Skip to main content

Progress Towards the Anatomy of the Eukaryotic DNA Replication Fork

  • Chapter
  • First Online:
Genome Integrity

Part of the book series: Genome Dynamics and Stability ((GENOME,volume 1))

Abstract

During cell growth before each division, cells have to accurately duplicate their genome. The processes associated with DNA replication are tightly controlled; failure thereof can result in genome instability, which is a hallmark of cancer (Marte 2004). A large number of proteins are involved in this ambitious task to replicate the chromosomal DNA once and only once at a given time (Table 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AAA:

ATPases associated with a variety of cellular activities

ATR:

Ataxia telangiectasia-mutated and Rad3-related

ATRIP:

ATR interacting protein

BRCA:

breast cancer associated

BRCT:

BRCA1 C-terminal

CAF:

chromatin assembly factor

Cdc:

cell division cycle

Cdt:

Cdc10-dependent

Cdk:

cyclin-dependent kinase

CKI:

Cdk inhibitor

Dbf:

dumbbell former

DBD:

DNA binding domain

DDK:

Dbf4-dependent kinase

DPB :

DNA polymerase epsilon subunit B

Drf:

Dbf4-related factor

dsDNA:

double-stranded DNA

FEN:

flap endonuclease

GINS:

Go Ichi, Nii, and San Japanese for five, one, two, and three; protein complex containing Sld5 and Psf1-3

Mcm:

minichromosome maintenance

Mus:

nitrogen mustard-sensitive

OB:

oligonucleotide/oligosaccharide binding

ORC:

origin recognition complex

PARP:

poly[ADP-ribose]polymerase

PCNA:

Proliferating cell nuclear antigen

pre-RC:

pre-replicative complex

Pol:

DNA polymerase

POL2 :

DNA polymerase epsilon catalytic subunit in S. cerevisiae

Psf:

partner of Sld five

Rad:

radiation-sensitive

rec:

recombination defective

RF-C:

replication factor C

RPA:

replication protein A [eukaryotic ssDNA binding protein]

Srs:

suppressor of radiation-sensitive mutations

ssDNA:

single-stranded DNA

Sld:

synthetically lethal with D PB11

SUMO:

small ubiquitin-related modifier protein

SV:

simian virus

TAg:

T antigen

TopBP1:

DNA topoisomerase II binding protein

References

  1. Aparicio OM, Stout AM, Bell SP (1999) Differential assembly of cdc45p and DNA polymerases at early and late origins of DNA replication. Proc Natl Acad Sci USA 96:9130–9135

    PubMed  CAS  Google Scholar 

  2. Aparicio OM, Weinstein DM, Bell SP (1997) Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell 91:59–69

    PubMed  CAS  Google Scholar 

  3. Araki H, Leem SH, Phongdara A, Sugino A (1995) Dpb11, which interacts with DNA polymerase II(epsilon) in Saccharomyces cerevisiae, has a dual role in S-phase progression and at a cell cycle checkpoint. Proc Natl Acad Sci USA 92:11791–11795

    PubMed  CAS  Google Scholar 

  4. Aravind L, Koonin EV (1998) The HORMA domain: a common structural denominator in mitotic checkpoints, chromosome synapsis and DNA repair. Trends Biochem Sci 23:284–286

    PubMed  CAS  Google Scholar 

  5. Arezi B, Kuchta RD (2000) Eukaryotic DNA primase. Trends Biochem Sci 25:572–576

    PubMed  CAS  Google Scholar 

  6. Arias EE, Walter JC (2006) PCNA functions as a molecular platform to trigger Cdt1 destruction and prevent re-replication. Nat Cell Biol 8:84–90

    PubMed  CAS  Google Scholar 

  7. Arudchandran A, Cerritelli S, Narimatsu S, Itaya M, Shin DY, Shimada Y, Crouch RJ (2000) The absence of ribonuclease H1 or H2 alters the sensitivity of Saccharomyces cerevisiae to hydroxyurea, caffeine and ethyl methanesulphonate: implications for roles of RNases H in DNA replication and repair. Genes Cells 5:789–802

    PubMed  CAS  Google Scholar 

  8. Arunkumar AI, Klimovich V, Jiang X, Ott RD, Mizoue L, Fanning E, Chazin WJ (2005) Insights into hRPA32 C-terminal domain-mediated assembly of the simian virus 40 replisome. Nat Struct Mol Biol 12:332–339

    PubMed  CAS  Google Scholar 

  9. Asturias FJ, Cheung IK, Sabouri N, Chilkova O, Wepplo D, Johansson E (2006) Structure of Saccharomyces cerevisiae DNA polymerase epsilon by cryo-electron microscopy. Nat Struct Mol Biol 13:35–43

    PubMed  CAS  Google Scholar 

  10. Augustin MA, Huber R, Kaiser JT (2001) Crystal structure of a DNA-dependent RNA polymerase (DNA primase). Nat Struct Biol 8:57–61

    PubMed  CAS  Google Scholar 

  11. Ayyagari R, Gomes XV, Gordenin DA, Burgers PM (2003) Okazaki fragment maturation in yeast. I. Distribution of functions between FEN1 AND DNA2. J Biol Chem 278:1618–1625

    PubMed  CAS  Google Scholar 

  12. Bae SH, Bae KH, Kim JA, Seo YS (2001a) RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes. Nature 412:456–461

    PubMed  CAS  Google Scholar 

  13. Bae SH, Kim DW, Kim J, Kim JH, Kim DH, Kim HD, Kang HY, Seo YS (2002) Coupling of DNA helicase and endonuclease activities of yeast Dna2 facilitates Okazaki fragment processing. J Biol Chem 277:26632–26641

    PubMed  CAS  Google Scholar 

  14. Bae SH, Kim JA, Choi E, Lee KH, Kang HY, Kim HD, Kim JH, Bae KH, Cho Y, Park C, Seo YS (2001b) Tripartite structure of Saccharomyces cerevisiae Dna2 helicase/endonuclease. Nucleic Acids Res 29:3069–3079

    PubMed  CAS  Google Scholar 

  15. Bell SP, Dutta A (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71:333–374

    PubMed  CAS  Google Scholar 

  16. Bentley D, Selfridge J, Millar JK, Samuel K, Hole N, Ansell JD, Melton DW (1996) DNA ligase I is required for fetal liver erythropoiesis but is not essential for mammalian cell viability. Nat Genet 13:489–491

    PubMed  CAS  Google Scholar 

  17. Bentley DJ, Harrison C, Ketchen AM, Redhead NJ, Samuel K, Waterfall M, Ansell JD, Melton DW (2002) DNA ligase I null mouse cells show normal DNA repair activity but altered DNA replication and reduced genome stability. J Cell Sci 115:1551–1561

    PubMed  CAS  Google Scholar 

  18. Bermudez VP, MacNeill SA, Tappin I, Hurwitz J (2002) The influence of the Cdc27 subunit on the properties of the Schizosaccharomyces pombe DNA polymerase delta. J Biol Chem 277:36853–36862

    PubMed  CAS  Google Scholar 

  19. Binz SK, Sheehan AM, Wold MS (2004) Replication Protein A phosphorylation and the cellular response to DNA damage. DNA Repair (Amst) 3:1015–1024

    CAS  Google Scholar 

  20. Blanton HL, Radford SJ, McMahan S, Kearney HM, Ibrahim JG, Sekelsky J (2005) REC, Drosophila MCM8, drives formation of meiotic crossovers. PLoS Genet 1:e40

    PubMed  Google Scholar 

  21. Blow JJ (2001) Control of chromosomal DNA replication in the early Xenopus embryo. Embo J 20:3293–3297

    PubMed  CAS  Google Scholar 

  22. Blow JJ, Dutta A (2005) Preventing re-replication of chromosomal DNA. Nat Rev Mol Cell Biol 6:476–486

    PubMed  CAS  Google Scholar 

  23. Bose ME, McConnell KH, Gardner-Aukema KA, Muller U, Weinreich M, Keck JL, Fox CA (2004) The origin recognition complex and Sir4 protein recruit Sir1p to yeast silent chromatin through independent interactions requiring a common Sir1p domain. Mol Cell Biol 24:774–786

    PubMed  CAS  Google Scholar 

  24. Bowman GD, Goedken ER, Kazmirski SL, O'Donnell M, Kuriyan J (2005) DNA polymerase clamp loaders and DNA recognition. FEBS Lett 579:863–867

    PubMed  CAS  Google Scholar 

  25. Bowman GD, O'Donnell M, Kuriyan J (2004) Structural analysis of a eukaryotic sliding DNA clamp–clamp loader complex. Nature 429:724–730

    PubMed  CAS  Google Scholar 

  26. Budd ME, Campbell JL (1995) A yeast gene required for DNA replication encodes a protein with homology to DNA helicases. Proc Natl Acad Sci USA 92:7642–7646

    PubMed  CAS  Google Scholar 

  27. Budd ME, Campbell JL (1997) A yeast replicative helicase, Dna2 helicase, interacts with yeast FEN-1 nuclease in carrying out its essential function. Mol Cell Biol 17:2136–2142

    PubMed  CAS  Google Scholar 

  28. Burgers PM (1998) Eukaryotic DNA polymerases in DNA replication and DNA repair. Chromosoma 107:218–227

    PubMed  CAS  Google Scholar 

  29. Burgers PMJ, Gerik KJ (1998) Structure and processivity of two forms of saccharomyces cerevisiae DNA polymerase delta. J Biol Chem 273:19756–19762

    PubMed  CAS  Google Scholar 

  30. Burhans WC, Vassilev LT, Wu J, Sogo JM, Nallaseth FS, DePamphilis ML (1991) Emetine allows identification of origins of mammalian DNA replication by imbalanced DNA synthesis, not through conservative nucleosome segregation. Embo J 10:4351–4360

    PubMed  CAS  Google Scholar 

  31. Byun TS, Pacek M, Yee MC, Walter JC, Cimprich KA (2005) Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev 19:1040–1052

    PubMed  CAS  Google Scholar 

  32. Cerritelli SM, Frolova EG, Feng C, Grinberg A, Love PE, Crouch RJ (2003) Failure to produce mitochondrial DNA results in embryonic lethality in Rnase H1 null mice. Mol Cell 11:807–815

    PubMed  CAS  Google Scholar 

  33. Chandra A, Hughes TR, Nugent CI, Lundblad V (2001) Cdc13 both positively and negatively regulates telomere replication. Genes Dev 15:404–414

    PubMed  CAS  Google Scholar 

  34. Chilkova O, Jonsson BH, Johansson E (2003) The quaternary structure of DNA polymerase epsilon from Saccharomyces cerevisiae. J Biol Chem 278:14082–14086

    PubMed  CAS  Google Scholar 

  35. Chou DM, Petersen P, Walter JC, Walter G (2002) Protein phosphatase 2A regulates binding of Cdc45 to the prereplication complex. J Biol Chem 277:40520–40527

    PubMed  CAS  Google Scholar 

  36. Cook PR (1999) The organization of replication and transcription. Science 284:1790–1795

    PubMed  CAS  Google Scholar 

  37. Costanzo V, Robertson K, Ying CY, Kim E, Avvedimento E, Gottesman M, Grieco D, Gautier J (2000) Reconstitution of an ATM-dependent checkpoint that inhibits chromosomal DNA replication following DNA damage. Mol Cell 6:649–659

    PubMed  CAS  Google Scholar 

  38. Cvetic CA, Walter JC (2006) Getting a grip on licensing: mechanism of stable Mcm2–7 loading onto replication origins. Mol Cell 21:143–144

    PubMed  CAS  Google Scholar 

  39. Diffley JF (2001) DNA replication: building the perfect switch. Curr Biol 11:R367-R370

    PubMed  CAS  Google Scholar 

  40. Diffley JF, Labib K (2002) The chromosome replication cycle. J Cell Sci 115:869–872

    PubMed  CAS  Google Scholar 

  41. Dua R, Levy DL, Campbell JL (1999) Analysis of the essential functions of the C-terminal Protein/Protein interaction domain of saccharomyces cerevisiae pol epsilon and its unexpected ability to support growth in the absence of the DNA polymerase domain. J Biol Chem 274:22283–22288

    PubMed  CAS  Google Scholar 

  42. Dua R, Levy DL, Li CM, Snow PM, Campbell JL (2002) In vivo reconstitution of Saccharomyces cerevisiae DNA polymerase epsilon in insect cells. Purification and characterization. J Biol Chem 277:7889–7896

    PubMed  CAS  Google Scholar 

  43. Egel R (2006) Chromosomal DNA Replication: On Replicases, Replisomes, and Bidirectional Replication Factories. In: Lankenau DH (ed) Genome Integrity: Facets and Perspectives, vol 1. Springer, Berlin Heidelberg DOI: 10.1007/7050_012

    Google Scholar 

  44. Falck J, Petrini JH, Williams BR, Lukas J, Bartek J (2002) The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Nat Genet 30:290–294

    PubMed  Google Scholar 

  45. Fanning E (1992) Simian virus 40 large T antigen: the puzzle, the pieces, and the emerging picture. J Virol 66:1289–1293

    PubMed  CAS  Google Scholar 

  46. Feng W, D'Urso G (2001) Schizosaccharomyces pombe cells lacking the amino-terminal catalytic domains of DNA polymerase epsilon are viable but require the DNA damage checkpoint control. Mol Cell Biol 21:4495–4504

    PubMed  CAS  Google Scholar 

  47. Fijalkowska IJ, Jonczyk P, Tkaczyk MM, Bialoskorska M, Schaaper RM (1998) Unequal fidelity of leading strand and lagging strand DNA replication on the Escherichia coli chromosome. Proc Natl Acad Sci USA 95:10020–10025

    PubMed  CAS  Google Scholar 

  48. Filippov V, Filippov M, Gill SS (2001) Drosophila RNase H1 is essential for development but not for proliferation. Mol Genet Genomics 265:771–777

    PubMed  CAS  Google Scholar 

  49. Forsburg SL (2004) Eukaryotic MCM proteins: beyond replication initiation. Microbiol Mol Biol Rev 68:109–131, table of contents

    PubMed  CAS  Google Scholar 

  50. Forterre P (2002) The origin of DNA genomes and DNA replication proteins. Curr Opin Microbiol 5:525–532

    PubMed  CAS  Google Scholar 

  51. Fukui T, Yamauchi K, Muroya T, Akiyama M, Maki H, Sugino A, Waga S (2004) Distinct roles of DNA polymerases delta and epsilon at the replication fork in Xenopus egg extracts. Genes Cells 9:179–191

    PubMed  CAS  Google Scholar 

  52. Fuss J, Linn S (2002) Human DNA polymerase epsilon colocalizes with proliferating cell nuclear antigen and DNA replication late, but not early, in S phase. J Biol Chem 277:8658–8666

    PubMed  CAS  Google Scholar 

  53. Garcia V, Furuya K, Carr AM (2005) Identification and functional analysis of TopBP1 and its homologs. DNA Repair (Amst) 4:1227–1239

    CAS  Google Scholar 

  54. Garg P, Burgers PM (2005) DNA polymerases that propagate the eukaryotic DNA replication fork. Crit Rev Biochem Mol Biol 40:115–128

    PubMed  CAS  Google Scholar 

  55. Garg P, Stith CM, Majka J, Burgers PM (2005) Proliferating cell nuclear antigen promotes translesion synthesis by DNA polymerase zeta. J Biol Chem 280:23446–23450

    PubMed  CAS  Google Scholar 

  56. Gerik KJ, Li X, Pautz A, Burgers PM (1998) Characterization of the two small subunits of Saccharomyces cerevisiae DNA polymerase delta. J Biol Chem 273:19747–19755

    PubMed  CAS  Google Scholar 

  57. Gozuacik D, Chami M, Lagorce D, Faivre J, Murakami Y, Poch O, Biermann E, Knippers R, Brechot C, Paterlini-Brechot P (2003) Identification and functional characterization of a new member of the human Mcm protein family: hMcm8. Nucleic Acids Res 31:570–579

    PubMed  CAS  Google Scholar 

  58. Gray FC, Pohler JR, Warbrick E, MacNeill SA (2004) Mapping and mutation of the conserved DNA polymerase interaction motif (DPIM) located in the C-terminal domain of fission yeast DNA polymerase delta subunit Cdc27. BMC Mol Biol 5:21

    PubMed  Google Scholar 

  59. Grossi S, Puglisi A, Dmitriev PV, Lopes M, Shore D (2004) Pol12, the B subunit of DNA polymerase alpha, functions in both telomere capping and length regulation. Genes Dev 18:992–1006

    PubMed  CAS  Google Scholar 

  60. Gulbis JM, Kelman Z, Hurwitz J, O'Donnell M, Kuriyan J (1996) Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA. Cell 87:297–306

    PubMed  CAS  Google Scholar 

  61. Hamatake RK, Hasegawa H, Clark AB, Bebenek K, Kunkel TA, Sugino A (1990) Purification and characterization of DNA polymerase II from the yeast Saccharomyces cerevisiae. Identification of the catalytic core and a possible holoenzyme form of the enzyme. J Biol Chem 265:4072–4083

    PubMed  CAS  Google Scholar 

  62. Harrington JJ, Lieber MR (1994a) The characterization of a mammalian DNA structure-specific endonuclease. Embo J 13:1235–1246

    PubMed  CAS  Google Scholar 

  63. Harrington JJ, Lieber MR (1994b) Functional domains within FEN-1 and RAD2 define a family of structure-specific endonucleases: implications for nucleotide excision repair. Genes Dev 8:1344–1355

    PubMed  CAS  Google Scholar 

  64. Herman TM, DePamphilis ML, Wassarman PM (1981) Structure of chromatin at deoxyribonucleic acid replication forks: location of the first nucleosomes on newly synthesized simian virus 40 deoxyribonucleic acid. Biochemistry 20:621–630

    PubMed  CAS  Google Scholar 

  65. Hiraga S, Hagihara-Hayashi A, Ohya T, Sugino A (2005) DNA polymerases alpha, delta, and epsilon localize and function together at replication forks in Saccharomyces cerevisiae. Genes Cells 10:297–309

    PubMed  CAS  Google Scholar 

  66. Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135–141

    PubMed  CAS  Google Scholar 

  67. Hosfield DJ, Mol CD, Shen B, Tainer JA (1998) Structure of the DNA repair and replication endonuclease and exonuclease FEN-1: coupling DNA and PCNA binding to FEN-1 activity. Cell 95:135–146

    PubMed  CAS  Google Scholar 

  68. Hsu HC, Stillman B, Xu RM (2005) Structural basis for origin recognition complex 1 protein-silence information regulator 1 protein interaction in epigenetic silencing. Proc Natl Acad Sci USA 102:8519–8524

    PubMed  CAS  Google Scholar 

  69. Huang D, Pospiech H, Kesti T, Syväoja JE (1999a) Structural organization and splice variants of the POLE1 gene encoding the catalytic subunit of human DNA polymerase epsilon. Biochem J 339:657–665

    PubMed  CAS  Google Scholar 

  70. Huang ME, Le Douarin B, Henry C, Galibert F (1999b) The Saccharomyces cerevisiae protein YJR043C (Pol32) interacts with the catalytic subunit of DNA polymerase alpha and is required for cell cycle progression in G2/M. Mol Gen Genet 260:541–550

    PubMed  CAS  Google Scholar 

  71. Hübscher U, Maga G, Spadari S (2002) Eukaryotic DNA polymerases. Annu Rev Biochem 71:133–163

    PubMed  Google Scholar 

  72. Hübscher U, Nasheuer HP, Syväoja J (2000) Eukaryotic DNA polymerases, a growing family. Trends Biochem Sci 25:143–147

    PubMed  Google Scholar 

  73. Hughes P, Tratner I, Ducoux M, Piard K, Baldacci G (1999) Isolation and identification of the third subunit of mammalian DNA polymerase delta by PCNA-affinity chromatography of mouse FM3A cell extracts. Nucleic Acids Res 27:2108–2114

    PubMed  CAS  Google Scholar 

  74. Hwang KY, Baek K, Kim HY, Cho Y (1998) The crystal structure of flap endonuclease-1 from Methanococcus jannaschii. Nat Struct Biol 5:707–713

    PubMed  CAS  Google Scholar 

  75. Iftode C, Daniely Y, Borowiec JA (1999) Replication Protein A (RPA): The Eukaryotic SSB. Critical Rev Biochem Mol Biol 24:141–180

    Google Scholar 

  76. Ishimi Y (1997) A DNA helicase activity is associated with an MCM4, -6, and -7 protein complex. J Biol Chem 272:24508–24513

    PubMed  CAS  Google Scholar 

  77. Jares P, Blow JJ (2000) Xenopus cdc7 function is dependent on licensing but not on XORC, XCdc6, or CDK activity and is required for XCdc45 loading. Genes Dev 14:1528–1540

    PubMed  CAS  Google Scholar 

  78. Jeong HS, Backlund PS, Chen HC, Karavanov AA, Crouch RJ (2004) RNase H2 of Saccharomyces cerevisiae is a complex of three proteins. Nucleic Acids Res 32:407–414

    PubMed  CAS  Google Scholar 

  79. Jeruzalmi D, O'Donnell M, Kuriyan J (2001a) Crystal structure of the processivity clamp loader gamma (gamma) complex of E. coli DNA polymerase III. Cell 106:429–441

    PubMed  CAS  Google Scholar 

  80. Jeruzalmi D, Yurieva O, Zhao Y, Young M, Stewart J, Hingorani M, O'Donnell M, Kuriyan J (2001b) Mechanism of processivity clamp opening by the delta subunit wrench of the clamp loader complex of E. coli DNA polymerase III. Cell 106:417–428

    PubMed  CAS  Google Scholar 

  81. Johansson E, Garg P, Burgers PM (2004) The Pol32 subunit of DNA polymerase delta contains separable domains for processive replication and proliferating cell nuclear antigen (PCNA) binding. J Biol Chem 279:1907–1915

    PubMed  CAS  Google Scholar 

  82. Johansson E, Majka J, Burgers PM (2001) Structure of DNA polymerase delta from Saccharomyces cerevisiae. J Biol Chem 276:43824–43828

    PubMed  CAS  Google Scholar 

  83. Kamimura Y, Masumoto H, Sugino A, Araki H (1998) Sld2, which interacts with Dpb11 in Saccharomyces cerevisiae, is required for chromosomal DNA replication. Mol Cell Biol 18:6102–6109

    PubMed  CAS  Google Scholar 

  84. Kamimura Y, Tak YS, Sugino A, Araki H (2001) Sld3, which interacts with Cdc45 (Sld4), functions for chromosomal DNA replication in Saccharomyces cerevisiae. Embo J 20:2097–2107

    PubMed  CAS  Google Scholar 

  85. Kang HY, Choi E, Bae SH, Lee KH, Gim BS, Kim HD, Park C, MacNeill SA, Seo YS (2000) Genetic analyses of Schizosaccharomyces pombe dna2(+) reveal that dna2 plays an essential role in Okazaki fragment metabolism. Genetics 155:1055–1067

    PubMed  CAS  Google Scholar 

  86. Kannouche PL, Lehmann AR (2004) Ubiquitination of PCNA and the polymerase switch in human cells. Cell Cycle 3:1011–1013

    PubMed  CAS  Google Scholar 

  87. Kao HI, Bambara RA (2003) The protein components and mechanism of eukaryotic Okazaki fragment maturation. Crit Rev Biochem Mol Biol 38:433–452

    PubMed  CAS  Google Scholar 

  88. Kao HI, Campbell JL, Bambara RA (2004a) Dna2p helicase/nuclease is a tracking protein, like FEN1, for flap cleavage during Okazaki fragment maturation. J Biol Chem 279:50840–50849

    PubMed  CAS  Google Scholar 

  89. Kao HI, Veeraraghavan J, Polaczek P, Campbell JL, Bambara RA (2004b) On the roles of Saccharomyces cerevisiae Dna2p and Flap endonuclease 1 in Okazaki fragment processing. J Biol Chem 279:15014–15024

    PubMed  CAS  Google Scholar 

  90. Kaufmann G, Nethanel T (2004) Did an early version of the eukaryal replisome enable the emergence of chromatin? Prog Nucleic Acid Res Mol Biol 77:173–209

    PubMed  CAS  Google Scholar 

  91. Kelly RB, Atkinson MR, Huberman JA, Kornberg A (1969) Excision of thymine dimers and other mismatched sequences by DNA polymerase of Escherichia coli. Nature 224:224, 495–501

    Google Scholar 

  92. Kesti T, Flick K, Keränen S, Syväoja JE, Wittenberg C (1999) DNA polymerase ε catalytic domains are dispensable for DNA replication, DNA repair, and cell viability. Mol Cell 3:679–685

    PubMed  CAS  Google Scholar 

  93. Kesti T, Frantti H, Syvaoja JE (1993) Molecular cloning of the cDNA for the catalytic subunit of human DNA polymerase epsilon. J Biol Chem 268:10238–10245

    PubMed  CAS  Google Scholar 

  94. Kneissl M, Putter V, Szalay AA, Grummt F (2003) Interaction and assembly of murine pre-replicative complex proteins in yeast and mouse cells. J Mol Biol 327:111–128

    PubMed  CAS  Google Scholar 

  95. Koonin EV, Wolf YI, Aravind L (2000) Protein fold recognition using sequence profiles and its application in structural genomics. Adv Protein Chem 54:245–275

    PubMed  CAS  Google Scholar 

  96. Kornberg A, Baker T (1992) DNA Replication, 2nd. Edition, W.H. Freeman & Company, New York

    Google Scholar 

  97. Krishna TS, Kong XP, Gary S, Burgers PM, Kuriyan J (1994) Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79:1233–1243

    PubMed  CAS  Google Scholar 

  98. Krude T, Keller C (2001) Chromatin assembly during S phase: contributions from histone deposition, DNA replication and the cell division cycle. Cell Mol Life Sci 58:665–672

    PubMed  CAS  Google Scholar 

  99. Kubota Y, Takase Y, Komori Y, Hashimoto Y, Arata T, Kamimura Y, Araki H, Takisawa H (2003) A novel ring-like complex of Xenopus proteins essential for the initiation of DNA replication. Genes Dev 17:1141–1152

    PubMed  CAS  Google Scholar 

  100. Kunkel TA, Erie DA (2005) DNA mismatch repair. Annu Rev Biochem 74:681–710

    PubMed  CAS  Google Scholar 

  101. Lankenau DH, Gloor GB (1998) In vivo gap repair in Drosophila: a one-way street with many destinations. BioEssays 20:317–327

    PubMed  CAS  Google Scholar 

  102. Laskey RA, Madine MA (2003) A rotary pumping model for helicase function of MCM proteins at a distance from replication forks. EMBO Rep 4:26–30

    PubMed  CAS  Google Scholar 

  103. Lee C, Hong B, Choi JM, Kim Y, Watanabe S, Ishimi Y, Enomoto T, Tada S, Cho Y (2004) Structural basis for inhibition of the replication licensing factor Cdt1 by geminin. Nature 430:913–917

    PubMed  CAS  Google Scholar 

  104. Lee JK, Hurwitz J (2001) Processive DNA helicase activity of the minichromosome maintenance proteins 4, 6, and 7 complex requires forked DNA structures. Proc Natl Acad Sci USA 98:54–59

    PubMed  CAS  Google Scholar 

  105. Lee KH, Lee MH, Lee TH, Han JW, Park YJ, Ahnn J, Seo YS, Koo HS (2003) Dna2 requirement for normal reproduction of Caenorhabditis elegans is temperature-dependent. Mol Cells 15:81–86

    PubMed  CAS  Google Scholar 

  106. Lee MY, Tan CK, Downey KM, So AG (1981) Structural and functional properties of calf thymus DNA polymerase delta. Prog Nucleic Acid Res Mol Biol 26:83–96

    PubMed  CAS  Google Scholar 

  107. Lee SH, Pan ZQ, Kwong AD, Burgers PM, Hurwitz J (1991) Synthesis of DNA by DNA polymerase epsilon in vitro. J Biol Chem 266:22707–22717

    PubMed  CAS  Google Scholar 

  108. Lehman IR (1974) T4 DNA polymerase. Methods Enzymol 29:46–53

    Article  PubMed  CAS  Google Scholar 

  109. Lei M, Tye BK (2001) Initiating DNA synthesis: from recruiting to activating the MCM complex. J Cell Sci 114:1447–1454

    PubMed  CAS  Google Scholar 

  110. Leipe DD, Aravind L, Grishin NV, Koonin EV (2000) The bacterial replicative helicase DnaB evolved from a RecA duplication. Genome Res 10:5–16

    PubMed  CAS  Google Scholar 

  111. Liu Y, Kao HI, Bambara RA (2004) Flap endonuclease 1: a central component of DNA metabolism. Annu Rev Biochem 73:589–615

    PubMed  CAS  Google Scholar 

  112. Liu Y, Kvaratskhelia M, Hess S, Qu Y, Zou Y (2005) Modulation of replication protein A function by its hyperphosphorylation-induced conformational change involving DNA binding domain B. J Biol Chem 280:32775–32783

    PubMed  CAS  Google Scholar 

  113. Lu X, Tan CK, Zhou JQ, You M, Carastro LM, Downey KM, So AG (2002) Direct interaction of proliferating cell nuclear antigen with the small subunit of DNA polymerase delta. J Biol Chem 277:24340–24345

    PubMed  CAS  Google Scholar 

  114. Luciani MG, Oehlmann M, Blow JJ (2004) Characterization of a novel ATR-dependent, Chk1-independent, intra-S-phase checkpoint that suppresses initiation of replication in Xenopus. J Cell Sci 117:6019–6030

    PubMed  CAS  Google Scholar 

  115. Lutzmann M, Maiorano D, Mechali M (2005) Identification of full genes and proteins of MCM9, a novel, vertebrate-specific member of the MCM2–8 protein family. Gene 362:51–56

    PubMed  CAS  Google Scholar 

  116. Machida YJ, Hamlin JL, Dutta A (2005) Right place, right time, and only once: replication initiation in metazoans. Cell 123:13–24

    PubMed  CAS  Google Scholar 

  117. MacNeill S, Moreno S, Reynolds N, Nurse P, Fantes P (1996) The fission yeast Cdc1 protein, a homologue of the small subunit of DNA polymerase delta, binds to Pol3 and Cdc27. EMBO J 15:4613–4628

    PubMed  CAS  Google Scholar 

  118. Madine M, Laskey R (2001) Geminin bans replication licence. Nat Cell Biol 3:E49–50

    PubMed  CAS  Google Scholar 

  119. Maga G, Frouin I, Spadari S, Hübscher U (2001) Replication protein A as a fidelity clamp for DNA polymerase alpha. J Biol Chem 276:18235–18242

    PubMed  CAS  Google Scholar 

  120. Maga G, Hübscher U (2003) Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J Cell Sci 116:3051–3060

    PubMed  CAS  Google Scholar 

  121. Maiorano D, Cuvier O, Danis E, Mechali M (2005a) MCM8 is an MCM2–7-related protein that functions as a DNA helicase during replication elongation and not initiation. Cell 120:315–328

    PubMed  CAS  Google Scholar 

  122. Maiorano D, Krasinska L, Lutzmann M, Mechali M (2005b) Recombinant Cdt1 induces rereplication of G2 nuclei in Xenopus egg extracts. Curr Biol 15:146–153

    PubMed  CAS  Google Scholar 

  123. Majka J, Burgers PM (2004) The PCNA-RFC families of DNA clamps and clamp loaders. Prog Nucleic Acid Res Mol Biol 78:227–260

    PubMed  CAS  Google Scholar 

  124. Mäkiniemi M, Hillukkala T, Tuusa J, Reini K, Vaara M, Huang D, Pospiech H, Majuri I, Westerling T, Makela TP, Syvaoja JE (2001) BRCT domain-containing protein TopBP1 functions in DNA replication and damage response. J Biol Chem 276:30399–30406

    PubMed  Google Scholar 

  125. Mäkiniemi M, Pospiech H, Kilpelainen S, Jokela M, Vihinen M, Syväoja JE (1999) A novel family of DNA-polymerase-associated B subunits. Trends Biochem Sci 24:14–16

    PubMed  Google Scholar 

  126. Marte B (2004) Cell division and cancer. Nature 432:293

    CAS  Google Scholar 

  127. Martin IV, MacNeill SA (2002) ATP-dependent DNA ligases. Genome Biol 3:REVIEWS 3005

    Google Scholar 

  128. Masai H, You Z, Arai K (2005) Control of DNA replication: regulation and activation of eukaryotic replicative helicase, MCM. IUBMB Life 57:323–335

    PubMed  CAS  Google Scholar 

  129. Mass G, Nethanel T, Lavrik OI, Wold MS, Kaufmann G (2001) Replication protein A modulates its interface with the primed DNA template during RNA-DNA primer elongation in replicating SV40 chromosomes. Nucleic Acids Res 29:3892–3899

    PubMed  CAS  Google Scholar 

  130. Masumoto H, Muramatsu S, Kamimura Y, Araki H (2002) S-Cdk-dependent phosphorylation of Sld2 essential for chromosomal DNA replication in budding yeast. Nature 415:651–655

    PubMed  CAS  Google Scholar 

  131. Masumoto H, Sugino A, Araki H (2000) Dpb11 controls the association between DNA polymerases alpha and epsilon and the autonomously replicating sequence region of budding yeast. Mol Cell Biol 20:2809–2817

    PubMed  CAS  Google Scholar 

  132. Matsubayashi H, Yamamoto MT (2003) REC, a new member of the MCM-related protein family, is required for meiotic recombination in Drosophila. Genes Genet Syst 78:363–371

    PubMed  CAS  Google Scholar 

  133. Matsunaga F, Norais C, Forterre P, Myllykallio H (2003) Identification of short “eukaryotic” Okazaki fragments synthesized from a prokaryotic replication origin EMBO Rep 4:154–158

    CAS  Google Scholar 

  134. McGarry TJ, Kirschner MW (1998) Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93:1043–1053

    PubMed  CAS  Google Scholar 

  135. Melle C, Nasheuer HP (2002) Physical and functional interactions of the tumor suppressor protein p53 and DNA polymerase α-primase. Nucleic Acids Res 30:1493–1499

    PubMed  CAS  Google Scholar 

  136. Michael WM, Ott R, Fanning E, Newport J (2000) Activation of the DNA replication checkpoint through RNA synthesis by primase. Science 289:2133–2137

    PubMed  CAS  Google Scholar 

  137. Mimura S, Masuda T, Matsui T, Takisawa H (2000) Central role for cdc45 in establishing an initiation complex of DNA replication in Xenopus egg extracts. Genes Cells 5:439–452

    PubMed  CAS  Google Scholar 

  138. Miyata T, Oyama T, Mayanagi K, Ishino S, Ishino Y, Morikawa K (2004) The clamp-loading complex for processive DNA replication. Nat Struct Mol Biol 11:632–636

    PubMed  CAS  Google Scholar 

  139. Mizuno T, Yamagishi K, Miyazawa H, Hanaoka F (1999) Molecular architecture of the mouse DNA polymerase alpha-primase complex. Mol Cell Biol 19:7886–7896

    PubMed  CAS  Google Scholar 

  140. Montagnoli A, Bosotti R, Villa F, Rialland M, Brotherton D, Mercurio C, Berthelsen J, Santocanale C (2002) Drf1, a novel regulatory subunit for human Cdc7 kinase. Embo J 21:3171–3181

    PubMed  CAS  Google Scholar 

  141. Morrison A, Araki H, Clark AB, Hamatake RK, Sugino A (1990) A third essential DNA polymerase in S. cerevisiae. Cell 62:1143–1151

    PubMed  CAS  Google Scholar 

  142. Mozzherin DJ, Tan CK, Downey KM, Fisher PA (1999) Architecture of the active DNA polymerase delta.proliferating cell nuclear antigen.template-primer complex. J Biol Chem 274:19862–19867

    PubMed  CAS  Google Scholar 

  143. Murante RS, Rust L, Bambara RA (1995) Calf 5′to 3′exo/endonuclease must slide from a 5′end of the substrate to perform structure-specific cleavage. J Biol Chem 270:30377–30383

    PubMed  CAS  Google Scholar 

  144. Nakajima R, Masukata H (2002) SpSld3 is required for loading and maintenance of SpCdc45 on chromatin in DNA replication in fission yeast. Mol Biol Cell 13:1462–1472

    PubMed  CAS  Google Scholar 

  145. Naryzhny SN, Zhao H, Lee H (2005) Proliferating cell nuclear antigen (PCNA) may function as a double homotrimer complex in the mammalian cell. J Biol Chem 280:13888–13894

    PubMed  CAS  Google Scholar 

  146. Nash R, Lindahl T (1996) DNA ligases. In: DePamphilis ML (ed) DNA Replication in Eukaryotic Cells. Cold Spring Harbor Laboratory Press, Cold Spring Harbor Laboratory, NY, USA, p 575–586

    Google Scholar 

  147. Nasheuer HP, Pospiech H, Syvaoja J (2005) DNA Polymerases. In: Ganten D, Ruckpaul KE (eds) Encyclopedic Reference of Genomics and Proteomics in Molecular Medicine. Springer Verlag, Berlin Heidelberg New York

    Google Scholar 

  148. Nasheuer HP, Smith R, Bauerschmidt C, Grosse F, Weisshart K (2002) Initiation of eukaryotic DNA replication: regulation and mechanisms. Prog Nucleic Acid Res Mol Biol 72:41–94

    Article  PubMed  CAS  Google Scholar 

  149. Nethanel T, Zlotkin T, Kaufmann G (1992) Assembly of simian virus 40 Okazaki pieces from DNA primers is reversibly arrested by ATP depletion. J Virol 66:6634–6640

    PubMed  CAS  Google Scholar 

  150. Nishida C, Reinhard P, Linn S (1988) DNA repair synthesis in human fibroblasts requires DNA polymerase delta. J Biol Chem 263:501–510

    PubMed  CAS  Google Scholar 

  151. Oehlmann M, Score AJ, Blow JJ (2004) The role of Cdc6 in ensuring complete genome licensing and S phase checkpoint activation. J Cell Biol 165:181–190

    PubMed  CAS  Google Scholar 

  152. Otterlei M, Warbrick E, Nagelhus TA, Haug T, Slupphaug G, Akbari M, Aas PA, Steinsbekk K, Bakke O, Krokan HE (1999) Post-replicative base excision repair in replication foci. Embo J 18:3834–3838;3844

    PubMed  CAS  Google Scholar 

  153. Pacek M, Tutter AV, Kubota Y, Takisawa H, Walter JC (2006) Localization of MCM2–7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol Cell 21:581–587

    PubMed  CAS  Google Scholar 

  154. Papouli E, Chen S, Davies AA, Huttner D, Krejci L, Sung P, Ulrich HD (2005) Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol Cell 19:123–133

    PubMed  CAS  Google Scholar 

  155. Parrilla-Castellar ER, Karnitz LM (2003) Cut5 is required for the binding of Atr and DNA polymerase alpha to genotoxin-damaged chromatin. J Biol Chem 278:45507–45511

    PubMed  CAS  Google Scholar 

  156. Pascal JM, O'Brien PJ, Tomkinson AE, Ellenberger T (2004) Human DNA ligase I completely encircles and partially unwinds nicked DNA. Nature 432:473–478

    PubMed  CAS  Google Scholar 

  157. Pavlov YI, Frahm C, McElhinny SA, Niimi A, Suzuki M, Kunkel TA (2006) Evidence that errors made by DNA polymerase alpha are corrected by DNA polymerase delta. Curr Biol 16:202–207

    PubMed  CAS  Google Scholar 

  158. Pestryakov PE, Weisshart K, Schlott B, Khodyreva SN, Kremmer E, Grosse F, Lavrik OI, Nasheuer HP (2003) Human replication protein A: The C-terminal RPA70 and the central RPA32 domains are involved in the interactions with the 3′-end of a primer-template DNA. J Biol Chem 278:17515–17524

    PubMed  CAS  Google Scholar 

  159. Petersen BO, Lukas J, Sørensen CS, Bartek J, Helin K (1999) Phosphorylation of mammalian CDC6 by Cyclin A/CDK2 regulates its subcellular localization. Embo J 18:396–410

    PubMed  CAS  Google Scholar 

  160. Pfander B, Moldovan GL, Sacher M, Hoege C, Jentsch S (2005) SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436:428–433

    PubMed  CAS  Google Scholar 

  161. Podust VN, Chang LS, Ott R, Dianov GL, Fanning E (2002) Reconstitution of human DNA polymerase delta using recombinant baculoviruses: the p12 subunit potentiates DNA polymerizing activity of the four-subunit enzyme. J Biol Chem 277:3894–3901

    PubMed  CAS  Google Scholar 

  162. Pospiech H, Kursula I, Abdel-Aziz W, Malkas L, Uitto L, Kastelli M, Vihinen-Ranta M, Eskelinen S, Syväoja JE (1999) A neutralizing antibody against human DNA polymerase epsilon inhibits cellular but not SV40 DNA replication. Nucleic Acids Res 27:3799–3804

    PubMed  CAS  Google Scholar 

  163. Pospiech H, Syvaoja JE (2003) DNA polymerase epsilon - more than a polymerase. Scientific World Journal 3:87–104

    PubMed  CAS  Google Scholar 

  164. Prasanth SG, Prasanth KV, Siddiqui K, Spector DL, Stillman B (2004) Human Orc2 localizes to centrosomes, centromeres and heterochromatin during chromosome inheritance. Embo J 23:2651–2663

    PubMed  CAS  Google Scholar 

  165. Prasanth SG, Prasanth KV, Stillman B (2002) Orc6 involved in DNA replication, chromosome segregation, and cytokinesis. Science 297:1026–1031

    PubMed  CAS  Google Scholar 

  166. Ramadan K, Maga G, Hübscher U (2006) DNA Polymerases and Diseases In: Lankenau DH (ed) Genome Integrity: Facets and Perspectives, vol 1. Springer, Berlin Heidelberg DOI: 10.1007/7050_005

    Google Scholar 

  167. Randell JC, Bowers JL, Rodriguez HK, Bell SP (2006) Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2–7 helicase. Mol Cell 21:29–39

    PubMed  CAS  Google Scholar 

  168. Ricke RM, Bielinsky AK (2004) Mcm10 regulates the stability and chromatin association of DNA polymerase-alpha. Mol Cell 16:173–185

    PubMed  CAS  Google Scholar 

  169. Rudolph C, Schürer KA, Kramer W (2006) Facing Stalled Replication Forks: The Intricacies of Doing the Right Thing. In: Lankenau DH (ed) Genome Integrity: Facets and Perspectives, vol 1. Springer, Berlin Heidelberg DOI: 10.1007/7050_003

    Google Scholar 

  170. Saka Y, Fantes P, Yanagida M (1994) Coupling of DNA replication and mitosis by fission yeast rad4/cut5. J Cell Sci Suppl 18:57–61

    PubMed  CAS  Google Scholar 

  171. Salas M, Miller JT, Leis J, DePamphilis ML (1996) Mechanisms for priming DNA synthesis. In: DePamphilis ML (ed) DNA Replication in Eukaryotic Cells. Cold Spring Harbor Laboratory Press, Cold Spring Harbor Laboratory, NY, USA, p 131–176

    Google Scholar 

  172. Sangrithi MN, Bernal JA, Madine M, Philpott A, Lee J, Dunphy WG, Venkitaraman AR (2005) Initiation of DNA replication requires the RECQL4 protein mutated in Rothmund-Thomson syndrome. Cell 121:887–898

    PubMed  CAS  Google Scholar 

  173. Saxena S, Dutta A (2005) Geminin-Cdt1 balance is critical for genetic stability. Mutat Res 569:111–121

    PubMed  CAS  Google Scholar 

  174. Schub O, Rohaly G, Smith RW, Schneider A, Dehde S, Dornreiter I, Nasheuer HP (2001) Multiple phosphorylation sites of DNA polymerase α-primase cooperate to regulate the initiation of DNA replication in vitro. J Biol Chem 276:38076–38083

    PubMed  CAS  Google Scholar 

  175. Schwacha A, Bell SP (2001) Interactions between two catalytically distinct MCM subgroups are essential for coordinated ATP hydrolysis and DNA replication. Mol Cell 8:1093–1104

    PubMed  CAS  Google Scholar 

  176. Shcherbakova PV, Bebenek K, Kunkel TA (2003) Functions of Eukaryotic DNA Polymerases. Sci. SAGE KE 2003:re3 (26 February 2003) http://sageke.sciencemag.org/cgi/content/full/sageke;2003/2008/re2003

  177. Sherr CJ, Roberts JM (2004) Living with or without cyclins and cyclin-dependent kinases. Genes Dev 18:2699–2711

    PubMed  CAS  Google Scholar 

  178. Smith RWP, Nasheuer HP (2002) Control of complex formation of DNA polymerase alpha-primase and cell-free DNA replication by the C-terminal amino acids of the largest subunit p180. FEBS Lett 527:143–146

    PubMed  CAS  Google Scholar 

  179. Søe K, Rockstroh A, Grosse F (2006) Role of Human Topoisomerase I in DNA Repair and Apoptosis In: Lankenau DH (ed) Genome Integrity: Facets and Perspectives, vol 1. Springer, Berlin Heidelberg DOI: 10.1007/7050_004

    Google Scholar 

  180. Speck C, Chen Z, Li H, Stillman B (2005) ATPase-dependent cooperative binding of ORC and Cdc6 to origin DNA. Nat Struct Mol Biol

    Google Scholar 

  181. Stelter P, Ulrich HD (2003) Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425:188–191

    PubMed  CAS  Google Scholar 

  182. Stillman B (2005) Origin recognition and the chromosome cycle. FEBS Lett 579:877–884

    PubMed  CAS  Google Scholar 

  183. Sugino A (1995) Yeast DNA polymerases and their role at the replication fork. Trends Biochem Sci 20:319–323

    PubMed  CAS  Google Scholar 

  184. Sun WH, Coleman TR, DePamphilis ML (2002) Cell cycle-dependent regulation of the association between origin recognition proteins and somatic cell chromatin. Embo J 21:1437–1446

    PubMed  CAS  Google Scholar 

  185. Syväoja J, Linn S (1989) Characterization of a large form of DNA polymerase delta from HeLa cells that is insensitive to proliferating cell nuclear antigen. J Biol Chem 264:2489–2497

    PubMed  Google Scholar 

  186. Syväoja J, Suomensaari S, Nishida C, Godsmith JS, Chui GSJ, Jain S, Linn S (1990) Dna polymerase alpha, delta and epsilon: Three distinct enzymes from HeLa cells. Proc Natl Acad Sci USA 87:6664–6668

    PubMed  Google Scholar 

  187. Tada S, Li A, Maiorano D, Mechali M, Blow JJ (2001) Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdt1 by geminin. Nat Cell Biol 3:107–113

    PubMed  CAS  Google Scholar 

  188. Takahashi TS, Walter JC (2005) Cdc7-Drf1 is a developmentally regulated protein kinase required for the initiation of vertebrate DNA replication. Genes Dev 19:2295–2300

    PubMed  CAS  Google Scholar 

  189. Takasaki Y, Deng JS, Tan EM (1981) A nuclear antigen associated with cell proliferation and blast transformation. J Exp Med 154:1899–1909

    PubMed  CAS  Google Scholar 

  190. Takayama Y, Kamimura Y, Okawa M, Muramatsu S, Sugino A, Araki H (2003) GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast. Genes Dev 17:1153–1165

    PubMed  CAS  Google Scholar 

  191. Tanaka S, Diffley JF (2002) Interdependent nuclear accumulation of budding yeast Cdt1 and Mcm2–7 during G1 phase. Nat Cell Biol 4:198–207

    PubMed  CAS  Google Scholar 

  192. Timson DJ, Singleton MR, Wigley DB (2000) DNA ligases in the repair and replication of DNA. Mutat Res 460:301–318

    PubMed  CAS  Google Scholar 

  193. Tsubota T, Maki S, Kubota H, Sugino A, Maki H (2003) Double-stranded DNA binding properties of Saccharomyces cerevisiae DNA polymerase epsilon and of the Dpb3p-Dpb4p subassembly. Genes Cells 8:873–888

    PubMed  CAS  Google Scholar 

  194. Tye BK (1999) MCM proteins in DNA replication. Annu Rev Biochem 68:649–686

    PubMed  CAS  Google Scholar 

  195. Ulrich HD (2005) Mutual interactions between the SUMO and ubiquitin systems: a plea of no contest. Trends Cell Biol 15:525–532

    PubMed  CAS  Google Scholar 

  196. Vogelauer M, Rubbi L, Lucas I, Brewer BJ, Grunstein M (2002) Histone acetylation regulates the time of replication origin firing. Mol Cell 10:1223–1233

    PubMed  CAS  Google Scholar 

  197. Volkening M, Hoffmann I (2005) Involvement of human MCM8 in prereplication complex assembly by recruiting hcdc6 to chromatin. Mol Cell Biol 25:1560–1568

    PubMed  CAS  Google Scholar 

  198. Waga S, Stillman B (1998) The DNA replication fork in eukaryotic cells. Annu Rev Biochem 67:721–751

    PubMed  CAS  Google Scholar 

  199. Walter J, Newport J (2000) Initiation of eukaryotic DNA replication: origin unwinding and sequential chromatin association of Cdc45, RPA, and DNA polymerase alpha. Mol Cell 5:617–627

    PubMed  CAS  Google Scholar 

  200. Walter JC (2000) Evidence for sequential action of cdc7 and cdk2 protein kinases during initiation of DNA replication in xenopus egg extracts. J Biol Chem 275:39773–39778

    PubMed  CAS  Google Scholar 

  201. Weisshart K, Förster H, Kremmer E, Schlott B, Grosse F, Nasheuer HP (2000) Protein-protein interactions of the primase subunits p58 and p48 with simian virus 40 T antigen are required for efficient primer synthesis in a cell-free system. J Biol Chem 275:17328–17337

    PubMed  CAS  Google Scholar 

  202. Weisshart K, Pestryakov P, Smith RW, Hartmann H, Kremmer E, Lavrik O, Nasheuer HP (2004) Coordinated regulation of replication protein A activities by its subunits p14 and p32. J Biol Chem 279:35368–35376

    PubMed  CAS  Google Scholar 

  203. Wintersberger U, Wintersberger E (1970) Studies on deoxyribonucleic acid polymerases from yeast. 1. Parial purification and properties of two DNA polymerases from mitochondria-free cell extracts. Eur J Biochem 13:11–19

    PubMed  CAS  Google Scholar 

  204. Wohlschlegel JA, Dwyer BT, Dhar SK, Cvetic C, Walter JC, Dutta A (2000) Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science 290:2309–2312

    PubMed  CAS  Google Scholar 

  205. Wold MS (1997) Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem 66:61–92

    PubMed  CAS  Google Scholar 

  206. Yoshida K (2005) Identification of a novel cell-cycle-induced MCM family protein MCM9. Biochem Biophys Res Commun 331:669–674

    PubMed  CAS  Google Scholar 

  207. Yuzhakov A, Kelman Z, Hurwitz J, O'Donnell M (1999) Multiple competition reactions for RPA order the assembly of the DNA polymerase delta holoenzyme. Embo J 18:6189–6199

    PubMed  CAS  Google Scholar 

  208. Zerbe LK, Kuchta RD (2002) The p58 subunit of human DNA primase is important for primer initiation, elongation, and counting. Biochemistry 41:4891–4900

    PubMed  CAS  Google Scholar 

  209. Zhang SJ, Zeng XR, Zhang P, Toomey NL, Chuang RY, Chang LS, Lee MY (1995) A conserved region in the amino terminus of DNA polymerase delta is involved in proliferating cell nuclear antigen binding. J Biol Chem 270:7988–7992

    PubMed  CAS  Google Scholar 

  210. Zlotkin T, Kaufmann G, Jiang Y, Lee MY, Uitto L, Syväoja J, Dornreiter I, Fanning E, Nethaniel T (1996) DNA polymerase ε may be dispensable for SV40- but not cellular DNA replication. EMBO J 15:2298–2305

    PubMed  CAS  Google Scholar 

  211. Zou L, Elledge SJ (2003) Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300:1542–1548

    PubMed  CAS  Google Scholar 

  212. Zuo S, Gibbs E, Kelman Z, Wang TS, O'Donnell M, MacNeill SA, Hurwitz J (1997) DNA polymerase delta isolated from Schizosaccharomyces pombe contains five subunits. Proc Natl Acad Sci USA 94:11244–11249

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Peter Nasheuer .

Editor information

Dirk-Henner Lankenau

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nasheuer, H.P., Pospiech, H., Syväoja, J. (2006). Progress Towards the Anatomy of the Eukaryotic DNA Replication Fork. In: Lankenau, DH. (eds) Genome Integrity. Genome Dynamics and Stability, vol 1. Springer, Berlin, Heidelberg . https://doi.org/10.1007/7050_016

Download citation

Publish with us

Policies and ethics