Skip to main content

Meiotic recombination

  • Chapter
  • First Online:
Molecular Genetics of Recombination

Part of the book series: Topics in Current Genetics ((TCG,volume 17))

Abstract

Crossover recombination is essential for homolog segregation during meiosis. In contrast to spontaneous mitotic recombination, meiotic recombination is intrinsic being initiated by the programmed formation of DNA double-strand-breaks. In addition, the tendencies of the core recombination machinery to utilize a sister-chromatid template and to produce a noncrossover outcome are counteracted by meiosis-specific factors, which ultimately ensure the formation of at least one crossover per homolog.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal S, Roeder GS (2000) Zip3 provides a link between recombination enzymes and synaptonemal complex proteins. Cell 102:245–255

    PubMed  CAS  Google Scholar 

  2. Akamatsu Y, Dziadkowiec D, Ikeguchi M, Shinagawa H, Iwasaki H (2003) Two different Swi5-containing protein complexes are involved in mating-type switching and recombination repair in fission yeast. Proc Natl Acad Sci USA 100:15770–15775

    PubMed  CAS  Google Scholar 

  3. Alexeev A, Mazin A, Kowalczykowski SC (2003) Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51-ssDNA nucleoprotein filament. Nat Struct Biol 10:182–186

    PubMed  CAS  Google Scholar 

  4. Allers T, Lichten M (2000) A method for preparing genomic DNA that restrains branch migration of Holliday junctions. Nucleic Acids Res 28:e6

    PubMed  CAS  Google Scholar 

  5. Allers T, Lichten M (2001a) Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106:47–57

    PubMed  CAS  Google Scholar 

  6. Allers T, Lichten M (2001b) Intermediates of yeast meiotic recombination contain heteroduplex DNA. Mol Cell 8:225–231

    PubMed  CAS  Google Scholar 

  7. Anderson DE, Trujillo KM, Sung P, Erickson HP (2001) Structure of the Rad50.Mre11 DNA repair complex from Saccharomyces cerevisiae by electron microscopy. J Biol Chem 276:37027–37033

    PubMed  CAS  Google Scholar 

  8. Anuradha S, Muniyappa K (2004) Saccharomyces cerevisiae Hop1 zinc finger motif is the minimal region required for its function in vitro. J Biol Chem 279:28961–28969

    PubMed  CAS  Google Scholar 

  9. Aravind L, Koonin EV (1998) The HORMA domain: a common structural denominator in mitotic checkpoints, chromosome synapsis and DNA repair. Trends Biochem Sci 23:284–286

    PubMed  CAS  Google Scholar 

  10. Arbel A, Zenvirth D, Simchen G (1999) Sister chromatid-based DNA repair is mediated by RAD54, not by DMC1 or TID1. EMBO J 18:2648–2658

    PubMed  CAS  Google Scholar 

  11. Arora C, Kee K, Maleki S, Keeney S (2004) Antiviral protein Ski8 is a direct partner of Spo11 in meiotic DNA break formation, independent of its cytoplasmic role in RNA metabolism. Mol Cell 13:549–559

    PubMed  CAS  Google Scholar 

  12. Bailis JM, Roeder GS (1998) Synaptonemal complex morphogenesis and sister-chromatid cohesion require Mek1-dependent phosphorylation of a meiotic chromosomal protein. Genes Dev 12:3551–3563

    PubMed  CAS  Google Scholar 

  13. Bailis JM, Roeder GS (2000) Pachytene exit controlled by reversal of Mek1-dependent phosphorylation. Cell 101:211–221

    PubMed  CAS  Google Scholar 

  14. Baker SM, Plug AW, Prolla TA, Bronner CE, Harris AC, Yao X, Christie DM, Monell C, Arnheim N, Bradley A, Ashley T, Liskay RM (1996) Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nat Genet 13:336–342

    PubMed  CAS  Google Scholar 

  15. Baudat F, Manova K, Yuen JP, Jasin M, Keeney S (2000) Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol Cell 6:989–998

    PubMed  CAS  Google Scholar 

  16. Baudat F, Nicolas A (1997) Clustering of meiotic double-strand breaks on yeast chromosome III. Proc Natl Acad Sci USA 94:5213–5218

    PubMed  CAS  Google Scholar 

  17. Becker E, Meyer V, Madaoui H, Guerois R (2006) Detection of a tandem BRCT in Nbs1 and Xrs2 with functional implications in the DNA damage response. Bioinformatics 22:1289–1292

    PubMed  CAS  Google Scholar 

  18. Bell L, Byers B (1983a) Separation of branched from linear DNA by two-dimensional gel electrophoresis. Anal Biochem 130:527–535

    PubMed  CAS  Google Scholar 

  19. Bell LR, Byers B (1983b) Homologous association of chromosomal DNA during yeast meiosis. Cold Spring Harb Symp Quant Biol 47 Pt 2:829–840

    Google Scholar 

  20. Ben-Aroya S, Mieczkowski PA, Petes TD, Kupiec M (2004) The compact chromatin structure of a Ty repeated sequence suppresses recombination hotspot activity in Saccharomyces cerevisiae. Mol Cell 15:221–231

    PubMed  CAS  Google Scholar 

  21. Bergerat A, de Massy B, Gadelle D, Varoutas PC, Nicolas A, Forterre P (1997) An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature 386:414–417

    PubMed  CAS  Google Scholar 

  22. Bishop DK (1994) RecA homologs Dmc1 and Rad51 interact to form multiple nuclear complexes prior to meiotic chromosome synapsis. Cell 79:1081–1092

    PubMed  CAS  Google Scholar 

  23. Bishop DK, Park D, Xu L, Kleckner N (1992) DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69:439–456

    PubMed  CAS  Google Scholar 

  24. Bishop DK, Zickler D (2004) Early decision; meiotic crossover interference prior to stable strand exchange and synapsis. Cell 117:9–15

    PubMed  CAS  Google Scholar 

  25. Blanton HL, Radford SJ, McMahan S, Kearney HM, Ibrahim JG, Sekelsky J (2005) REC, Drosophila MCM8, drives formation of meiotic crossovers. PLoS Genet 1:e40

    PubMed  Google Scholar 

  26. Blat Y, Kleckner N (1999) Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region. Cell 98:249–259

    PubMed  CAS  Google Scholar 

  27. Blat Y, Protacio RU, Hunter N, Kleckner N (2002) Physical and functional interactions among basic chromosome organizational features govern early steps of meiotic chiasma formation. Cell 111:791–802

    PubMed  CAS  Google Scholar 

  28. Blatch GL, Lassle M (1999) The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays 21:932–939

    PubMed  CAS  Google Scholar 

  29. Boddy MN, Gaillard PH, McDonald WH, Shanahan P, Yates JR 3rd, Russell P (2001) Mus81-Eme1 are essential components of a Holliday junction resolvase. Cell 107:537–548

    PubMed  CAS  Google Scholar 

  30. Borde V, Goldman AS, Lichten M (2000) Direct coupling between meiotic DNA replication and recombination initiation. Science 290:806–809

    PubMed  CAS  Google Scholar 

  31. Borde V, Lin W, Novikov E, Petrini JH, Lichten M, Nicolas A (2004) Association of Mre11p with double-strand break sites during yeast meiosis. Mol Cell 13:389–401

    PubMed  CAS  Google Scholar 

  32. Borde V, Wu TC, Lichten M (1999) Use of a recombination reporter insert to define meiotic recombination domains on chromosome III of Saccharomyces cerevisiae. Mol Cell Biol 19:4832–4842

    PubMed  CAS  Google Scholar 

  33. Borner GV, Kleckner N, Hunter N (2004) Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117:29–45

    PubMed  Google Scholar 

  34. Borts RH, Lichten M, Haber JE (1986) Analysis of meiosis-defective mutations in yeast by physical monitoring of recombination. Genetics 113:551–567

    PubMed  CAS  Google Scholar 

  35. Bowring FJ, Yeadon PJ, Stainer RG, Catcheside DE (2006) Chromosome pairing and meiotic recombination in Neurospora crassa spo11 mutants. Curr Genet 50:115–123

    PubMed  CAS  Google Scholar 

  36. Bugreev DV, Golub EI, Stasiak AZ, Stasiak A, Mazin AV (2005) Activation of human meiosis-specific recombinase Dmc1 by Ca2+. J Biol Chem 280:26886–26895

    PubMed  CAS  Google Scholar 

  37. Cao L, Alani E, Kleckner N (1990) A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell 61:1089–1101

    PubMed  CAS  Google Scholar 

  38. Carlton PM, Farruggio AP, Dernburg AF (2006) A link between meiotic prophase progression and crossover control. PLoS Genet 2:e12

    PubMed  Google Scholar 

  39. Cartagena-Lirola H, Guerini I, Viscardi V, Lucchini G, Longhese MP (2006) Budding Yeast Sae2 is an in vivo target of the Mec1 and Tel1 checkpoint kinases during meiosis. Cell Cycle 5:1549–1559

    PubMed  CAS  Google Scholar 

  40. Catlett MG, Forsburg SL (2003) Schizosaccharomyces pombe Rdh54 (TID1) acts with Rhp54 (RAD54) to repair meiotic double-strand breaks. Mol Biol Cell 14:4707–4720

    PubMed  CAS  Google Scholar 

  41. Celerin M, Merino ST, Stone JE, Menzie AM, Zolan ME (2000) Multiple roles of Spo11 in meiotic chromosome behavior. EMBO J 19:2739–2750

    PubMed  CAS  Google Scholar 

  42. Chang YC, Lo YH, Lee MH, Leng CH, Hu SM, Chang CS, Wang TF (2005) Molecular visualization of the yeast Dmc1 protein ring and Dmc1-ssDNA nucleoprotein complex. Biochemistry 44:6052–6058

    PubMed  CAS  Google Scholar 

  43. Chen L, Trujillo K, Ramos W, Sung P, Tomkinson AE (2001) Promotion of Dnl4-catalyzed DNA end-joining by the Rad50/Mre11/Xrs2 and Hdf1/Hdf2 complexes. Mol Cell 8:1105–1115

    PubMed  CAS  Google Scholar 

  44. Chen L, Trujillo KM, Van Komen S, Roh DH, Krejci L, Lewis LK, Resnick MA, Sung P, Tomkinson AE (2005) Effect of amino acid substitutions in the Rad50 ATP binding domain on DNA double strand break repair in yeast. J Biol Chem 280:2620–2627

    PubMed  CAS  Google Scholar 

  45. Chen YK, Leng CH, Olivares H, Lee MH, Chang YC, Kung WM, Ti SC, Lo YH, Wang AH, Chang CS, Bishop DK, Hsueh YP, Wang TF (2004) Heterodimeric complexes of Hop2 and Mnd1 function with Dmc1 to promote meiotic homolog juxtaposition and strand assimilation. Proc Natl Acad Sci USA 101:10572–10577

    PubMed  CAS  Google Scholar 

  46. Cheng CH, Lo YH, Liang SS, Ti SC, Lin FM, Yeh CH, Huang HY, Wang TF (2006) SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes Dev 20:2067–2081

    PubMed  CAS  Google Scholar 

  47. Cheng Z, Liu Y, Wang C, Parker R, Song H (2004) Crystal structure of Ski8p, a WD-repeat protein with dual roles in mRNA metabolism and meiotic recombination. Protein Sci 13:2673–2684

    PubMed  CAS  Google Scholar 

  48. Chua PR, Roeder GS (1997) Tam1, a telomere-associated meiotic protein, functions in chromosome synapsis and crossover interference. Genes Dev 11:1786–1800

    PubMed  CAS  Google Scholar 

  49. Chua PR, Roeder GS (1998) Zip2, a meiosis-specific protein required for the initiation of chromosome synapsis. Cell 93:349–359

    PubMed  CAS  Google Scholar 

  50. Clerici M, Mantiero D, Lucchini G, Longhese MP (2005) The Saccharomyces cerevisiae Sae2 protein promotes resection and bridging of double strand break ends. J Biol Chem 280:38631–38638

    PubMed  CAS  Google Scholar 

  51. Clerici M, Mantiero D, Lucchini G, Longhese MP (2006) The Saccharomyces cerevisiae Sae2 protein negatively regulates DNA damage checkpoint signalling. EMBO Rep 7:212–218

    PubMed  CAS  Google Scholar 

  52. Clyne RK, Katis VL, Jessop L, Benjamin KR, Herskowitz I, Lichten M, Nasmyth K (2003) Polo-like kinase Cdc5 promotes chiasmata formation and cosegregation of sister centromeres at meiosis I. Nat Cell Biol 5:480–485

    PubMed  CAS  Google Scholar 

  53. Corbett KD, Berger JM (2003a) Emerging roles for plant topoisomerase VI. Chem Biol 10:107–111

    PubMed  CAS  Google Scholar 

  54. Corbett KD, Berger JM (2003b) Structure of the topoisomerase VI-B subunit: implications for type II topoisomerase mechanism and evolution. EMBO J 22:151–163

    PubMed  CAS  Google Scholar 

  55. Cromie GA, Hyppa RW, Taylor AF, Zakharyevich K, Hunter N, Smith GR (2006) Single Holliday junctions are intermediates of meiotic recombination. Cell in press

    Google Scholar 

  56. Davis ES, Shafer BK, Strathern JN (2000) The Saccharomyces cerevisiae RDN1 locus is sequestered from interchromosomal meiotic ectopic recombination in a SIR2-dependent manner. Genetics 155:1019–1032

    PubMed  CAS  Google Scholar 

  57. de Boer E, Heyting C (2006) The diverse roles of transverse filaments of synaptonemal complexes in meiosis. Chromosoma 115:220–234

    PubMed  Google Scholar 

  58. de Jager M, van Noort J, van Gent DC, Dekker C, Kanaar R, Wyman C (2001) Human Rad50/Mre11 is a flexible complex that can tether DNA ends. Mol Cell 8:1129–1135

    PubMed  Google Scholar 

  59. de los Santos T, Hollingsworth NM (1999) Red1p, a MEK1-dependent phosphoprotein that physically interacts with Hop1p during meiosis in yeast. J Biol Chem 274:1783–1790

    Google Scholar 

  60. de los Santos T, Hunter N, Lee C, Larkin B, Loidl J, Hollingsworth NM (2003) The Mus81/Mms4 endonuclease acts independently of double-holliday junction resolution to promote a distinct subset of crossovers during meiosis in budding yeast. Genetics 164:81–94

    Google Scholar 

  61. de los Santos T, Loidl J, Larkin B, Hollingsworth NM (2001) A role for MMS4 in the processing of recombination intermediates during meiosis in Saccharomyces cerevisiae. Genetics 159:1511–1525

    Google Scholar 

  62. De Massy B, Baudat F, Nicolas A (1994) Initiation of recombination in Saccharomyces cerevisiae haploid meiosis. Proc Natl Acad Sci USA 91:11929–11933

    PubMed  Google Scholar 

  63. de Massy B, Rocco V, Nicolas A (1995) The nucleotide mapping of DNA double-strand breaks at the CYS3 initiation site of meiotic recombination in Saccharomyces cerevisiae. EMBO J 14:4589–4598

    PubMed  Google Scholar 

  64. Dernburg AF, McDonald K, Moulder G, Barstead R, Dresser M, Villeneuve AM (1998) Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94:387–398

    PubMed  CAS  Google Scholar 

  65. Diaz RL, Alcid AD, Berger JM, Keeney S (2002) Identification of residues in yeast Spo11p critical for meiotic DNA double-strand break formation. Mol Cell Biol 22:1106–1115

    PubMed  CAS  Google Scholar 

  66. Difilippantonio S, Celeste A, Fernandez-Capetillo O, Chen HT, Reina San Martin B, Van Laethem F, Yang YP, Petukhova GV, Eckhaus M, Feigenbaum L, Manova K, Kruhlak M, Camerini-Otero RD, Sharan S, Nussenzweig M, Nussenzweig A (2005) Role of Nbs1 in the activation of the Atm kinase revealed in humanized mouse models. Nat Cell Biol 7:675–685

    PubMed  CAS  Google Scholar 

  67. Domenichini S, Raynaud C, Ni DA, Henry Y, Bergounioux C (2006) Atmnd1-Δ1 is sensitive to gamma-irradiation and defective in meiotic DNA repair. DNA Repair (Amst) 5:455–464

    CAS  Google Scholar 

  68. Dong H, Roeder GS (2000) Organization of the yeast Zip1 protein within the central region of the synaptonemal complex. J Cell Biol 148:417–426

    PubMed  CAS  Google Scholar 

  69. Dray E, Siaud N, Dubois E, Doutriaux MP (2006) Interaction between Arabidopsis Brca2 and its partners Rad51, Dmc1, and Dss1. Plant Physiol 140:1059–1069

    PubMed  CAS  Google Scholar 

  70. Dresser ME, Ewing DJ, Conrad MN, Dominguez AM, Barstead R, Jiang H, Kodadek T (1997) DMC1 functions in a Saccharomyces cerevisiae meiotic pathway that is largely independent of the RAD51 pathway. Genetics 147:533–544

    PubMed  CAS  Google Scholar 

  71. Dutta R, Inouye M (2000) GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci 25:24–28

    PubMed  CAS  Google Scholar 

  72. Edelmann W, Cohen PE, Kane M, Lau K, Morrow B, Bennett S, Umar A, Kunkel T, Cattoretti G, Chaganti R, Pollard JW, Kolodner RD, Kucherlapati R (1996) Meiotic pachytene arrest in MLH1-deficient mice. Cell 85:1125–1134

    PubMed  CAS  Google Scholar 

  73. Ellermeier C, Schmidt H, Smith GR (2004) Swi5 acts in meiotic DNA joint molecule formation in Schizosaccharomyces pombe. Genetics 168:1891–1898

    PubMed  CAS  Google Scholar 

  74. Engebrecht JA, Voelkel-Meiman K, Roeder GS (1991) Meiosis-specific RNA splicing in yeast. Cell 66:1257–1268

    PubMed  CAS  Google Scholar 

  75. Enomoto R, Kinebuchi T, Sato M, Yagi H, Shibata T, Kurumizaka H, Yokoyama S (2004) Positive role of the mammalian TBPIP/HOP2 protein in DMC1-mediated homologous pairing. J Biol Chem 279:35263–35272

    PubMed  CAS  Google Scholar 

  76. Evans DH, Li YF, Fox ME, Smith GR (1997) A WD repeat protein, Rec14, essential for meiotic recombination in Schizosaccharomyces pombe. Genetics 146:1253–1264

    PubMed  CAS  Google Scholar 

  77. Fabre F, Boulet A, Roman H (1984) Gene conversion at different points in the mitotic cycle of Saccharomyces cerevisiae. Mol Gen Genet 195:139–143

    PubMed  CAS  Google Scholar 

  78. Fan QQ, Petes TD (1996) Relationship between nuclease-hypersensitive sites and meiotic recombination hot spot activity at the HIS4 locus of Saccharomyces cerevisiae. Mol Cell Biol 16:2037–2043

    PubMed  CAS  Google Scholar 

  79. Flores-Rozas H, Kolodner RD (1998) The Saccharomyces cerevisiae MLH3 gene functions in MSH3-dependent suppression of frameshift mutations. Proc Natl Acad Sci USA 95:12404–12409

    PubMed  CAS  Google Scholar 

  80. Fox ME, Virgin JB, Metzger J, Smith GR (1997) Position- and orientation-independent activity of the Schizosaccharomyces pombe meiotic recombination hot spot M26. Proc Natl Acad Sci USA 94:7446–7451

    PubMed  CAS  Google Scholar 

  81. Fox ME, Yamada T, Ohta K, Smith GR (2000) A family of cAMP-response-element-related DNA sequences with meiotic recombination hotspot activity in Schizosaccharomyces pombe. Genetics 156:59–68

    PubMed  CAS  Google Scholar 

  82. Friedman DB, Hollingsworth NM, Byers B (1994) Insertional mutations in the yeast HOP1 gene: evidence for multimeric assembly in meiosis. Genetics 136:449–464

    PubMed  CAS  Google Scholar 

  83. Fung JC, Rockmill B, Odell M, Roeder GS (2004) Imposition of crossover interference through the nonrandom distribution of synapsis initiation complexes. Cell 116:795–802

    PubMed  CAS  Google Scholar 

  84. Furuse M, Nagase Y, Tsubouchi H, Murakami-Murofushi K, Shibata T, Ohta K (1998) Distinct roles of two separable in vitro activities of yeast Mre11 in mitotic and meiotic recombination. EMBO J 17:6412–6425

    PubMed  CAS  Google Scholar 

  85. Garcia-Diaz M, Bebenek K, Gao G, Pedersen LC, London RE, Kunkel TA (2005) Structure-function studies of DNA polymerase lambda. DNA Repair (Amst) 4:1358–1367

    CAS  Google Scholar 

  86. Garcia-Diaz M, Dominguez O, Lopez-Fernandez LA, de Lera LT, Saniger ML, Ruiz JF, Parraga M, Garcia-Ortiz MJ, Kirchhoff T, del Mazo J, Bernad A, Blanco L (2000) DNA polymerase lambda (Pol lambda), a novel eukaryotic DNA polymerase with a potential role in meiosis. J Mol Biol 301:851–867

    PubMed  CAS  Google Scholar 

  87. Gardiner JM, Bullard SA, Chrome C, Malone RE (1997) Molecular and genetic analysis of REC103, an early meiotic recombination gene in yeast. Genetics 146:1265–1274

    PubMed  CAS  Google Scholar 

  88. Gasior SL, Olivares H, Ear U, Hari DM, Weichselbaum R, Bishop DK (2001) Assembly of RecA-like recombinases: distinct roles for mediator proteins in mitosis and meiosis. Proc Natl Acad Sci USA 98:8411–8418

    PubMed  CAS  Google Scholar 

  89. Gerton JL, DeRisi J, Shroff R, Lichten M, Brown PO, Petes TD (2000) Inaugural article: global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97:11383–11390

    PubMed  CAS  Google Scholar 

  90. Gerton JL, DeRisi JL (2002) Mnd1p: an evolutionarily conserved protein required for meiotic recombination. Proc Natl Acad Sci USA 99:6895–6900

    PubMed  CAS  Google Scholar 

  91. Gorlov IP, Gorlova OY (2001) Cost-benefit analysis of recombination and its application for understanding of chiasma interference. J Theor Biol 213:1–8

    PubMed  CAS  Google Scholar 

  92. Gottlieb S, Esposito RE (1989) A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell 56:771–776

    PubMed  CAS  Google Scholar 

  93. Grell RF (1984) Time of recombination in the Drosophila melanogaster oocyte.

    Google Scholar 

  94. III. Selection and characterization of temperature-sensitive and -insensitive recombination-deficient alleles in Drosophila. Genetics 108:425–443

    Google Scholar 

  95. Grelon M, Vezon D, Gendrot G, Pelletier G (2001) AtSPO11-1 is necessary for efficient meiotic recombination in plants. EMBO J 20:589–600

    PubMed  CAS  Google Scholar 

  96. Guillon H, Baudat F, Grey C, Liskay RM, de Massy B (2005) Crossover and noncrossover pathways in mouse meiosis. Mol Cell 20:563–573

    PubMed  CAS  Google Scholar 

  97. Haber JE, Thorburn PC, Rogers D (1984) Meiotic and mitotic behavior of dicentric chromosomes in Saccharomyces cerevisiae. Genetics 106:185–205

    PubMed  CAS  Google Scholar 

  98. Hayase A, Takagi M, Miyazaki T, Oshiumi H, Shinohara M, Shinohara A (2004) A protein complex containing Mei5 and Sae3 promotes the assembly of the meiosis-specific RecA homolog Dmc1. Cell 119:927–940

    PubMed  CAS  Google Scholar 

  99. Henderson DS, Wiegand UK, Norman DG, Glover DM (2000) Mutual correction of faulty PCNA subunits in temperature-sensitive lethal mus209 mutants of Drosophila melanogaster. Genetics 154:1721–1733

    PubMed  CAS  Google Scholar 

  100. Henderson KA, Kee K, Maleki S, Santini PA, Keeney S (2006) Cyclin-dependent kinase directly regulates initiation of meiotic recombination. Cell 125:1321–1332

    PubMed  CAS  Google Scholar 

  101. Henderson KA, Keeney S (2004) Tying synaptonemal complex initiation to the formation and programmed repair of DNA double-strand breaks. Proc Natl Acad Sci USA 101:4519–4524

    PubMed  CAS  Google Scholar 

  102. Henderson KA, Keeney S (2005) Synaptonemal complex formation: where does it start? Bioessays 27:995–998

    PubMed  CAS  Google Scholar 

  103. Henry JM, Camahort R, Rice DA, Florens L, Swanson SK, Washburn MP, Gerton JL (2006) Mnd1/Hop2 facilitates Dmc1-dependent interhomolog crossover formation in meiosis of budding yeast. Mol Cell Biol 26:2913–2923

    PubMed  CAS  Google Scholar 

  104. Heyer WD (2004) Recombination: Holliday junction resolution and crossover formation. Curr Biol 14:R56–58

    PubMed  CAS  Google Scholar 

  105. Heyer WD, Ehmsen KT, Solinger JA (2003) Holliday junctions in the eukaryotic nucleus: resolution in sight? Trends Biochem Sci 28:548–557

    PubMed  CAS  Google Scholar 

  106. Heyer WD, Li X, Rolfsmeier M, Zhang XP (2006) Rad54: the Swiss Army knife of homologous recombination? Nucleic Acids Res 4115–4125

    Google Scholar 

  107. Higgins JD, Sanchez-Moran E, Armstrong SJ, Jones GH, Franklin FC (2005) The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over. Genes Dev 19:2488–2500

    PubMed  CAS  Google Scholar 

  108. Hillers KJ (2004) Crossover interference. Curr Biol 14:R1036–1037

    PubMed  CAS  Google Scholar 

  109. Hochwagen A, Tham WH, Brar GA, Amon A (2005) The FK506 binding protein Fpr3 counteracts protein phosphatase 1 to maintain meiotic recombination checkpoint activity. Cell 122:861–873

    PubMed  CAS  Google Scholar 

  110. Hoffmann ER, Borts RH (2004) Meiotic recombination intermediates and mismatch repair proteins. Cytogenet Genome Res 107:232–248

    PubMed  CAS  Google Scholar 

  111. Hoffmann ER, Borts RH (2005) Trans events associated with crossovers are revealed in the absence of mismatch repair genes in Saccharomyces cerevisiae. Genetics 169:1305–1310

    PubMed  CAS  Google Scholar 

  112. Hoffmann ER, Eriksson E, Herbert BJ, Borts RH (2005) MLH1 and MSH2 promote the symmetry of double-strand break repair events at the HIS4 hotspot in Saccharomyces cerevisiae. Genetics 169:1291–1303

    PubMed  CAS  Google Scholar 

  113. Hollingsworth NM, Brill SJ (2004) The Mus81 solution to resolution: generating meiotic crossovers without Holliday junctions. Genes Dev 18:117–125

    PubMed  CAS  Google Scholar 

  114. Hollingsworth NM, Johnson AD (1993) A conditional allele of the Saccharomyces cerevisiae HOP1 gene is suppressed by overexpression of two other meiosis-specific genes: RED1 and REC104. Genetics 133:785–797

    PubMed  CAS  Google Scholar 

  115. Hollingsworth NM, Ponte L, Halsey C (1995) MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in Saccharomyces cerevisiae but not mismatch repair. Genes Dev 9:1728–1739

    PubMed  CAS  Google Scholar 

  116. Holzen TM, Shah PP, Olivares HA, Bishop DK (2006) Tid1/Rdh54 promotes dissociation of Dmc1 from nonrecombinogenic sites in meiotic chromatin. Genes Dev 20:2593–604

    PubMed  CAS  Google Scholar 

  117. Hong EL, Shinohara A, Bishop DK (2001) Saccharomyces cerevisiae Dmc1 protein promotes renaturation of single-strand DNA (ssDNA) and assimilation of ssDNA into homologous super-coiled duplex DNA. J Biol Chem 276:41906–41912

    PubMed  CAS  Google Scholar 

  118. Hooker GW, Roeder GS (2006) A Role for SUMO in meiotic chromosome synapsis. Curr Biol 16:1238–1243

    PubMed  CAS  Google Scholar 

  119. Hopfner KP, Craig L, Moncalian G, Zinkel RA, Usui T, Owen BA, Karcher A, Henderson B, Bodmer JL, McMurray CT, Carney JP, Petrini JH, Tainer JA (2002) The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair. Nature 418:562–566

    PubMed  CAS  Google Scholar 

  120. Hopfner KP, Karcher A, Craig L, Woo TT, Carney JP, Tainer JA (2001) Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase. Cell 105:473–485

    PubMed  CAS  Google Scholar 

  121. Hopfner KP, Karcher A, Shin DS, Craig L, Arthur LM, Carney JP, Tainer JA (2000) Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell 101:789–800

    PubMed  CAS  Google Scholar 

  122. Hunter N (2004) Meiosis. The Encyclopedia of Biological Chemistry 2:610–616

    Google Scholar 

  123. Hunter N, Borts RH (1997) Mlh1 is unique among mismatch repair proteins in its ability to promote crossing-over during meiosis. Genes Dev 11:1573–1582

    PubMed  CAS  Google Scholar 

  124. Hunter N, Kleckner N (2001) The single-end invasion: an asymmetric intermediate at the double-strand break to double-holliday junction transition of meiotic recombination. Cell 106:59–70

    PubMed  CAS  Google Scholar 

  125. Interthal H, Heyer WD (2000) MUS81 encodes a novel helix-hairpin-helix protein involved in the response to UV- and methylation-induced DNA damage in Saccharomyces cerevisiae. Mol Gen Genet 263:812–827

    PubMed  CAS  Google Scholar 

  126. Ira G, Malkova A, Liberi G, Foiani M, Haber JE (2003) Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 115:401–411

    PubMed  CAS  Google Scholar 

  127. Iyer RR, Pluciennik A, Burdett V, Modrich PL (2006) DNA mismatch repair: functions and mechanisms. Chem Rev 106:302–323

    PubMed  CAS  Google Scholar 

  128. Jackson JA, Fink GR (1985) Meiotic recombination between duplicated genetic elements in Saccharomyces cerevisiae. Genetics 109:303–332

    PubMed  CAS  Google Scholar 

  129. Jantsch V, Pasierbek P, Mueller MM, Schweizer D, Jantsch M, Loidl J (2004) Targeted gene knockout reveals a role in meiotic recombination for ZHP-3, a Zip3-related protein in Caenorhabditis elegans. Mol Cell Biol 24:7998–8006

    PubMed  CAS  Google Scholar 

  130. Jaskelioff M, Van Komen S, Krebs JE, Sung P, Peterson CL (2003) Rad54p is a chromatin remodeling enzyme required for heteroduplex DNA joint formation with chromatin. J Biol Chem 278:9212–9218

    PubMed  CAS  Google Scholar 

  131. Jessop L, Allers T, Lichten M (2005) Infrequent co-conversion of markers flanking a meiotic recombination initiation site in Saccharomyces cerevisiae. Genetics 169:1353–1367

    PubMed  CAS  Google Scholar 

  132. Jiao K, Salem L, Malone R (2003) Support for a meiotic recombination initiation complex: interactions among Rec102p, Rec104p, and Spo11p. Mol Cell Biol 23:5928–5938

    PubMed  CAS  Google Scholar 

  133. Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73:355–382

    PubMed  CAS  Google Scholar 

  134. Jolivet S, Vezon D, Froger N, Mercier R (2006) Non conservation of the meiotic function of the Ski8/Rec103 homolog in Arabidopsis. Genes Cells 11:615–622

    PubMed  CAS  Google Scholar 

  135. Jones GH (1984) The control of chiasma distribution. Symp Soc Exp Biol 38:293–320

    PubMed  CAS  Google Scholar 

  136. Jones GH, Franklin FC (2006) Meiotic crossing-over: obligation and interference. Cell 126:246–248

    PubMed  CAS  Google Scholar 

  137. Kaback DB (1996) Chromosome-size dependent control of meiotic recombination in humans. Nat Genet 13:20–21

    PubMed  CAS  Google Scholar 

  138. Kaback DB, Barber D, Mahon J, Lamb J, You J (1999) Chromosome size-dependent control of meiotic reciprocal recombination in Saccharomyces cerevisiae: the role of crossover interference. Genetics 152:1475–1486

    PubMed  CAS  Google Scholar 

  139. Kaback DB, Guacci V, Barber D, Mahon JW (1992) Chromosome size-dependent control of meiotic recombination. Science 256:228–232

    PubMed  CAS  Google Scholar 

  140. Kaback DB, Steensma HY, de Jonge P (1989) Enhanced meiotic recombination on the smallest chromosome of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 86:3694–3698

    PubMed  CAS  Google Scholar 

  141. Kadyk LC, Hartwell LH (1992) Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics 132:387–402

    PubMed  CAS  Google Scholar 

  142. Kadyrov FA, Dzantiev L, Constantin N, Modrich P (2006) Endonucleolytic function of MutLalpha in human mismatch repair. Cell 126:297–308

    PubMed  CAS  Google Scholar 

  143. Kateneva AV, Dresser ME (2006) Sister chromatid cohesion remodeling and meiotic recombination. Cell Cycle 5:467–471

    PubMed  CAS  Google Scholar 

  144. Kateneva AV, Konovchenko AA, Guacci V, Dresser ME (2005) Recombination protein Tid1p controls resolution of cohesin-dependent linkages in meiosis in Saccharomyces cerevisiae. J Cell Biol 171:241–253

    PubMed  CAS  Google Scholar 

  145. Kauppi L, Jeffreys AJ, Keeney S (2004) Where the crossovers are: recombination distributions in mammals. Nat Rev Genet 5:413–424

    PubMed  CAS  Google Scholar 

  146. Kaye JA, Melo JA, Cheung SK, Vaze MB, Haber JE, Toczyski DP (2004) DNA breaks promote genomic instability by impeding proper chromosome segregation. Curr Biol 14:2096–2106

    PubMed  CAS  Google Scholar 

  147. Kee K, Keeney S (2002) Functional interactions between SPO11 and REC102 during initiation of meiotic recombination in Saccharomyces cerevisiae. Genetics 160:111–122

    PubMed  CAS  Google Scholar 

  148. Kee K, Protacio RU, Arora C, Keeney S (2004) Spatial organization and dynamics of the association of Rec102 and Rec104 with meiotic chromosomes. EMBO J 23:1815–1824

    PubMed  CAS  Google Scholar 

  149. Keeney S (2001) Mechanism and control of meiotic recombination initiation. Curr Top Dev Biol 52:1–53

    PubMed  CAS  Google Scholar 

  150. Keeney S, Giroux CN, Kleckner N (1997) Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88:375–384

    PubMed  CAS  Google Scholar 

  151. Keeney S, Kleckner N (1995) Covalent protein-DNA complexes at the 5' strand termini of meiosis-specific double-strand breaks in yeast. Proc Natl Acad Sci USA 92:11274–11278

    PubMed  CAS  Google Scholar 

  152. Keeney S, Kleckner N (1996) Communication between homologous chromosomes: genetic alterations at a nuclease-hypersensitive site can alter mitotic chromatin structure at that site both in cis and in trans. Genes Cells 1:475–489

    PubMed  CAS  Google Scholar 

  153. Kerzendorfer C, Vignard J, Pedrosa-Harand A, Siwiec T, Akimcheva S, Jolivet S, Sablowski R, Armstrong S, Schweizer D, Mercier R, Schlogelhofer P (2006) The Arabidopsis thaliana MND1 homologue plays a key role in meiotic homologous pairing, synapsis and recombination. J Cell Sci 119:2486–2496

    PubMed  CAS  Google Scholar 

  154. Khazanehdari KA, Borts RH (2000) EXO1 and MSH4 differentially affect crossing-over and segregation. Chromosoma 109:94–102

    PubMed  CAS  Google Scholar 

  155. Kinebuchi T, Kagawa W, Enomoto R, Tanaka K, Miyagawa K, Shibata T, Kurumizaka H, Yokoyama S (2004) Structural basis for octameric ring formation and DNA interaction of the human homologous-pairing protein Dmc1. Mol Cell 14:363–374

    PubMed  CAS  Google Scholar 

  156. Kirkpatrick DT, Fan Q, Petes TD (1999a) Maximal stimulation of meiotic recombination by a yeast transcription factor requires the transcription activation domain and a DNA-binding domain. Genetics 152:101–115

    PubMed  CAS  Google Scholar 

  157. Kirkpatrick DT, Ferguson JR, Petes TD, Symington LS (2000) Decreased meiotic intergenic recombination and increased meiosis I nondisjunction in exo1 mutants of Saccharomyces cerevisiae. Genetics 156:1549–1557

    PubMed  CAS  Google Scholar 

  158. Kirkpatrick DT, Wang YH, Dominska M, Griffith JD, Petes TD (1999b) Control of meiotic recombination and gene expression in yeast by a simple repetitive DNA sequence that excludes nucleosomes. Mol Cell Biol 19:7661–7671

    PubMed  CAS  Google Scholar 

  159. Kironmai KM, Muniyappa K, Friedman DB, Hollingsworth NM, Byers B (1998) DNA-binding activities of Hop1 protein, a synaptonemal complex component from Saccharomyces cerevisiae. Mol Cell Biol 18:1424–1435

    PubMed  CAS  Google Scholar 

  160. Kleckner N, Zickler D, Jones GH, Dekker J, Padmore R, Henle J, Hutchinson J (2004) A mechanical basis for chromosome function. Proc Natl Acad Sci USA 101:12592–12597

    PubMed  CAS  Google Scholar 

  161. Klein F, Mahr P, Galova M, Buonomo SB, Michaelis C, Nairz K, Nasmyth K (1999) A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 98:91–103

    PubMed  CAS  Google Scholar 

  162. Klein HL (1997) RDH54, a RAD54 homologue in Saccharomyces cerevisiae, is required for mitotic diploid-specific recombination and repair and for meiosis. Genetics 147:1533–1543

    PubMed  CAS  Google Scholar 

  163. Klein S, Zenvirth D, Dror V, Barton AB, Kaback DB, Simchen G (1996) Patterns of meiotic double-strand breakage on native and artificial yeast chromosomes. Chromosoma 105:276–284

    PubMed  CAS  Google Scholar 

  164. Klieger Y, Yizhar O, Zenvirth D, Shtepel-Milman N, Snoek M, Simchen G (2005) Involvement of Sir2/4 in silencing of DNA breakage and recombination on mouse YACs during yeast meiosis. Mol Biol Cell 16:1449–1455

    PubMed  CAS  Google Scholar 

  165. Kneitz B, Cohen PE, Avdievich E, Zhu L, Kane MF, Hou H Jr, Kolodner RD, Kucherlapati R, Pollard JW, Edelmann W (2000) MutS homolog 4 localization to meiotic chromosomes is required for chromosome pairing during meiosis in male and female mice. Genes Dev 14:1085–1097

    PubMed  CAS  Google Scholar 

  166. Kobayashi J, Antoccia A, Tauchi H, Matsuura S, Komatsu K (2004) NBS1 and its functional role in the DNA damage response. DNA Repair (Amst) 3:855–861

    CAS  Google Scholar 

  167. Kobayashi Y, Watanabe M, Okada Y, Sawa H, Takai H, Nakanishi M, Kawase Y, Suzuki H, Nagashima K, Ikeda K, Motoyama N (2002) Hydrocephalus, situs inversus, chronic sinusitis, and male infertility in DNA polymerase lambda-deficient mice: possible implication for the pathogenesis of immotile cilia syndrome. Mol Cell Biol 22:2769–2776

    PubMed  CAS  Google Scholar 

  168. Kovalenko OV, Plug AW, Haaf T, Gonda DK, Ashley T, Ward DC, Radding CM, Golub EI (1996) Mammalian ubiquitin-conjugating enzyme Ubc9 interacts with Rad51 recombination protein and localizes in synaptonemal complexes. Proc Natl Acad Sci USA 93:2958–2963

    PubMed  CAS  Google Scholar 

  169. Krejci L, Van Komen S, Li Y, Villemain J, Reddy MS, Klein H, Ellenberger T, Sung P (2003) DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423:305–309

    PubMed  CAS  Google Scholar 

  170. Krogh BO, Symington LS (2004) Recombination proteins in yeast. Annu Rev Genet 38:233–271

    PubMed  CAS  Google Scholar 

  171. Lee BI, Wilson DM 3rd (1999) The RAD2 domain of human exonuclease 1 exhibits 5' to 3' exonuclease and flap structure-specific endonuclease activities. J Biol Chem 274:37763–37769

    PubMed  CAS  Google Scholar 

  172. Lee MH, Chang YC, Hong EL, Grubb J, Chang CS, Bishop DK, Wang TF (2005) Calcium ion promotes yeast Dmc1 activity via formation of long and fine helical filaments with single-stranded DNA. J Biol Chem 280:40980–40984

    PubMed  CAS  Google Scholar 

  173. Leem SH, Ogawa H (1992) The MRE4 gene encodes a novel protein kinase homologue required for meiotic recombination in Saccharomyces cerevisiae. Nucleic Acids Res 20:449–457

    PubMed  CAS  Google Scholar 

  174. Leem SH, Ropp PA, Sugino A (1994) The yeast Saccharomyces cerevisiae DNA polymerase IV: possible involvement in double strand break DNA repair. Nucleic Acids Res 22:3011–3017

    PubMed  CAS  Google Scholar 

  175. Leu JY, Chua PR, Roeder GS (1998) The meiosis-specific Hop2 protein of S. cerevisiae ensures synapsis between homologous chromosomes. Cell 94:375–386

    PubMed  CAS  Google Scholar 

  176. Li J, Hooker GW, Roeder GS (2006) Saccharomyces cerevisiae Mer2, Mei4 and Rec114 form a complex required for meiotic double-strand break formation. Genetics 173:1969–1981

    PubMed  CAS  Google Scholar 

  177. Lichten M, Goldman AS (1995) Meiotic recombination hotspots. Annu Rev Genet 29:423–444

    PubMed  CAS  Google Scholar 

  178. Lipkin SM, Moens PB, Wang V, Lenzi M, Shanmugarajah D, Gilgeous A, Thomas J, Cheng J, Touchman JW, Green ED, Schwartzberg P, Collins FS, Cohen PE (2002) Meiotic arrest and aneuploidy in MLH3-deficient mice. Nat Genet 31:385–390

    PubMed  CAS  Google Scholar 

  179. Lisby M, Rothstein R (2005) Localization of checkpoint and repair proteins in eukaryotes. Biochimie 87:579–589

    PubMed  CAS  Google Scholar 

  180. Lobachev K, Vitriol E, Stemple J, Resnick MA, Bloom K (2004) Chromosome fragmentation after induction of a double-strand break is an active process prevented by the RMX repair complex. Curr Biol 14:2107–2112

    PubMed  CAS  Google Scholar 

  181. Lui DY, Peoples-Holst TL, Mell JC, Wu HY, Dean EW, Burgess SM (2006) Analysis of close stable homolog juxtaposition during meiosis in mutants of Saccharomyces cerevisiae. Genetics 173:1207–1222

    PubMed  CAS  Google Scholar 

  182. Madrona AY, Wilson DK (2004) The structure of Ski8p, a protein regulating mRNA degradation: Implications for WD protein structure. Protein Sci 13:1557–1565

    PubMed  CAS  Google Scholar 

  183. Maiorano D, Cuvier O, Danis E, Mechali M (2005) MCM8 is an MCM2–7-related protein that functions as a DNA helicase during replication elongation and not initiation. Cell 120:315–328

    PubMed  CAS  Google Scholar 

  184. Maiorano D, Lutzmann M, Mechali M (2006) MCM proteins and DNA replication. Curr Opin Cell Biol 18:130–136

    PubMed  CAS  Google Scholar 

  185. Maleki S, Keeney S (2004) Modifying histones and initiating meiotic recombination; new answers to an old question. Cell 118:404–406

    PubMed  CAS  Google Scholar 

  186. Malkova A, Swanson J, German M, McCusker JH, Housworth EA, Stahl FW, Haber JE (2004) Gene conversion and crossing over along the 405-kb left arm of Saccharomyces cerevisiae chromosome VII. Genetics 168:49–63

    PubMed  CAS  Google Scholar 

  187. Maloisel L, Bhargava J, Roeder GS (2004) A role for DNA polymerase delta in gene conversion and crossing over during meiosis in Saccharomyces cerevisiae. Genetics 167:1133–1142

    PubMed  CAS  Google Scholar 

  188. Mao-Draayer Y, Galbraith AM, Pittman DL, Cool M, Malone RE (1996) Analysis of meiotic recombination pathways in the yeast Saccharomyces cerevisiae. Genetics 144:71–86

    PubMed  CAS  Google Scholar 

  189. Marcon E, Moens P (2003) MLH1p and MLH3p localize to precociously induced chiasmata of okadaic-acid-treated mouse spermatocytes. Genetics 165:2283–2287

    PubMed  CAS  Google Scholar 

  190. Martin V, Chahwan C, Gao H, Blais V, Wohlschlegel J, Yates JR 3rd, McGowan CH, Russell P (2006) Sws1 is a conserved regulator of homologous recombination in eukaryotic cells. EMBO J 25:2564–2574

    PubMed  CAS  Google Scholar 

  191. Martini E, Diaz RL, Hunter N, Keeney S (2006) Crossover homeostasis in yeast meiosis. Cell 126:285–95

    PubMed  CAS  Google Scholar 

  192. Masai H, Arai K (2002) Cdc7 kinase complex: a key regulator in the initiation of DNA replication. J Cell Physiol 190:287–296

    PubMed  CAS  Google Scholar 

  193. Mather K (1933) The relations between chiasmata and crossing-over in diploid and triploid Drosophila melanogaster. J Genet 27:243–259

    Google Scholar 

  194. Matsubayashi H, Yamamoto MT (2003) REC, a new member of the MCM-related protein family, is required for meiotic recombination in Drosophila. Genes Genet Syst 78:363–371

    PubMed  CAS  Google Scholar 

  195. Mazina OM, Mazin AV, Nakagawa T, Kolodner RD, Kowalczykowski SC (2004) Saccharomyces cerevisiae Mer3 helicase stimulates 3'-5' heteroduplex extension by Rad51; implications for crossover control in meiotic recombination. Cell 117:47–56

    PubMed  CAS  Google Scholar 

  196. McKee AH, Kleckner N (1997a) A general method for identifying recessive diploid-specific mutations in Saccharomyces cerevisiae, its application to the isolation of mutants blocked at intermediate stages of meiotic prophase and characterization of a new gene SAE2. Genetics 146:797–816

    PubMed  CAS  Google Scholar 

  197. McKee AH, Kleckner N (1997b) Mutations in Saccharomyces cerevisiae that block meiotic prophase chromosome metabolism and confer cell cycle arrest at pachytene identify two new meiosis-specific genes SAE1 and SAE3. Genetics 146:817–834

    PubMed  CAS  Google Scholar 

  198. McKim KS, Hayashi-Hagihara A (1998) mei-W68 in Drosophila melanogaster encodes a Spo11 homolog: evidence that the mechanism for initiating meiotic recombination is conserved. Genes Dev 12:2932–2942

    PubMed  CAS  Google Scholar 

  199. Merker JD, Dominska M, Petes TD (2003) Patterns of heteroduplex formation associated with the initiation of meiotic recombination in the yeast Saccharomyces cerevisiae. Genetics 165:47–63

    PubMed  CAS  Google Scholar 

  200. Mieczkowski PA, Dominska M, Buck MJ, Gerton JL, Lieb JD, Petes TD (2006) Global analysis of the relationship between the binding of the Bas1p transcription factor and meiosis-specific double-strand DNA breaks in Saccharomyces cerevisiae. Mol Cell Biol 26:1014–1027

    PubMed  CAS  Google Scholar 

  201. Mizuno K, Emura Y, Baur M, Kohli J, Ohta K, Shibata T (1997) The meiotic recombination hot spot created by the single-base substitution ade6-M26 results in remodeling of chromatin structure in fission yeast. Genes Dev 11:876–886

    PubMed  CAS  Google Scholar 

  202. Mizuno K, Hasemi T, Ubukata T, Yamada T, Lehmann E, Kohli J, Watanabe Y, Iino Y, Yamamoto M, Fox ME, Smith GR, Murofushi H, Shibata T, Ohta K (2001) Counteracting regulation of chromatin remodeling at a fission yeast cAMP response element-related recombination hotspot by stress-activated protein kinase, cAMP-dependent kinase and meiosis regulators. Genetics 159:1467–1478

    PubMed  CAS  Google Scholar 

  203. Moens PB, Pearlman RE (1988) Chromatin organization at meiosis. Bioessays 9:151–153

    PubMed  CAS  Google Scholar 

  204. Moncalian G, Lengsfeld B, Bhaskara V, Hopfner KP, Karcher A, Alden E, Tainer JA, Paull TT (2004) The Rad50 signature motif: essential to ATP binding and biological function. J Mol Biol 335:937–951

    PubMed  CAS  Google Scholar 

  205. Moreau S, Ferguson JR, Symington LS (1999) The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Mol Cell Biol 19:556–566

    PubMed  CAS  Google Scholar 

  206. Moreno-Herrero F, de Jager M, Dekker NH, Kanaar R, Wyman C, Dekker C (2005) Mesoscale conformational changes in the DNA-repair complex Rad50/Mre11/Nbs1 upon binding DNA. Nature 437:440–443

    PubMed  CAS  Google Scholar 

  207. Muller HJ (1916) The mechanism of crossing over. Am Nat 50:193–221

    Google Scholar 

  208. Muniyappa K, Anuradha S, Byers B (2000) Yeast meiosis-specific protein Hop1 binds to G4 DNA and promotes its formation. Mol Cell Biol 20:1361–1369

    PubMed  CAS  Google Scholar 

  209. Murakami H, Borde V, Shibata T, Lichten M, Ohta K (2003) Correlation between premeiotic DNA replication and chromatin transition at yeast recombination initiation sites. Nucleic Acids Res 31:4085–4090

    PubMed  CAS  Google Scholar 

  210. Nabeshima K, Kakihara Y, Hiraoka Y, Nojima H (2001) A novel meiosis-specific protein of fission yeast, Meu13p, promotes homologous pairing independently of homologous recombination. EMBO J 20:3871–3881

    PubMed  CAS  Google Scholar 

  211. Nabeshima K, Villeneuve AM, Hillers KJ (2004) Chromosome-wide regulation of meiotic crossover formation in Caenorhabditis elegans requires properly assembled chromosome axes. Genetics 168:1275–1292

    PubMed  CAS  Google Scholar 

  212. Nag DK, Petes TD (1993) Physical detection of heteroduplexes during meiotic recombination in the yeast Saccharomyces cerevisiae. Mol Cell Biol 13:2324–2331

    PubMed  CAS  Google Scholar 

  213. Nairz K, Klein F (1997) mre11S–a yeast mutation that blocks double-strand-break processing and permits nonhomologous synapsis in meiosis. Genes Dev 11:2272–2290

    PubMed  CAS  Google Scholar 

  214. Nakada D, Matsumoto K, Sugimoto K (2003) ATM-related Tel1 associates with double-strand breaks through an Xrs2-dependent mechanism. Genes Dev 17:1957–1962

    PubMed  CAS  Google Scholar 

  215. Nakagawa T, Kolodner RD (2002) Saccharomyces cerevisiae Mer3 is a DNA helicase involved in meiotic crossing over. Mol Cell Biol 22:3281–3291

    PubMed  CAS  Google Scholar 

  216. Nakagawa T, Ogawa H (1997) Involvement of the MRE2 gene of yeast in formation of meiosis-specific double-strand breaks and crossover recombination through RNA splicing. Genes Cells 2:65–79

    PubMed  CAS  Google Scholar 

  217. Nakagawa T, Ogawa H (1999) The Saccharomyces cerevisiae MER3 gene, encoding a novel helicase-like protein, is required for crossover control in meiosis. EMBO J 18:5714–5723

    PubMed  CAS  Google Scholar 

  218. Neale MJ, Pan J, Keeney S (2005) Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436:1053–1057

    PubMed  CAS  Google Scholar 

  219. Nichols MD, DeAngelis K, Keck JL, Berger JM (1999) Structure and function of an archaeal topoisomerase VI subunit with homology to the meiotic recombination factor Spo11. EMBO J 18:6177–6188

    PubMed  CAS  Google Scholar 

  220. Nilsson NO, Sall T (1995) A model of chiasma reduction of closely formed crossovers. J Theor Biol 173:93–98

    PubMed  CAS  Google Scholar 

  221. Nishant KT, Rao MR (2006) Molecular features of meiotic recombination hot spots. Bioessays 28:45–56

    PubMed  CAS  Google Scholar 

  222. Niu H, Wan L, Baumgartner B, Schaefer D, Loidl J, Hollingsworth NM (2005) Partner choice during meiosis is regulated by Hop1-promoted dimerization of Mek1. Mol Biol Cell 16:5804–5818

    PubMed  CAS  Google Scholar 

  223. Novak JE, Ross-Macdonald PB, Roeder GS (2001) The budding yeast Msh4 protein functions in chromosome synapsis and the regulation of crossover distribution. Genetics 158:1013–1025

    PubMed  CAS  Google Scholar 

  224. Ogino K, Hirota K, Matsumoto S, Takeda T, Ohta K, Arai K, Masai H (2006) Hsk1 kinase is required for induction of meiotic dsDNA breaks without involving checkpoint kinases in fission yeast. Proc Natl Acad Sci USA 103:8131–8136

    PubMed  CAS  Google Scholar 

  225. Ohta K, Nicolas A, Furuse M, Nabetani A, Ogawa H, Shibata T (1998) Mutations in the MRE11, RAD50, XRS2, and MRE2 genes alter chromatin configuration at meiotic DNA double-stranded break sites in premeiotic and meiotic cells. Proc Natl Acad Sci USA 95:646–651

    PubMed  CAS  Google Scholar 

  226. Ohta K, Shibata T, Nicolas A (1994) Changes in chromatin structure at recombination initiation sites during yeast meiosis. EMBO J 13:5754–5763

    PubMed  CAS  Google Scholar 

  227. Okada T, Keeney S (2005) Homologous recombination: needing to have my say. Curr Biol 15:R200–202

    PubMed  CAS  Google Scholar 

  228. Osman F, Dixon J, Doe CL, Whitby MC (2003) Generating crossovers by resolution of nicked Holliday junctions: a role for Mus81-Eme1 in meiosis. Mol Cell 12:761–774

    PubMed  CAS  Google Scholar 

  229. Panoli AP, Ravi M, Sebastian J, Nishal B, Reddy TV, Marimuthu MP, Subbiah V, Vijaybhaskar V, Siddiqi I (2006) AtMND1 is required for homologous pairing during meiosis in Arabidopsis. BMC Mol Biol 7:24

    PubMed  Google Scholar 

  230. Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404

    PubMed  CAS  Google Scholar 

  231. Passy SI, Yu X, Li Z, Radding CM, Masson JY, West SC, Egelman EH (1999) Human Dmc1 protein binds DNA as an octameric ring. Proc Natl Acad Sci USA 96:10684–10688

    PubMed  CAS  Google Scholar 

  232. Paull TT, Gellert M (1999) Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex. Genes Dev 13:1276–1288

    PubMed  CAS  Google Scholar 

  233. Pecina A, Smith KN, Mezard C, Murakami H, Ohta K, Nicolas A (2002) Targeted stimulation of meiotic recombination. Cell 111:173–184

    PubMed  CAS  Google Scholar 

  234. Pellicioli A, Foiani M (2005) Signal transduction: how Rad53 kinase is activated. Curr Biol 15:R769–771

    PubMed  CAS  Google Scholar 

  235. Peoples TL, Dean E, Gonzalez O, Lambourne L, Burgess SM (2002) Close, stable homolog juxtaposition during meiosis in budding yeast is dependent on meiotic recombination, occurs independently of synapsis, and is distinct from DSB-independent pairing contacts. Genes Dev 16:1682–1695

    PubMed  CAS  Google Scholar 

  236. Perry J, Kleckner N, Borner GV (2005) Bioinformatic analyses implicate the collaborating meiotic crossover/chiasma proteins Zip2, Zip3, and Spo22/Zip4 in ubiquitin labeling. Proc Natl Acad Sci USA 102:17594–17599

    PubMed  CAS  Google Scholar 

  237. Petes TD (2001) Meiotic recombination hot spots and cold spots. Nat Rev Genet 2:360–369

    PubMed  CAS  Google Scholar 

  238. Petes TD, Merker JD (2002) Context dependence of meiotic recombination hotspots in yeast: the relationship between recombination activity of a reporter construct and base composition. Genetics 162:2049–2052

    PubMed  CAS  Google Scholar 

  239. Petrini JH (2005) At the end, remodeling leads to eviction. Nat Struct Mol Biol 12:1028–1029

    PubMed  CAS  Google Scholar 

  240. Petronczki M, Siomos MF, Nasmyth K (2003) Un Ménage à Quatre: the molecular biology of chromosome segregation in meiosis. Cell 112:423–440

    PubMed  CAS  Google Scholar 

  241. Petukhova G, Sung P, Klein H (2000) Promotion of Rad51-dependent D-loop formation by yeast recombination factor Rdh54/Tid1. Genes Dev 14:2206–2215

    PubMed  CAS  Google Scholar 

  242. Petukhova G, Van Komen S, Vergano S, Klein H, Sung P (1999) Yeast Rad54 promotes Rad51-dependent homologous DNA pairing via ATP hydrolysis-driven change in DNA double helix conformation. J Biol Chem 274:29453–29462

    PubMed  CAS  Google Scholar 

  243. Petukhova GV, Pezza RJ, Vanevski F, Ploquin M, Masson JY, Camerini-Otero RD (2005) The Hop2 and Mnd1 proteins act in concert with Rad51 and Dmc1 in meiotic recombination. Nat Struct Mol Biol 12:449–453

    PubMed  CAS  Google Scholar 

  244. Petukhova GV, Romanienko PJ, Camerini-Otero RD (2003) The Hop2 protein has a direct role in promoting interhomolog interactions during mouse meiosis. Dev Cell 5:927–936

    PubMed  CAS  Google Scholar 

  245. Pezza RJ, Petukhova GV, Ghirlando R, Camerini-Otero RD (2006) Molecular activities of meiosis-specific proteins Hop2, Mnd1, and the Hop2-Mnd1 complex. J Biol Chem 281:18426–18434

    PubMed  CAS  Google Scholar 

  246. Plug AW, Clairmont CA, Sapi E, Ashley T, Sweasy JB (1997) Evidence for a role for DNA polymerase beta in mammalian meiosis. Proc Natl Acad Sci USA 94:1327–1331

    PubMed  CAS  Google Scholar 

  247. Pochart P, Woltering D, Hollingsworth NM (1997) Conserved properties between functionally distinct MutS homologs in yeast. J Biol Chem 272:30345–30349

    PubMed  CAS  Google Scholar 

  248. Prieler S, Penkner A, Borde V, Klein F (2005) The control of Spo11's interaction with meiotic recombination hotspots. Genes Dev 19:255–269

    PubMed  CAS  Google Scholar 

  249. Prinz S, Amon A, Klein F (1997) Isolation of COM1, a new gene required to complete meiotic double-strand break-induced recombination in Saccharomyces cerevisiae. Genetics 146:781–795

    PubMed  CAS  Google Scholar 

  250. Rattray AJ, McGill CB, Shafer BK, Strathern JN (2001) Fidelity of mitotic double-strand-break repair in Saccharomyces cerevisiae: a role for SAE2/COM1. Genetics 158:109–122

    PubMed  CAS  Google Scholar 

  251. Reddy KC, Villeneuve AM (2004) C. elegans HIM-17 links chromatin modification and competence for initiation of meiotic recombination. Cell 118:439–452

    PubMed  CAS  Google Scholar 

  252. Rockmill B, Roeder GS (1990) Meiosis in asynaptic yeast. Genetics 126:563–574

    PubMed  CAS  Google Scholar 

  253. Rockmill B, Roeder GS (1991) A meiosis-specific protein kinase homolog required for chromosome synapsis and recombination. Genes Dev 5:2392–2404

    PubMed  CAS  Google Scholar 

  254. Rockmill B, Sym M, Scherthan H, Roeder GS (1995) Roles for two RecA homologs in promoting meiotic chromosome synapsis. Genes Dev 9:2684–2695

    PubMed  CAS  Google Scholar 

  255. Romanienko PJ, Camerini-Otero RD (2000) The mouse Spo11 gene is required for meiotic chromosome synapsis. Mol Cell 6:975–987

    PubMed  CAS  Google Scholar 

  256. Ross-Macdonald P, Roeder GS (1994) Mutation of a meiosis-specific MutS homolog decreases crossing over but not mismatch correction. Cell 79:1069–1080

    PubMed  CAS  Google Scholar 

  257. Saito TT, Tougan T, Kasama T, Okuzaki D, Nojima H (2004) Mcp7, a meiosis-specific coiled-coil protein of fission yeast, associates with Meu13 and is required for meiotic recombination. Nucleic Acids Res 32:3325–3339

    PubMed  CAS  Google Scholar 

  258. Salem L, Walter N, Malone R (1999) Suppressor analysis of the Saccharomyces cerevisiae gene REC104 reveals a genetic interaction with REC102. Genetics 151:1261–1272

    PubMed  CAS  Google Scholar 

  259. San-Segundo PA, Roeder GS (1999) Pch2 links chromatin silencing to meiotic checkpoint control. Cell 97:313–324

    PubMed  CAS  Google Scholar 

  260. Santucci-Darmanin S, Neyton S, Lespinasse F, Saunieres A, Gaudray P, Paquis-Flucklinger V (2002) The DNA mismatch-repair MLH3 protein interacts with MSH4 in meiotic cells, supporting a role for this MutL homolog in mammalian meiotic recombination. Hum Mol Genet 11:1697–1706

    PubMed  CAS  Google Scholar 

  261. Santucci-Darmanin S, Walpita D, Lespinasse F, Desnuelle C, Ashley T, Paquis-Flucklinger V (2000) MSH4 acts in conjunction with MLH1 during mammalian meiosis. FASEB J 14:1539–1547

    PubMed  CAS  Google Scholar 

  262. Schild D, Byers B (1978) Meiotic effects of DNA-defective cell division cycle mutations of Saccharomyces cerevisiae. Chromosoma 70:109–130

    PubMed  CAS  Google Scholar 

  263. Schmekel K (2000) Methods for immunoelectron microscopic and fine structural analysis of synaptonemal complexes and nodules in yeast. Chromosoma 109:110–116

    PubMed  CAS  Google Scholar 

  264. Schmekel K, Meuwissen RL, Dietrich AJ, Vink AC, van Marle J, van Veen H, Heyting C (1996) Organization of SCP1 protein molecules within synaptonemal complexes of the rat. Exp Cell Res 226:20–30

    PubMed  CAS  Google Scholar 

  265. Schmuckli-Maurer J, Heyer WD (2000) Meiotic recombination in RAD54 mutants of Saccharomyces cerevisiae. Chromosoma 109:86–93

    PubMed  CAS  Google Scholar 

  266. Schommer C, Beven A, Lawrenson T, Shaw P, Sablowski R (2003) AHP2 is required for bivalent formation and for segregation of homologous chromosomes in Arabidopsis meiosis. Plant J 36:1–11

    PubMed  CAS  Google Scholar 

  267. Schwacha A, Kleckner N (1994) Identification of joint molecules that form frequently between homologs but rarely between sister chromatids during yeast meiosis. Cell 76:51–63

    PubMed  CAS  Google Scholar 

  268. Schwacha A, Kleckner N (1995) Identification of double Holliday junctions as intermediates in meiotic recombination. Cell 83:783–791

    PubMed  CAS  Google Scholar 

  269. Schwacha A, Kleckner N (1997) Interhomolog bias during meiotic recombination: meiotic functions promote a highly differentiated interhomolog-only pathway. Cell 90:1123–1135

    PubMed  CAS  Google Scholar 

  270. Sehorn MG, Sigurdsson S, Bussen W, Unger VM, Sung P (2004) Human meiotic recombinase Dmc1 promotes ATP-dependent homologous DNA strand exchange. Nature 429:433–437

    PubMed  CAS  Google Scholar 

  271. Sheridan S, Bishop DK (2006) Red-Hed regulation: recombinase Rad51, though capable of playing the leading role, may be relegated to supporting Dmc1 in budding yeast meiosis. Genes Dev 20:1685–1691

    PubMed  CAS  Google Scholar 

  272. Shima H, Suzuki M, Shinohara M (2005) Isolation and characterization of novel xrs2 mutations in Saccharomyces cerevisiae. Genetics 170:71–85

    PubMed  CAS  Google Scholar 

  273. Shinohara A, Gasior S, Ogawa T, Kleckner N, Bishop DK (1997a) Saccharomyces cerevisiae recA homologues RAD51 and DMC1 have both distinct and overlapping roles in meiotic recombination. Genes Cells 2:615–629

    PubMed  CAS  Google Scholar 

  274. Shinohara A, Shinohara M (2004) Roles of RecA homologues Rad51 and Dmc1 during meiotic recombination. Cytogenet Genome Res 107:201–207

    PubMed  CAS  Google Scholar 

  275. Shinohara M, Gasior SL, Bishop DK, Shinohara A (2000) Tid1/Rdh54 promotes colocalization of rad51 and dmc1 during meiotic recombination. Proc Natl Acad Sci USA 97:10814–10819

    PubMed  CAS  Google Scholar 

  276. Shinohara M, Sakai K, Ogawa T, Shinohara A (2003a) The mitotic DNA damage checkpoint proteins Rad17 and Rad24 are required for repair of double-strand breaks during meiosis in yeast. Genetics 164:855–865

    PubMed  CAS  Google Scholar 

  277. Shinohara M, Sakai K, Shinohara A, Bishop DK (2003b) Crossover interference in Saccharomyces cerevisiae requires a TID1/RDH54- and DMC1-dependent pathway. Genetics 163:1273–1286

    PubMed  CAS  Google Scholar 

  278. Shinohara M, Shita-Yamaguchi E, Buerstedde JM, Shinagawa H, Ogawa H, Shinohara A (1997b) Characterization of the roles of the Saccharomyces cerevisiae RAD54 gene and a homologue of RAD54, RDH54/TID1, in mitosis and meiosis. Genetics 147:1545–1556

    PubMed  CAS  Google Scholar 

  279. Shor E, Weinstein J, Rothstein R (2005) A genetic screen for top3 suppressors in Saccharomyces cerevisiae identifies SHU1, SHU2, PSY3 and CSM2: four genes involved in error-free DNA repair. Genetics 169:1275–1289

    PubMed  CAS  Google Scholar 

  280. Siaud N, Dray E, Gy I, Gerard E, Takvorian N, Doutriaux MP (2004) Brca2 is involved in meiosis in Arabidopsis thaliana as suggested by its interaction with Dmc1. EMBO J 23:1392–1401

    PubMed  CAS  Google Scholar 

  281. Sjogren C, Nasmyth K (2001) Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae. Curr Biol 11:991–995

    PubMed  CAS  Google Scholar 

  282. Smith AV, Roeder GS (1997) The yeast Red1 protein localizes to the cores of meiotic chromosomes. J Cell Biol 136:957–967

    PubMed  CAS  Google Scholar 

  283. Smith GR, Boddy MN, Shanahan P, Russell P (2003) Fission yeast Mus81.Eme1 Holliday junction resolvase is required for meiotic crossing over but not for gene conversion. Genetics 165:2289–2293

    PubMed  CAS  Google Scholar 

  284. Snowden T, Acharya S, Butz C, Berardini M, Fishel R (2004) hMSH4-hMSH5 recognizes Holliday junctions and forms a meiosis-specific sliding clamp that embraces homologous chromosomes. Mol Cell 15:437–451

    PubMed  CAS  Google Scholar 

  285. Solinger JA, Kiianitsa K, Heyer WD (2002) Rad54, a Swi2/Snf2-like recombinational repair protein, disassembles Rad51:dsDNA filaments. Mol Cell 10:1175–1188

    PubMed  CAS  Google Scholar 

  286. Sollier J, Lin W, Soustelle C, Suhre K, Nicolas A, Geli V, de La Roche Saint-Andre C (2004) Set1 is required for meiotic S-phase onset, double-strand break formation and middle gene expression. EMBO J 23:1957–1967

    PubMed  CAS  Google Scholar 

  287. Stahl FW, Foss HM, Young LS, Borts RH, Abdullah MF, Copenhaver GP (2004) Does crossover interference count in Saccharomyces cerevisiae? Genetics 168:35–48

    PubMed  CAS  Google Scholar 

  288. Storlazzi A, Tesse S, Gargano S, James F, Kleckner N, Zickler D (2003) Meiotic double-strand breaks at the interface of chromosome movement, chromosome remodeling, and reductional division. Genes Dev 17:2675–2687

    PubMed  CAS  Google Scholar 

  289. Storlazzi A, Xu L, Cao L, Kleckner N (1995) Crossover and noncrossover recombination during meiosis: timing and pathway relationships. Proc Natl Acad Sci USA 92:8512–8516

    PubMed  CAS  Google Scholar 

  290. Storlazzi A, Xu L, Schwacha A, Kleckner N (1996) Synaptonemal complex (SC) component Zip1 plays a role in meiotic recombination independent of SC polymerization along the chromosomes. Proc Natl Acad Sci USA 93:9043–9048

    PubMed  CAS  Google Scholar 

  291. Story RM, Bishop DK, Kleckner N, Steitz TA (1993) Structural relationship of bacterial RecA proteins to recombination proteins from bacteriophage T4 and yeast. Science 259:1892–1896

    PubMed  CAS  Google Scholar 

  292. Stracker TH, Theunissen JW, Morales M, Petrini JH (2004) The Mre11 complex and the metabolism of chromosome breaks: the importance of communicating and holding things together. DNA Repair (Amst) 3:845–854

    CAS  Google Scholar 

  293. Strom L, Lindroos HB, Shirahige K, Sjogren C (2004) Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol Cell 16:1003–1015

    PubMed  Google Scholar 

  294. Strom L, Sjogren C (2005) DNA damage-induced cohesion. Cell Cycle 4:536–539

    PubMed  Google Scholar 

  295. Sun H, Treco D, Schultes NP, Szostak JW (1989) Double-strand breaks at an initiation site for meiotic gene conversion. Nature 338:87–90

    PubMed  CAS  Google Scholar 

  296. Sun H, Treco D, Szostak JW (1991) Extensive 3'-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell 64:1155–1161

    PubMed  CAS  Google Scholar 

  297. Sym M, Engebrecht JA, Roeder GS (1993) Zip1 is a synaptonemal complex protein required for meiotic chromosome synapsis. Cell 72:365–378

    PubMed  CAS  Google Scholar 

  298. Sym M, Roeder GS (1994) Crossover interference is abolished in the absence of a synaptonemal complex protein. Cell 79:283–292

    PubMed  CAS  Google Scholar 

  299. Symington LS, Heyer WD (2006) Some disassembly required: role of DNA translocases in the disruption of recombination intermediates and dead-end complexes. Genes Dev 20:2479–2486

    PubMed  CAS  Google Scholar 

  300. Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double-strand-break repair model for recombination. Cell 33:25–35

    PubMed  CAS  Google Scholar 

  301. Tan TL, Kanaar R, Wyman C (2003) Rad54, a Jack of all trades in homologous recombination. DNA Repair (Amst) 2:787–794

    Google Scholar 

  302. Tarsounas M, Pearlman RE, Gasser PJ, Park MS, Moens PB (1997) Protein-protein interactions in the synaptonemal complex. Mol Biol Cell 8:1405–1414

    PubMed  CAS  Google Scholar 

  303. Tesse S, Storlazzi A, Kleckner N, Gargano S, Zickler D (2003) Localization and roles of Ski8p protein in Sordaria meiosis and delineation of three mechanistically distinct steps of meiotic homolog juxtaposition. Proc Natl Acad Sci USA 100:12865–12870

    PubMed  CAS  Google Scholar 

  304. Tonami Y, Murakami H, Shirahige K, Nakanishi M (2005) A checkpoint control linking meiotic S phase and recombination initiation in fission yeast. Proc Natl Acad Sci USA 102:5797–5801

    PubMed  CAS  Google Scholar 

  305. Tran PT, Erdeniz N, Symington LS, Liskay RM (2004) EXO1-A multi-tasking eukaryotic nuclease. DNA Repair (Amst) 3:1549–1559

    CAS  Google Scholar 

  306. Trujillo KM, Roh DH, Chen L, Van Komen S, Tomkinson A, Sung P (2003) Yeast Xrs2 binds DNA and helps target Rad50 and Mre11 to DNA ends. J Biol Chem 278:48957–48964

    PubMed  CAS  Google Scholar 

  307. Tsubouchi H, Ogawa H (1998) A novel mre11 mutation impairs processing of double-strand breaks of DNA during both mitosis and meiosis. Mol Cell Biol 18:260–268

    PubMed  CAS  Google Scholar 

  308. Tsubouchi H, Ogawa H (2000) Exo1 roles for repair of DNA double-strand breaks and meiotic crossing over in Saccharomyces cerevisiae. Mol Biol Cell 11:2221–2233

    PubMed  CAS  Google Scholar 

  309. Tsubouchi H, Roeder GS (2002) The Mnd1 protein forms a complex with Hop2 to promote homologous chromosome pairing and meiotic double-strand break repair. Mol Cell Biol 22:3078–3088

    PubMed  CAS  Google Scholar 

  310. Tsubouchi H, Roeder GS (2003) The importance of genetic recombination for fidelity of chromosome pairing in meiosis. Dev Cell 5:915–925

    PubMed  CAS  Google Scholar 

  311. Tsubouchi H, Roeder GS (2004) The budding yeast Mei5 and Sae3 proteins act together with Dmc1 during meiotic recombination. Genetics 168:1219–1230

    PubMed  CAS  Google Scholar 

  312. Tsubouchi H, Roeder GS (2006) Budding yeast Hed1 down-regulates the mitotic recombination machinery when meiotic recombination is impaired. Genes Dev 20:1766–1775

    PubMed  CAS  Google Scholar 

  313. Tsubouchi T, Zhao H, Roeder GS (2006) The meiosis-specific Zip4 protein regulates crossover distribution by promoting synaptonemal complex formation together with Zip2. Dev Cell 10:809–819

    PubMed  CAS  Google Scholar 

  314. Tsukamoto Y, Mitsuoka C, Terasawa M, Ogawa H, Ogawa T (2005) Xrs2p regulates Mre11p translocation to the nucleus and plays a role in telomere elongation and meiotic recombination. Mol Biol Cell 16:597–608

    PubMed  CAS  Google Scholar 

  315. Tsukuda T, Fleming AB, Nickoloff JA, Osley MA (2005) Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae. Nature 438:379–383

    PubMed  CAS  Google Scholar 

  316. Turney D, de Los Santos T, Hollingsworth NM (2004) Does chromosome size affect map distance and genetic interference in budding yeast? Genetics 168:2421–2424

    PubMed  CAS  Google Scholar 

  317. Uchiyama Y, Kimura S, Yamamoto T, Ishibashi T, Sakaguchi K (2004) Plant DNA polymerase lambda, a DNA repair enzyme that functions in plant meristematic and meiotic tissues. Eur J Biochem 271:2799–2807

    PubMed  CAS  Google Scholar 

  318. Unal E, Arbel-Eden A, Sattler U, Shroff R, Lichten M, Haber JE, Koshland D (2004) DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell 16:991–1002

    PubMed  Google Scholar 

  319. Usui T, Ogawa H, Petrini JH (2001) A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol Cell 7:1255–1266

    PubMed  CAS  Google Scholar 

  320. van Attikum H, Fritsch O, Hohn B, Gasser SM (2004) Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 119:777–788

    PubMed  Google Scholar 

  321. van Attikum H, Gasser SM (2005a) ATP-dependent chromatin remodeling and DNA double-strand break repair. Cell Cycle 4:1011–1014

    PubMed  Google Scholar 

  322. van Attikum H, Gasser SM (2005b) The histone code at DNA breaks: a guide to repair? Nat Rev Mol Cell Biol 6:757–765

    PubMed  Google Scholar 

  323. van Veen JE, Hawley RS (2003) Meiosis: when even two is a crowd. Curr Biol 13:R831–833

    PubMed  Google Scholar 

  324. Veaute X, Jeusset J, Soustelle C, Kowalczykowski SC, Le Cam E, Fabre F (2003) The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423:309–312

    PubMed  CAS  Google Scholar 

  325. Villeneuve AM, Hillers KJ (2001) Whence meiosis? Cell 106:647–650

    PubMed  CAS  Google Scholar 

  326. Voegtli WC, Madrona AY, Wilson DK (2003) The structure of Aip1p, a WD repeat protein that regulates Cofilin-mediated actin depolymerization. J Biol Chem 278:34373–34379

    PubMed  CAS  Google Scholar 

  327. von Wettstein D, Rasmussen SW, Holm PB (1984) The synaptonemal complex in genetic segregation. Annu Rev Genet 18:331–413

    Google Scholar 

  328. Wan L, de los Santos T, Zhang C, Shokat K, Hollingsworth NM (2004) Mek1 kinase activity functions downstream of RED1 in the regulation of meiotic double strand break repair in budding yeast. Mol Biol Cell 15:11–23

    PubMed  CAS  Google Scholar 

  329. Wang JC (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3:430–440

    PubMed  CAS  Google Scholar 

  330. Wang TF, Kleckner N, Hunter N (1999) Functional specificity of MutL homologs in yeast: evidence for three Mlh1-based heterocomplexes with distinct roles during meiosis in recombination and mismatch correction. Proc Natl Acad Sci USA 96:13914–13919

    PubMed  CAS  Google Scholar 

  331. Wang X, Ira G, Tercero JA, Holmes AM, Diffley JF, Haber JE (2004) Role of DNA replication proteins in double-strand break-induced recombination in Saccharomyces cerevisiae. Mol Cell Biol 24:6891–6899

    PubMed  CAS  Google Scholar 

  332. Warren CD, Eckley DM, Lee MS, Hanna JS, Hughes A, Peyser B, Jie C, Irizarry R, Spencer FA (2004) S-phase checkpoint genes safeguard high-fidelity sister chromatid cohesion. Mol Biol Cell 15:1724–1735

    PubMed  CAS  Google Scholar 

  333. Wei K, Clark AB, Wong E, Kane MF, Mazur DJ, Parris T, Kolas NK, Russell R, Hou H Jr, Kneitz B, Yang G, Kunkel TA, Kolodner RD, Cohen PE, Edelmann W (2003) Inactivation of Exonuclease 1 in mice results in DNA mismatch repair defects, increased cancer susceptibility, and male and female sterility. Genes Dev 17:603–614

    PubMed  CAS  Google Scholar 

  334. Weiner BM, Kleckner N (1994) Chromosome pairing via multiple interstitial interactions before and during meiosis in yeast. Cell 77:977–991

    PubMed  CAS  Google Scholar 

  335. Wesoly J, Agarwal S, Sigurdsson S, Bussen W, Van Komen S, Qin J, van Steeg H, van Benthem J, Wassenaar E, Baarends WM, Ghazvini M, Tafel AA, Heath H, Galjart N, Essers J, Grootegoed JA, Arnheim N, Bezzubova O, Buerstedde JM, Sung P, Kanaar R (2006) Differential contributions of mammalian Rad54 paralogs to recombination, DNA damage repair, and meiosis. Mol Cell Biol 26:976–989

    PubMed  CAS  Google Scholar 

  336. Whitby MC (2005) Making crossovers during meiosis. Biochem Soc Trans 33:1451–1455

    PubMed  CAS  Google Scholar 

  337. White MA, Dominska M, Petes TD (1993) Transcription factors are required for the meiotic recombination hotspot at the HIS4 locus in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 90:6621–6625

    PubMed  CAS  Google Scholar 

  338. White MA, Wierdl M, Detloff P, Petes TD (1991) DNA-binding protein Rap1 stimulates meiotic recombination at the HIS4 locus in yeast. Proc Natl Acad Sci USA 88:9755–9759

    PubMed  CAS  Google Scholar 

  339. Willems AR, Schwab M, Tyers M (2004) A hitchhiker's guide to the cullin ubiquitin ligases: SCF and its kin. Biochim Biophys Acta 1695:133–170

    PubMed  CAS  Google Scholar 

  340. Wilson TE, Lieber MR (1999) Efficient processing of DNA ends during yeast nonhomologous end joining. Evidence for a DNA polymerase beta (Pol4)-dependent pathway. J Biol Chem 274:23599–23609

    PubMed  CAS  Google Scholar 

  341. Wiltzius JJ, Hohl M, Fleming JC, Petrini JH (2005) The Rad50 hook domain is a critical determinant of Mre11 complex functions. Nat Struct Mol Biol 12:403–407

    PubMed  CAS  Google Scholar 

  342. Woltering D, Baumgartner B, Bagchi S, Larkin B, Loidl J, de los Santos T, Hollingsworth NM (2000) Meiotic segregation, synapsis, and recombination checkpoint functions require physical interaction between the chromosomal proteins Red1p and Hop1p. Mol Cell Biol 20:6646–6658

    PubMed  CAS  Google Scholar 

  343. Woods LM, Hodges CA, Baart E, Baker SM, Liskay M, Hunt PA (1999) Chromosomal influence on meiotic spindle assembly: abnormal meiosis I in female Mlh1 mutant mice. J Cell Biol 145:1395–1406

    PubMed  CAS  Google Scholar 

  344. Wu H, Gao J, Sharif WD, Davidson MK, Wahls WP (2004) Purification, folding, and characterization of Rec12 (Spo11) meiotic recombinase of fission yeast. Protein Expr Purif 38:136–144

    PubMed  CAS  Google Scholar 

  345. Wu TC, Lichten M (1994) Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science 263:515–518

    PubMed  CAS  Google Scholar 

  346. Wu TC, Lichten M (1995) Factors that affect the location and frequency of meiosis-induced double-strand breaks in Saccharomyces cerevisiae. Genetics 140:55–66

    PubMed  CAS  Google Scholar 

  347. Xu L, Kleckner N (1995) Sequence non-specific double-strand breaks and interhomolog interactions prior to double-strand break formation at a meiotic recombination hot spot in yeast. EMBO J 14:5115–5128

    PubMed  CAS  Google Scholar 

  348. Xu L, Weiner BM, Kleckner N (1997) Meiotic cells monitor the status of the interhomolog recombination complex. Genes Dev 11:106–118

    PubMed  CAS  Google Scholar 

  349. Yamada T, Mizuno K, Hirota K, Kon N, Wahls WP, Hartsuiker E, Murofushi H, Shibata T, Ohta K (2004) Roles of histone acetylation and chromatin remodeling factor in a meiotic recombination hotspot. EMBO J 23:1792–1803

    PubMed  CAS  Google Scholar 

  350. Yamashita K, Shinohara M, Shinohara A (2004) Rad6-Bre1-mediated histone H2B ubiquitylation modulates the formation of double-strand breaks during meiosis. Proc Natl Acad Sci USA 101:11380–11385

    PubMed  CAS  Google Scholar 

  351. Yang W (2000) Structure and function of mismatch repair proteins. Mutat Res 460:245–256

    PubMed  CAS  Google Scholar 

  352. Yildiz O, Majumder S, Kramer B, Sekelsky JJ (2002) Drosophila MUS312 interacts with the nucleotide excision repair endonuclease MEI-9 to generate meiotic crossovers. Mol Cell 10:1503–1509

    PubMed  CAS  Google Scholar 

  353. Young JA, Hyppa RW, Smith GR (2004) Conserved and nonconserved proteins for meiotic DNA breakage and repair in yeasts. Genetics 167:593–605

    PubMed  CAS  Google Scholar 

  354. Yu L, Gaitatzes C, Neer E, Smith TF (2000) Thirty-plus functional families from a single motif. Protein Sci 9:2470–2476

    Article  PubMed  CAS  Google Scholar 

  355. Zenvirth D, Arbel T, Sherman A, Goldway M, Klein S, Simchen G (1992) Multiple sites for double-strand breaks in whole meiotic chromosomes of Saccharomyces cerevisiae. EMBO J 11:3441–3447

    PubMed  CAS  Google Scholar 

  356. Zenvirth D, Loidl J, Klein S, Arbel A, Shemesh R, Simchen G (1997) Switching yeast from meiosis to mitosis: double-strand break repair, recombination and synaptonemal complex. Genes Cells 2:487–498

    PubMed  CAS  Google Scholar 

  357. Zhao S, Renthal W, Lee EY (2002) Functional analysis of FHA and BRCT domains of NBS1 in chromatin association and DNA damage responses. Nucleic Acids Res 30:4815–4822

    PubMed  CAS  Google Scholar 

  358. Zickler D, Kleckner N (1999) Meiotic chromosomes: integrating structure and function. Annu Rev Genet 33:603–754

    PubMed  CAS  Google Scholar 

  359. Zierhut C, Berlinger M, Rupp C, Shinohara A, Klein F (2004) Mnd1 is required for meiotic interhomolog repair. Curr Biol 14:752–762

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil Hunter .

Editor information

Andrés Aguilera Rodney Rothstein

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hunter, N. (2006). Meiotic recombination. In: Aguilera, A., Rothstein, R. (eds) Molecular Genetics of Recombination. Topics in Current Genetics, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4735_2006_0215

Download citation

Publish with us

Policies and ethics