubo T, Trojanowski JQ, Takahashi H, Wakabayashi K, Bogdanovic N, Riederer P, Kretzschmar HA, Haass C (2001) Selective insolubility of alpha-synuclein in human Lewy body diseases is recapitulated in a transgenic mouse model. Am J Pathol 159(6):2215–2225

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaplitt MG, Feigin A, Tang C, Fitzsimons HL, Mattis P, Lawlor PA, Bland RJ, Young D, Strybing K, Eidelberg D, During MJ (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 369(9579):2097–2105

    CAS  PubMed  Google Scholar 

  • Kim RH, Smith PD, Aleyasin H, Hayley S, Mount MP, Pownall S, Wakeham A, You-Ten AJ, Kalia SK, Horne P, Westaway D, Lozano AM, Anisman H, Park DS, Mak TW (2005) Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc Natl Acad Sci U S A 102(14):5215–5220

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kirik D, Georgievska B, Burger C, Winkler C, Muzyczka N, Mandel RJ, Bjorklund A (2002a) Reversal of motor impairments in parkinsonian rats by continuous intrastriatal delivery of L-dopa using rAAV-mediated gene transfer. Proc Natl Acad Sci U S A 99(7):4708–4713

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kirik D, Rosenblad C, Burger C, Lundberg C, Johansen TE, Muzyczka N, Mandel RJ, Bjorklund A (2002b) Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system. J Neurosci 22(7):2780–2791

    CAS  PubMed  Google Scholar 

  • Kirik D, Annett LE, Burger C, Muzyczka N, Mandel RJ, Bjorklund A (2003) Nigrostriatal alpha-synucleinopathy induced by viral vector-mediated overexpression of human alpha-synuclein: a new primate model of Parkinson’s disease. Proc Natl Acad Sci U S A 100(5):2884–2889

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kitada T, Pisani A, Porter DR, Yamaguchi H, Tscherter A, Martella G, Bonsi P, Zhang C, Pothos EN, Shen J (2007) Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc Natl Acad Sci U S A 104(27):11441–11446

    PubMed Central  CAS  PubMed  Google Scholar 

  • Klein RL, King MA, Hamby ME, Meyer EM (2002) Dopaminergic cell loss induced by human A30P alpha-synuclein gene transfer to the rat substantia nigra. Hum Gene Ther 13(5):605–612

    CAS  PubMed  Google Scholar 

  • Koprich JB, Johnston TH, Huot P, Reyes MG, Espinosa M, Brotchie JM (2011) Progressive neurodegeneration or endogenous compensation in an animal model of Parkinson’s disease produced by decreasing doses of alpha-synuclein. PLoS ONE 6(3):e17698

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18(2):106–108

    CAS  PubMed  Google Scholar 

  • Lauwers E, Debyser Z, Van Dorpe J, De Strooper B, Nuttin B, Baekelandt V (2003) Neuropathology and neurodegeneration in rodent brain induced by lentiviral vector-mediated overexpression of alpha-synuclein. Brain Pathol 13(3):364–372

    CAS  PubMed  Google Scholar 

  • Lauwers E, Beque D, Van Laere K, Nuyts J, Bormans G, Mortelmans L, Casteels C, Vercammen L, Bockstael O, Nuttin B, Debyser Z, Baekelandt V (2007) Non-invasive imaging of neuropathology in a rat model of alpha-synuclein overexpression. Neurobiol Aging 28(2):248–257

    CAS  PubMed  Google Scholar 

  • Lee BD, Shin JH, VanKampen J, Petrucelli L, West AB, Ko HS, Lee YI, Maguire-Zeiss KA, Bowers WJ, Federoff HJ, Dawson VL, Dawson TM (2010) Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson’s disease. Nat Med 16(9):998–1000

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lesage S, Brice A (2009) Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet 18(R1):R48–R59

    CAS  PubMed  Google Scholar 

  • Li Y, Liu W, Oo TF, Wang L, Tang Y, Jackson-Lewis V, Zhou C, Geghman K, Bogdanov M, Przedborski S, Beal MF, Burke RE, Li C (2009) Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson’s disease. Nat Neurosci 12(7):826–828

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li X, Patel JC, Wang J, Avshalumov MV, Nicholson C, Buxbaum JD, Elder GA, Rice ME, Yue Z (2010) Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson’s disease mutation G2019S. J Neurosci 30(5):1788–1797

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lo Bianco C, Ridet JL, Schneider BL, Deglon N, Aebischer P (2002) alpha-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease. Proc Natl Acad Sci U S A 99(16):10813–10818

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lock M, Alvira M, Vandenberghe LH, Samanta A, Toelen J, Debyser Z, Wilson JM (2010) Rapid, simple and versatile manufacturing of recombinant adeno-associated virus vectors at scale. Hum Gene Ther 21(10):1259–1271

    Google Scholar 

  • Lu XH, Fleming SM, Meurers B, Ackerson LC, Mortazavi F, Lo V, Hernandez D, Sulzer D, Jackson GR, Maidment NT, Chesselet MF, Yang XW (2009) Bacterial artificial chromosome transgenic mice expressing a truncated mutant parkin exhibit age-dependent hypokinetic motor deficits, dopaminergic neuron degeneration, and accumulation of proteinase K-resistant alpha-synuclein. J Neurosci 29(7):1962–1976

    PubMed Central  PubMed  Google Scholar 

  • Ma SY, Roytta M, Rinne JO, Collan Y, Rinne UK (1997) Correlation between neuromorphometry in the substantia nigra and clinical features in Parkinson’s disease using dissector counts. J Neurol Sci 151(1):83–87

    CAS  PubMed  Google Scholar 

  • Magen I, Chesselet MF (2010) Genetic mouse models of Parkinson’s disease—the state of the art. Prog Brain Res 184:53–87

    CAS  PubMed  Google Scholar 

  • Maingay M, Romero-Ramos M, Carta M, Kirik D (2006) Ventral tegmental area dopamine neurons are resistant to human mutant alpha-synuclein overexpression. Neurobiol Dis 23(3):522–532

    CAS  PubMed  Google Scholar 

  • Mandel RJ (2010) CERE-110, an adeno-associated virus-based gene delivery vector expressing human nerve growth factor for the treatment of Alzheimer’s disease. Curr Opin Mol Ther 12(2):240–247

    Google Scholar 

  • Manfredsson FP, Burger C, Sullivan LF, Muzyczka N, Lewin AS, Mandel RJ (2007) rAAV-mediated nigral human parkin over-expression partially ameliorates motor deficits via enhanced dopamine neurotransmission in a rat model of Parkinson’s disease. Exp Neurol 207(2):289–301

    CAS  PubMed  Google Scholar 

  • Markert JM, Medlock MD, Rabkin SD, Gillespie GY, Todo T, Hunter WD, Palmer CA, Feigenbaum F, Tornatore C, Tufaro F, Martuza RL (2000) Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther 7(10):867–874

    CAS  PubMed  Google Scholar 

  • Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287(5456):1265–1269

    CAS  PubMed  Google Scholar 

  • Mastakov MY, Baer K, Xu R, Fitzsimons H, During MJ (2001) Combined injection of rAAV with mannitol enhances gene expression in the rat brain. Mol Ther 3(2):225–232

    CAS  PubMed  Google Scholar 

  • Mastakov MY, Baer K, Kotin RM, During MJ (2002) Recombinant adeno-associated virus serotypes 2- and 5-mediated gene transfer in the mammalian brain: quantitative analysis of heparin co-infusion. Mol Ther 5(4):371–380

    CAS  PubMed  Google Scholar 

  • McFarland NR, Lee JS, Hyman BT, McLean PJ (2009a) Comparison of transduction efficiency of recombinant AAV serotypes 1, 2, 5, and 8 in the rat nigrostriatal system. J Neurochem 109(3):838–845

    PubMed Central  CAS  PubMed  Google Scholar 

  • McFarland NR, Fan Z, Xu K, Schwarzschild MA, Feany MB, Hyman BT, McLean PJ (2009b) Alpha-synuclein S129 phosphorylation mutants do not alter nigrostriatal toxicity in a rat model of Parkinson disease. J Neuropathol Exp Neurol 68(5):515–524

    PubMed Central  CAS  PubMed  Google Scholar 

  • Miao CH, Snyder RO, Schowalter DB, Patijn GA, Donahue B, Winther B, Kay MA (1998) The kinetics of rAAV integration in the liver. Nat Genet 19(1):13–15

    CAS  PubMed  Google Scholar 

  • Mochizuki H, Yamada M, Mizuno Y (2006) Alpha-synuclein overexpression model. J Neural Transm Suppl 70:281–284

    CAS  PubMed  Google Scholar 

  • Moskalenko M, Chen L, van Roey M, Donahue BA, Snyder RO, McArthur JG, Patel SD (2000) Epitope mapping of human anti-adeno-associated virus type 2 neutralizing antibodies: implications for gene therapy and virus structure. J Virol 74(4):1761–1766

    PubMed Central  CAS  PubMed  Google Scholar 

  • Naldini L, Blomer U, Gage FH, Trono D, Verma IM (1996a) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci U S A 93(21):11382–11388

    PubMed Central  CAS  PubMed  Google Scholar 

  • Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996b) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272(5259):263–267

    CAS  PubMed  Google Scholar 

  • Oliveras-Salvá M, Macchi F, Coessens V, Deleersnijder A, Gérard M, Van der Perren A, Van den Haute C, Baekelandt V (2014) Total but not partial loss of PINK1 enhances α-synuclein-induced neurodegeneration in mouse substantia nigra. Neurobiol Aging

    Google Scholar 

  • Oliveras-Salvá M, Van der Perren A, Casadei N, Nuber S, D'Hooge R, Van den Haute C, Baekelandt V (2013) rAAV vector-mediated overexpression of α-synuclein in mouse substantia nigra induces protein aggregation and progressive dose-dependent neurodegeneration. Mol Neurodegener 8:44

    Google Scholar 

  • Paisan-Ruiz C (2009) LRRK2 gene variation and its contribution to Parkinson disease. Hum Mutat 30(8):1153–1160

    CAS  PubMed  Google Scholar 

  • Pankratz N, Wilk JB, Latourelle JC, DeStefano AL, Halter C, Pugh EW, Doheny KF, Gusella JF, Nichols WC, Foroud T, Myers RH (2009) Genomewide association study for susceptibility genes contributing to familial Parkinson disease. Hum Genet 124(6):593–605

    PubMed Central  CAS  PubMed  Google Scholar 

  • Passini MA, Watson DJ, Wolfe JH (2004) Gene delivery to the mouse brain with adeno-associated virus. Methods Mol Biol 246:225–236

    CAS  PubMed  Google Scholar 

  • Paterna JC, Feldon J, Bueler H (2004) Transduction profiles of recombinant adeno-associated virus vectors derived from serotypes 2 and 5 in the nigrostriatal system of rats. J Virol 78(13):6808–6817

    PubMed Central  CAS  PubMed  Google Scholar 

  • Perez FA, Palmiter RD (2005) Parkin-deficient mice are not a robust model of parkinsonism. Proc Natl Acad Sci U S A 102(6):2174–2179

    PubMed Central  CAS  PubMed  Google Scholar 

  • Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047

    CAS  PubMed  Google Scholar 

  • Rabinowitz JE, Samulski RJ (2000) Building a better vector: the manipulation of AAV virions. Virology 278(2):301–308

    CAS  PubMed  Google Scholar 

  • Ramonet D, Daher JP, Lin BM, Stafa K, Kim J, Banerjee R, Westerlund M, Pletnikova O, Glauser L, Yang L, Liu Y, Swing DA, Beal MF, Troncoso JC, McCaffery JM, Jenkins NA, Copeland NG, Galter D, Thomas B, Lee MK, Dawson TM, Dawson VL, Moore DJ (2011) Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2. PLoS ONE 6(4):e18568

    PubMed Central  CAS  PubMed  Google Scholar 

  • Richfield EK, Thiruchelvam MJ, Cory-Slechta DA, Wuertzer C, Gainetdinov RR, Caron MG, Di Monte DA, Federoff HJ (2002) Behavioral and neurochemical effects of wild-type and mutated human alpha-synuclein in transgenic mice. Exp Neurol 175(1):35–48

    CAS  PubMed  Google Scholar 

  • Rutledge EA, Halbert CL, Russell DW (1998) Infectious clones and vectors derived from adeno-associated virus (AAV) serotypes other than AAV type 2. J Virol 72(1):309–319

    PubMed Central  CAS  PubMed  Google Scholar 

  • Samulski RJ, Berns KI, Tan M, Muzyczka N (1982) Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells. Proc Natl Acad Sci U S A 79(6):2077–2081

    PubMed Central  CAS  PubMed  Google Scholar 

  • Samulski RJ, Chang LS, Shenk T (1987) A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. J Virol 61(10):3096–3101

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sanchez-Guajardo V, Febbraro F, Kirik D, Romero-Ramos M (2010) Microglia acquire distinct activation profiles depending on the degree of alpha-synuclein neuropathology in a rAAV based model of Parkinson’s disease. PLoS ONE 5(1):e8784

    PubMed Central  PubMed  Google Scholar 

  • Satake W, Nakabayashi Y, Mizuta I, Hirota Y, Ito C, Kubo M, Kawaguchi T, Tsunoda T, Watanabe M, Takeda A, Tomiyama H, Nakashima K, Hasegawa K, Obata F, Yoshikawa T, Kawakami H, Sakoda S, Yamamoto M, Hattori N, Murata M, Nakamura Y, Toda T (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet 41(12):1303–1307

    CAS  PubMed  Google Scholar 

  • Schmidt M, Grot E, Cervenka P, Wainer S, Buck C, Chiorini JA (2006) Identification and characterization of novel adeno-associated virus isolates in ATCC virus stocks. J Virol 80(10):5082–5085

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shelkovnikova TA, Ustyugov AA, Millership S, Peters O, Anichtchik O, Spillantini MG, Buchman VL, Bachurin SO, Ninkina NN (2011) Dimebon does not ameliorate pathological changes caused by expression of truncated (1-120) human alpha-synuclein in dopaminergic neurons of transgenic mice. Neurodegener Dis 8(6):430–437

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shin JH, Ko HS, Kang H, Lee Y, Lee YI, Pletinkova O, Troconso JC, Dawson VL, Dawson TM (2011) PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson’s disease. Cell 144(5):689–702

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shults CW (2006) Lewy bodies. Proc Natl Acad Sci U S A 103(6):1661–1668

    PubMed Central  CAS  PubMed  Google Scholar 

  • Simon-Sanchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D, Paisan-Ruiz C, Lichtner P, Scholz SW, Hernandez DG, Kruger R, Federoff M, Klein C, Goate A, Perlmutter J, Bonin M, Nalls MA, Illig T, Gieger C, Houlden H, Steffens M, Okun MS, Racette BA, Cookson MR, Foote KD, Fernandez HH, Traynor BJ, Schreiber S, Arepalli S, Zonozi R, Gwinn K, van der Brug M, Lopez G, Chanock SJ, Schatzkin A, Park Y, Hollenbeck A, Gao J, Huang X, Wood NW, Lorenz D, Deuschl G, Chen H, Riess O, Hardy JA, Singleton AB, Gasser T (2009) Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 41(12):1308–1312

    PubMed Central  CAS  PubMed  Google Scholar 

  • Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C, Cookson MR, Muenter M, Baptista M, Miller D, Blancato J, Hardy J, Gwinn-Hardy K (2003) alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841

    CAS  PubMed  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840

    CAS  PubMed  Google Scholar 

  • St Martin JL, Klucken J, Outeiro TF, Nguyen P, Keller-McGandy C, Cantuti-Castelvetri I, Grammatopoulos TN, Standaert DG, Hyman BT, McLean PJ (2007) Dopaminergic neuron loss and up-regulation of chaperone protein mRNA induced by targeted over-expression of alpha-synuclein in mouse substantia nigra. J Neurochem 100(6):1449–1457

    CAS  PubMed  Google Scholar 

  • Taymans JM, Vandenberghe LH, Haute CV, Thiry I, Deroose CM, Mortelmans L, Wilson JM, Debyser Z, Baekelandt V (2007) Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain. Hum Gene Ther 18(3):195–206

    CAS  PubMed  Google Scholar 

  • Tenenbaum L, Chtarto A, Lehtonen E, Velu T, Brotchi J, Levivier M (2004) Recombinant AAV-mediated gene delivery to the central nervous system. J Gene Med 6(Suppl 1):S212–S222

    CAS  PubMed  Google Scholar 

  • Theodore S, Cao S, McLean PJ, Standaert DG (2008) Targeted overexpression of human alpha-synuclein triggers microglial activation and an adaptive immune response in a mouse model of Parkinson disease. J Neuropathol Exp Neurol 67(12):1149–1158

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thiruchelvam M, Brockel BJ, Richfield EK, Baggs RB, Cory-Slechta DA (2000) Potentiated and preferential effects of combined paraquat and maneb on nigrostriatal dopamine systems: environmental risk factors for Parkinson’s disease? Brain Res 873(2):225–234

    CAS  PubMed  Google Scholar 

  • Thiruchelvam MJ, Powers JM, Cory-Slechta DA, Richfield EK (2004) Risk factors for dopaminergic neuron loss in human alpha-synuclein transgenic mice. Eur J Neurosci 19(4):845–854

    CAS  PubMed  Google Scholar 

  • Toelen J, Van der Perren A, Carlon M, Michiels M, Lock M, Vandenberghe L, Bannert N, Wilson JM, Gijsbers R, Debyser Z (2014) Novel approach to research grade AAV vector manufacturing and separation of distinct AAV serotypes for in vivo applications (in revision)

    Google Scholar 

  • Tofaris GK, Garcia Reitbock P, Humby T, Lambourne SL, O’Connell M, Ghetti B, Gossage H, Emson PC, Wilkinson LS, Goedert M, Spillantini MG (2006) Pathological changes in dopaminergic nerve cells of the substantia nigra and olfactory bulb in mice transgenic for truncated human alpha-synuclein(1-120): implications for Lewy body disorders. J Neurosci 26 (15):3942–3950

    Google Scholar 

  • Tong Y, Pisani A, Martella G, Karouani M, Yamaguchi H, Pothos EN, Shen J (2009) R1441C mutation in LRRK2 impairs dopaminergic neurotransmission in mice. Proc Natl Acad Sci U S A 106(34):14622–14627

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ulusoy A, Sahin G, Bjorklund T, Aebischer P, Kirik D (2009) Dose optimization for long-term rAAV-mediated RNA interference in the nigrostriatal projection neurons. Mol Ther 17(9):1574–1584

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ungerstedt U, Arbuthnott GW (1970) Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res 24(3):485–493

    CAS  PubMed  Google Scholar 

  • Van der Perren A, Toelen J, Carlon M, Van den Haute C, Coun F, Heeman B, Reumers V, Vandenberghe LH, Wilson JM, Debyser Z, Baekelandt V (2011) Efficient and stable transduction of dopaminergic neurons in rat substantia nigra by rAAV 2/1, 2/2, 2/5, 2/6.2, 2/7, 2/8 and 2/9. Gene Ther 18(5):517–527

    PubMed  Google Scholar 

  • Van der Perren A, Macchi F, Toelen J, Van Rompuy AS, Casteels C, Sarre S, Gerard G, Casadei N, Nuber S, Himmelreich U, Osorio Garcia MI, Michotte Y, Bormans G, Van Laere K, Gijsbers R, Van den Haute C, Debyser Z, Baekelandt V (2014) Longitudinal characterization of a robust rat model for Parkinson's disease based on overexpression of alpha-synuclein with rAAV2/7 viral vectors (in revision)

    Google Scholar 

  • Vercammen L, Van der Perren A, Vaudano E, Gijsbers R, Debyser Z, Van den Haute C, Baekelandt V (2006) Parkin protects against neurotoxicity in the 6-hydroxydopamine rat model for Parkinson’s disease. Mol Ther 14(5):716–723

    CAS  PubMed  Google Scholar 

  • Von Coelln R, Thomas B, Savitt JM, Lim KL, Sasaki M, Hess EJ, Dawson VL, Dawson TM (2004) Loss of locus coeruleus neurons and reduced startle in parkin null mice. Proc Natl Acad Sci U S A 101(29):10744–10749

    Google Scholar 

  • Wakamatsu M, Ishii A, Iwata S, Sakagami J, Ukai Y, Ono M, Kanbe D, Muramatsu S, Kobayashi K, Iwatsubo T, Yoshimoto M (2008) Selective loss of nigral dopamine neurons induced by overexpression of truncated human alpha-synuclein in mice. Neurobiol Aging 29(4):574–585

    CAS  PubMed  Google Scholar 

  • Wang L, Qi X, Shen R, Sun Y, Tuveson DA (2009) An shRNA silencing a non-toxic transgene reduces nutrient consumption and increases production of adenoviral vectors in a novel packaging cell. J Cell Physiol 219(2):365–371

    CAS  PubMed  Google Scholar 

  • Winklhofer KF (2007) The parkin protein as a therapeutic target in Parkinson’s disease. Expert Opin Ther Targets 11(12):1543–1552

    CAS  PubMed  Google Scholar 

  • Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S, Hetzer C, Loher T, Vilar M, Campioni S, Tzitzilonis C, Soragni A, Jessberger S, Mira H, Consiglio A, Pham E, Masliah E, Gage FH, Riek R (2011) In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci U S A 108(10):4194–4199

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wirdefeldt K, Adami HO, Cole P, Trichopoulos D, Mandel J (2011) Epidemiology and etiology of Parkinson’s disease: a review of the evidence. Eur J Epidemiol 26(Suppl 1):S1–S58

    PubMed  Google Scholar 

  • Wright JF (2009) Transient transfection methods for clinical adeno-associated viral vector production. Hum Gene Ther 20(7):698–706

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu Z, Asokan A, Samulski RJ (2006) Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 14(3):316–327

    CAS  PubMed  Google Scholar 

  • Xiao X, Li J, Samulski RJ (1996) Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol 70(11):8098–8108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamada M, Iwatsubo T, Mizuno Y, Mochizuki H (2004) Overexpression of alpha-synuclein in rat substantia nigra results in loss of dopaminergic neurons, phosphorylation of alpha-synuclein and activation of caspase-9: resemblance to pathogenetic changes in Parkinson’s disease. J Neurochem 91(2):451–461

    CAS  PubMed  Google Scholar 

  • Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atares B, Llorens V, Gomez Tortosa E, del Ser T, Munoz DG, de Yebenes JG (2004) The new mutation, E46 K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55(2):164–173

    CAS  PubMed  Google Scholar 

  • Zennou V, Petit C, Guetard D, Nerhbass U, Montagnier L, Charneau P (2000) HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 101(2):173–185

    CAS  PubMed  Google Scholar 

  • Zhu XR, Maskri L, Herold C, Bader V, Stichel CC, Gunturkun O, Lubbert H (2007) Non-motor behavioural impairments in parkin-deficient mice. Eur J Neurosci 26(7):1902–1911

    PubMed  Google Scholar 

  • Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15(9):871–875

    CAS  PubMed  Google Scholar 

  • Zufferey R, Donello JE, Trono D, Hope TJ (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73(4):2886–2892

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anke Van der Perren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Van der Perren, A., Van den Haute, C., Baekelandt, V. (2014). Viral Vector-Based Models of Parkinson’s Disease. In: Nguyen, H., Cenci, M. (eds) Behavioral Neurobiology of Huntington's Disease and Parkinson's Disease. Current Topics in Behavioral Neurosciences, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2014_310

Download citation

Publish with us

Policies and ethics