Skip to main content

Genetics of Recombination in the Model Bacterium Escherichia Coli

  • Chapter
  • First Online:
Molecular Genetics of Recombination

Part of the book series: Topics in Current Genetics ((TCG,volume 17))

  • 1432 Accesses

Abstract

Homologous recombination in bacteria was originally discovered as a process that not only exchanges genetic material but also provides one of the major pathways of DNA-damage repair. Homologous exchanges and DNA repair illustrate the dual role of recombination which acts both to promote genetic diversity and to conserve genomic integrity. In this review, we will first describe the genetics of enzymes that act at different steps of the homologous recombination process in Escherichia coli, with an emphasis on the most recent results. We will then describe recent advances in our understanding of the role of homologous recombination during DNA repair. Recombination enzymes act on DNA at single- or double-strand interruptions generated as a result of nucleotide lesions or replication impairment. Although generally they can and often do promote genetic exchange, some recombination enzymes also fulfill various non-recombinogenic important functions, such as the signaling of DNA damage and the remodeling of arrested replication forks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albertini AM, Hofer M, Calos MP, Miller JH (1982) On the formation of spontaneous deletions: the importance of short sequence homologies in the generation of large deletions. Cell 29:319–328

    Article  PubMed  CAS  Google Scholar 

  2. Albertini AM, Hofer M, Calos MP, Tlsty TD, Miller JH (1983) Analysis of spontaneous deletions and gene amplification in the lac region of Escherichia coli. Cold Spring Harb Symp Quant Biol 47(Pt 2):841–850

    PubMed  Google Scholar 

  3. Amundsen SK, Smith GR (2003) Interchangeable parts of the Escherichia coli recombination machinery. Cell 112:741–744

    Article  PubMed  CAS  Google Scholar 

  4. Baharoglu Z, Petranovic M, Flores MJ, Michel B (2006) RuvAB is essential for replication forks reversal in certain replication mutants. EMBO J 25:596–603

    Article  PubMed  CAS  Google Scholar 

  5. Banach-Orlowska M, Fijalkowska IJ, Schaaper RM, Jonczyk P (2005) DNA polymerase II as a fidelity factor in chromosomal DNA synthesis in Escherichia coli. Mol Microbiol 58:61–70

    Article  PubMed  CAS  Google Scholar 

  6. Bell CE (2005) Structure and mechanism of Escherichia coli RecA ATPase. Mol Microbiol 58:358–366

    Article  PubMed  CAS  Google Scholar 

  7. Bhattacharya R, Beck DJ (2002) Survival and SOS induction in cisplatin-treated Escherichia coli deficient in Pol II, RecBCD and RecFOR functions. DNA Repair (Amst) 1:955–966

    Article  CAS  Google Scholar 

  8. Bidnenko V, Ehrlich SD, Michel B (2002) Replication fork collapse at replication terminator sequences. EMBO J 21:3898–3907

    Article  PubMed  CAS  Google Scholar 

  9. Bidnenko V, Seigneur M, Penel-Colin M, Bouton MF, Dusko Ehrlich S, Michel B (1999) sbcB sbcC null mutations allow RecF-mediated repair of arrested replication forks in rep recBC mutants. Mol Microbiol 33:846–857

    Article  PubMed  CAS  Google Scholar 

  10. Bierne H, Ehrlich SD, Michel B (1997a) Deletions at stalled replication forks occur by two different pathways. EMBO J 16:3332–3340

    Article  PubMed  CAS  Google Scholar 

  11. Bierne H, Michel B (1994) When replication forks stop. Mol Microbiol 13:17–23

    Article  PubMed  CAS  Google Scholar 

  12. Bierne H, Seigneur M, Ehrlich SD, Michel B (1997b) uvrD mutations enhance tandem repeat deletion in the Escherichia coli chromosome via SOS induction of the RecF recombination pathway. Mol Microbiol 26:557–567

    Article  PubMed  CAS  Google Scholar 

  13. Bierne H, Vilette D, Ehrlich SD, Michel B (1997c) Isolation of a dnaE mutation which enhances RecA-independent homologous recombination in the Escherichia coli chromosome. Mol Microbiol 24:1225–1234

    Article  PubMed  CAS  Google Scholar 

  14. Bork JM, Cox MM, Inman RB (2001) The RecOR proteins modulate RecA protein function at 5′ ends of single-stranded DNA. EMBO J 20:7313–7322

    Article  PubMed  CAS  Google Scholar 

  15. Bradshaw JS, Kuzminov A (2003) RdgB acts to avoid chromosome fragmentation in Escherichia coli. Mol Microbiol 48:1711–1725

    Article  PubMed  CAS  Google Scholar 

  16. Butland G, Peregrin-Alvarez JM, Li J, Yang W, Yang X, Canadien V, Starostine A, Richards D, Beattie B, Krogan N, Davey M, Parkinson J, Greenblatt J, Emili A (2005) Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433:531–537

    Article  PubMed  CAS  Google Scholar 

  17. Chow KH, Courcelle J (2004) RecO acts with RecF and RecR to protect and maintain replication forks blocked by UV-induced DNA damage in Escherichia coli. J Biol Chem 279:3492–3496

    Article  PubMed  CAS  Google Scholar 

  18. Clark AJ, Sandler SJ (1994) Homologous genetic recombination: the pieces begin to fall into place. Crit Rev Microbiol 20:125–142

    Article  PubMed  CAS  Google Scholar 

  19. Cohen A, Laban A (1983) Plasmidic recombination in Escherichia coli K-12: the role of recF gene function. Mol Gen Genet 189:471–474

    Article  PubMed  CAS  Google Scholar 

  20. Courcelle J, CarswellCrumpton C, Hanawalt PC (1997) recF and recR are required for the resumption of replication at DNA replication forks in Escherichia coli. Proc Natl Acad Sci USA 94:3714–3719

    Article  PubMed  CAS  Google Scholar 

  21. Cox JM, Tsodikov OV, Cox MM (2005) Organized unidirectional waves of ATP hydrolysis within a RecA filament. PLoS Biol 3:e52

    Article  PubMed  CAS  Google Scholar 

  22. Cox MM (2003) The bacterial RecA protein as a motor protein. Annu Rev Microbiol 57:551–577

    Article  PubMed  CAS  Google Scholar 

  23. Cromie GA, Leach DRF (2000) Control of crossing over. Mol Cell 6:815–826

    Article  PubMed  CAS  Google Scholar 

  24. Dalencon E, Petranovic M, Michel B, Noirot P, Aucouturier A, Uzest M, Ehrlich SD (1994) Copy-choice illegitimate DNA recombination revisited. EMBO J 13:2725–2734

    CAS  Google Scholar 

  25. Dillingham MS, Spies M, Kowalczykowski SC (2003) RecBCD enzyme is a bipolar DNA helicase. Nature 423:893–897

    Article  PubMed  CAS  Google Scholar 

  26. Donaldson JR, Courcelle CT, Courcelle J (2004) RuvAB and RecG are not essential for the recovery of DNA synthesis following UV-induced DNA damage in Escherichia coli. Genetics 166:1631–1640

    Article  PubMed  CAS  Google Scholar 

  27. Drees JC, Lusetti SL, Chitteni-Pattu S, Inman RB, Cox MM (2004) A RecA filament capping mechanism for RecX protein. Mol Cell 15:789–798

    Article  PubMed  CAS  Google Scholar 

  28. Eggler AL, Lusetti SL, Cox MM (2003) The C terminus of the Escherichia coli RecA protein modulates the DNA binding competition with single-stranded DNA-binding protein. J Biol Chem 278:16389–16396

    Article  PubMed  CAS  Google Scholar 

  29. Fischer W, Haas R (2004) The RecA protein of Helicobacter pylori requires a posttranslational modification for full activity. J Bacteriol 186:777–784

    Article  PubMed  CAS  Google Scholar 

  30. Flores MJ, Bierne H, Ehrlich SD, Michel B (2001) Impairment of lagging strand synthesis triggers the formation of a RuvABC substrate at replication forks. EMBO J 20:619–629

    Article  PubMed  CAS  Google Scholar 

  31. Flores MJ, Sanchez N, Michel B (2005) A fork-clearing role for UvrD. Mol Microbiol 57:1664–1675

    Article  PubMed  CAS  Google Scholar 

  32. Foster TJ, Lundblad V, Hanley-Way S, Halling SM, Kleckner N (1981) Three Tn10-associated excision events: relationship to transposition and role of direct and inverted repeats. Cell 23:215–227

    Article  PubMed  CAS  Google Scholar 

  33. Foti JJ, Schienda J, Sutera VA Jr, Lovett ST (2005) A bacterial G protein-mediated response to replication arrest. Mol Cell 17:549–560

    Article  PubMed  CAS  Google Scholar 

  34. Friedman N, Vardi S, Ronen M, Alon U, Stavans J (2005) Precise temporal modulation in the response of the SOS DNA repair network in individual bacteria. PLoS Biol 3:e238

    Article  PubMed  CAS  Google Scholar 

  35. Galitski T, Roth JR (1997) Pathways for homologous recombination between chromosomal direct repeats in Salmonella typhimurium. Genetics 146:751–767

    PubMed  CAS  Google Scholar 

  36. Gibson FP, Leach DRF, Lloyd RG (1992) Identification of sbcD mutations as cosuppressors of recBC that allow propagation of DNA palindromes in Escherichia-Coli K-12. J Bacteriol 174:1222–1228

    PubMed  CAS  Google Scholar 

  37. Grompone G, Bidnenko V, Ehrlich SD, Michel B (2004a) PriA is essential for viability of the Escherichia coli topoisomerase IV parE10(Ts) mutant. J Bacteriol 186:1197–1199

    Article  PubMed  CAS  Google Scholar 

  38. Grompone G, Ehrlich D, Michel B (2004b) Cells defective for replication restart undergo replication fork reversal. EMBO Rep 5:607–612

    Article  PubMed  CAS  Google Scholar 

  39. Grompone G, Ehrlich SD, Michel B (2003) Replication restart in gyrB Escherichia coli mutants. Mol Microbiol 48:845–854

    Article  PubMed  CAS  Google Scholar 

  40. Grompone G, Seigneur M, Ehrlich SD, Michel B (2002) Replication fork reversal in DNA polymerase III mutants of Escherichia coli: a role for the beta clamp. Mol Microbiol 44:1331–1339

    Article  PubMed  CAS  Google Scholar 

  41. Handa N, Bianco PR, Baskin RJ, Kowalczykowski SC (2005) Direct visualization of RecBCD movement reveals cotranslocation of the RecD motor after chi recognition. Mol Cell 17:745–750

    Article  PubMed  CAS  Google Scholar 

  42. Heller RC, Marians KJ (2006) Replication fork reactivation downstream of a blocked nascent leading strand. Nature 439:557–562

    Article  PubMed  CAS  Google Scholar 

  43. Higgins NP, Kato K, Strauss B (1976) A model for replication repair in mammalian cells. J Mol Biol 101:417–425

    Article  PubMed  CAS  Google Scholar 

  44. Horiuchi T, Fujimura Y, Nishitani H, Kobayashi T, Hidaka M (1994) DNA replication fork blocked at the Ter site may be an entrance for the RecBCD enzyme into duplex DNA. J Bacteriol 176:4656–4663

    PubMed  CAS  Google Scholar 

  45. Ivancic-Bace I, Peharec P, Moslavac S, Skrobot N, Salaj-Smic E, Brcic-Kostic K (2003) RecFOR function is required for DNA repair and recombination in a RecA loading-deficient recB mutant of Escherichia coli. Genetics 163:485–494

    PubMed  CAS  Google Scholar 

  46. Ivancic-Bace I, Salaj-Smic E, Brcic-Kostic K (2005) Effects of recJ, recQ, and recFOR mutations on recombination in nuclease-deficient recB recD double mutants of Escherichia coli. J Bacteriol 187:1350–1356

    Article  PubMed  CAS  Google Scholar 

  47. Jockovich ME, Myers RS (2001) Nuclease activity is essential for RecBCD recombination in Escherichia coli. Mol Microbiol 41:949–962

    Article  PubMed  CAS  Google Scholar 

  48. Kang J, Tavakoli D, Tschumi A, Aras RA, Blaser MJ (2004) Effect of host species on recG phenotypes in Helicobacter pylori and Escherichia coli. J Bacteriol 186:7704–7713

    Article  PubMed  CAS  Google Scholar 

  49. Keller KL, OverbeckCarrick TL, Beck DJ (2001) Survival and induction of SOS in Escherichia coli treated with cisplatin, UV-irradiation, or mitomycin C are dependent on the function of the RecBC and RecFOR pathways of homologous recombination. Mutat Res DNA Repair 486:21–29

    Article  PubMed  CAS  Google Scholar 

  50. Khidhir MA, Casaregola S, Holland IB (1985) Mechanism of transient inhibition of DNA synthesis in ultraviolet- irradiated E. coli: inhibition is independent of recA whilst recovery requires RecA protein itself and an additional, inducible SOS function. Mol Gen Genet 199:133–140

    Article  PubMed  CAS  Google Scholar 

  51. Kline KA, Sechman EV, Skaar EP, Seifert HS (2003) Recombination, repair and replication in the pathogenic Neisseriae: the 3 R's of molecular genetics of two human-specific bacterial pathogens. Mol Microbiol 50:3–13

    Article  PubMed  CAS  Google Scholar 

  52. Kline KA, Seifert HS (2005a) Mutation of the priA gene of Neisseria gonorrhoeae affects DNA transformation and DNA repair. J Bacteriol 187:5347–5355

    Article  PubMed  CAS  Google Scholar 

  53. Kline KA, Seifert HS (2005b) Role of the Rep helicase gene in homologous recombination in Neisseria gonorrhoeae. J Bacteriol 187:2903–2907

    Article  PubMed  CAS  Google Scholar 

  54. Knezevic-Vukcevic J, Simic D (1991) RecBC promoted repair of bleomycin damage in Escherichia coli. Biochimie 73:497–500

    Article  PubMed  CAS  Google Scholar 

  55. Kogoma T (1997) Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol Mol Biol Rev 61:212–238

    PubMed  CAS  Google Scholar 

  56. Kogoma T, Cadwell GW, Barnard KG, Asai T (1996) The DNA replication priming protein, PriA, is required for homologous recombination and double-strand break repair. J Bacteriol 178:1258–1264

    PubMed  CAS  Google Scholar 

  57. Kolodner R, Fishel RA, Howard M (1985) Genetic recombination of bacterial plasmid DNA: effect of RecF pathway mutations on plasmid recombination in Escherichia coli. J Bacteriol 163:1060–1066

    PubMed  CAS  Google Scholar 

  58. Konrad EB (1977) Method for the isolation of Escherichia coli mutants with enhanced recombination between chromosomal duplications. J Bacteriol 130:167–172

    PubMed  CAS  Google Scholar 

  59. Kouzminova EA, Kuzminov A (2004) Chromosomal fragmentation in dUTPase-deficient mutants of Escherichia coli and its recombinational repair. Mol Microbiol 51:1279–1295

    Article  PubMed  CAS  Google Scholar 

  60. Kouzminova EA, Kuzminov A (2006) Fragmentation of replicating chromosomes triggered by uracil in DNA. J Mol Biol 355:20–33

    Article  PubMed  CAS  Google Scholar 

  61. Kowalczykowski SC (1991) Biochemistry of genetic recombination – energetics and mechanism of DNA strand exchange. Ann Rev Biophysics Biophysic Chem 20:539–575

    Article  CAS  Google Scholar 

  62. Kuzminov A (1995) Collapse and repair of replication forks in Escherichia coli. Mol Microbiol 16:373–384

    Article  PubMed  CAS  Google Scholar 

  63. Kuzminov A (1999) Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev 63:751–813

    PubMed  CAS  Google Scholar 

  64. Kuzminov A (2001) Single-strand interruptions in replicating chromosomes cause double-strand breaks. Proc Natl Acad Sci USA 98:8241–8246

    Article  PubMed  CAS  Google Scholar 

  65. Lee BI, Kim KH, Park SJ, Eom SH, Song HK, Suh SW (2004) Ring-shaped architecture of RecR: implications for its role in homologous recombinational DNA repair. EMBO J 23:2029–2038

    Article  PubMed  CAS  Google Scholar 

  66. Leiros I, Timmins J, Hall DR, McSweeney S (2005) Crystal structure and DNA-binding analysis of RecO from Deinococcus radiodurans. EMBO J 24:906–918

    Article  PubMed  CAS  Google Scholar 

  67. Lesterlin C, Barre FX, Cornet F (2004) Genetic recombination and the cell cycle: what we have learned from chromosome dimers. Mol Microbiol 54:1151–1160

    Article  PubMed  CAS  Google Scholar 

  68. Liu J, Marians KJ (1999) PriA-directed assembly of a primosome on D loop DNA. J Biol Chem 274:25033–25041

    Article  PubMed  CAS  Google Scholar 

  69. Liu YH, Cheng AJ, Wang TCV (1998) Involvement of recF, recO, and recR genes in UV-radiation mutagenesis of Escherichia coli. J Bacteriol 180:1766–1770

    PubMed  CAS  Google Scholar 

  70. Lloyd RG, Buckman C (1991) Genetic analysis of the recG locus of Escherichia coli-K-12 and of itsrole in recombination and DNA repair. J Bacteriol 173:1004–1011

    PubMed  CAS  Google Scholar 

  71. Lloyd RG, Porton MC, Buckman C (1988) Effect of recF, recJ, recN, recO and ruv mutations on ultraviolet survival and genetic recombination in a recD strain of Escherichia coli K12. Mol Gen Genet 212:317–324

    Article  PubMed  CAS  Google Scholar 

  72. Lopes M, Foiani M, Sogo JM (2006) Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell 21:15–27

    Article  PubMed  CAS  Google Scholar 

  73. Lovett ST (2004) Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences. Mol Microbiol 52:1243–1253

    Article  PubMed  CAS  Google Scholar 

  74. Lovett ST, Drapkin PT, Sutera VA Jr, Gluckman-Peskind TJ (1993) A sister-strand exchange mechanism for recA-independent deletion of repeated DNA sequences in Escherichia coli. Genetics 135:631–642

    PubMed  CAS  Google Scholar 

  75. Lovett ST, Feschenko VV (1996) Stabilization of diverged tandem repeats by mismatch repair: evidence for deletion formation via a misaligned replication intermediate. Proc Natl Acad Sci USA 93:7120–7124

    Article  PubMed  CAS  Google Scholar 

  76. Lovett ST, Hurley RL, Sutera VA Jr, Aubuchon RH, Lebedeva MA (2002) Crossing over between regions of limited homology in Escherichia coli. RecA-dependent and RecA-independent pathways. Genetics 160:851–859

    PubMed  CAS  Google Scholar 

  77. Lovett ST, Luisi-DeLuca C, Kolodner RD (1988) The genetic dependence of recombination in recD mutants of Escherichia coli. Genetics 120:37–45

    PubMed  CAS  Google Scholar 

  78. Lusetti SL, Hobbs MD, Stohl EA, Chitteni-Pattu S, Inman RB, Seifert HS, Cox MM (2006) The RecF protein antagonizes RecX function via direct interaction. Mol Cell 21:41–50

    Article  PubMed  CAS  Google Scholar 

  79. Madiraju MV, Templin A, Clark AJ (1988) Properties of a mutant recA-encoded protein reveal a possible role for Escherichia coli recF-encoded protein in genetic recombination. Proc Natl Acad Sci USA 85:6592–6596

    Article  PubMed  CAS  Google Scholar 

  80. Marians KJ (2000) PriA-directed replication fork restart in Escherichia coli. Trends Biochem Sci 25:185–189

    Article  PubMed  CAS  Google Scholar 

  81. Matic I, Rayssiguier C, Radman M (1995) Interspecies gene exchange in bacteria: The role of SOS and mismatch repair systems in evolution of species. Cell 80:507–515

    Article  PubMed  CAS  Google Scholar 

  82. Maul RW, Sutton MD (2005) Roles of the Escherichia coli RecA protein and the global SOS response in effecting DNA polymerase selection in vivo. J Bacteriol 187:7607–7618

    Article  PubMed  CAS  Google Scholar 

  83. Mazin AV, Timchenko TV, Saparbaev MK, Mazina OM (1996) Dimerization of plasmid DNA accelerates selection for antibiotic resistance. Mol Microbiol 20:101–108

    Article  PubMed  CAS  Google Scholar 

  84. McGlynn P, AlDeib AA, Liu J, Marians KJ, Lloyd RG (1997) The DNA replication protein PriA and the recombination protein RecG bind D-loops. J Mol Biol 270:212–221

    Article  PubMed  CAS  Google Scholar 

  85. McGlynn P, Lloyd RG (1999) RecG helicase activity at three- and four-strand DNA structures. Nucleic Acids Res 27:3049–3056

    Article  PubMed  CAS  Google Scholar 

  86. McGlynn P, Lloyd RG (2000) Modulation of RNA polymerase by (P)ppGpp reveals a RecG-dependent mechanism for replication fork progression. Cell 101:35–45

    Article  PubMed  CAS  Google Scholar 

  87. McGlynn P, Lloyd RG (2002) Recombinational repair and restart of damaged replication forks. Nat Rev Mol Cell Biol 3:859–870

    Article  PubMed  CAS  Google Scholar 

  88. McHenry CS (2003) Chromosomal replicases as asymmetric dimers: studies of subunit arrangement and functional consequences. Mol Microbiol 49:1157–1165

    Article  PubMed  CAS  Google Scholar 

  89. Meddows TR, Savory AP, Grove JI, Moore T, Lloyd RG (2005) RecN protein and transcription factor DksA combine to promote faithful recombinational repair of DNA double-strand breaks. Mol Microbiol 57:97–110

    Article  PubMed  CAS  Google Scholar 

  90. Meddows TR, Savory AP, Lloyd RG (2004) RecG helicase promotes DNA double-strand break repair. Mol Microbiol 52:119–132

    Article  PubMed  CAS  Google Scholar 

  91. Michel B (2000) Replication fork arrest and DNA recombination. Trends Biochem Sci 25:173–178

    Article  PubMed  CAS  Google Scholar 

  92. Michel B, Flores MJ, Viguera E, Grompone G, Seigneur M, Bidnenko V (2001) Rescue of arrested replication forks by homologous recombination. Proc Natl Acad Sci USA 98:8181–8188

    Article  PubMed  CAS  Google Scholar 

  93. Michel B, Grompone G, Flores MJ, Bidnenko V (2004) Multiple pathways process stalled replication forks. Proc Natl Acad Sci USA 101:12783–12788

    Article  PubMed  CAS  Google Scholar 

  94. Michel B, Recchia GD, PenelColin M, Ehrlich SD, Sherratt DJ (2000) Resolution of Holliday junctions by RuvABC prevents dimer formation in rep mutants and UV-irradiated cells. Mol Microbiol 37:180–191

    Article  PubMed  CAS  Google Scholar 

  95. Morel P, Hejna JA, Ehrlich SD, Cassuto E (1993) Antipairing and strand transferase activities of E. coli helicase-II (UvrD). Nucleic Acids Res 21:3205–3209

    Article  PubMed  CAS  Google Scholar 

  96. Morimatsu K, Kowalczykowski SC (2003) RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair. Mol Cell 11:1337–1347

    Article  PubMed  CAS  Google Scholar 

  97. Noirot P, Gupta RC, Radding CM, Kolodner RD (2003) Hallmarks of homology recognition by RecA-like recombinases are exhibited by the unrelated Escherichia coli RecT protein. EMBO J 22:324–334

    Article  PubMed  CAS  Google Scholar 

  98. Nowosielska A, Calmann MA, Zdraveski Z, Essigmann JM, Marinus MG (2004) Spontaneous and cisplatin-induced recombination in Escherichia coli. DNA Repair (Amst) 3:719–728

    Article  CAS  Google Scholar 

  99. Pages V, Koffel-Schwartz N, Fuchs RP (2003) recX, a new SOS gene that is co-transcribed with the recA gene in Escherichia coli. DNA Repair (Amst) 2:273–284

    Article  CAS  Google Scholar 

  100. Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404

    PubMed  CAS  Google Scholar 

  101. Petranovic M, Zahradka K, Zahradka D, Petranovic D, Nagy B, SalajSmic E, Petranovic D (2001) Genetic evidence that the elevated levels of Escherichia coli helicase II antagonize recombinational DNA repair. Biochimie 83:1041–1047

    Article  PubMed  CAS  Google Scholar 

  102. Pinto AV, Mathieu A, Marsin S, Veaute X, Ielpi L, Labigne A, Radicella JP (2005) Suppression of homologous and homeologous recombination by the bacterial MutS2 protein. Mol Cell 17:113–120

    Article  PubMed  CAS  Google Scholar 

  103. Rangarajan S, Woodgate R, Goodman MF (2002) Replication restart in UV-irradiated Escherichia coli involving pols II, III, V, PriA, RecA and RecFOR proteins. Mol Microbiol 43:617–628

    Article  PubMed  CAS  Google Scholar 

  104. Renzette N, Gumlaw N, Nordman JT, Krieger M, Yeh SP, Long E, Centore R, Boonsombat R, Sandler SJ (2005) Localization of RecA in Escherichia coli K-12 using RecA-GFP. Mol Microbiol 57:1074–1085

    Article  PubMed  CAS  Google Scholar 

  105. Robu ME, Inman RB, Cox MM (2001) RecA protein promotes the regression of stalled replication forks in vitro. Proc Natl Acad Sci USA 98:8211–8218

    Article  PubMed  CAS  Google Scholar 

  106. Robu ME, Inman RB, Cox MM (2004) Situational repair of replication forks: Roles of RecG and RecA proteins. J Biol Chem 12:10973–10981

    Article  CAS  Google Scholar 

  107. Rocha EP, Cornet E, Michel B (2005) Comparative and evolutionary analysis of the bacterial homologous recombination systems. PLoS Genet 1:e15

    Article  PubMed  CAS  Google Scholar 

  108. Rupp (1996) DNA repair mechanisms. In: W.D. R (ed) American Society of Microbiology Press, Washington DC, pp 2277–2294

    Google Scholar 

  109. Rupp WD, Howard-Flanders P (1968) Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol 31:291–304

    Article  PubMed  CAS  Google Scholar 

  110. Sandler SJ, Marians KJ (2000) Role of PriA in replication fork reactivation in Escherichia coli. J Bacteriol 182:9–13

    Article  PubMed  CAS  Google Scholar 

  111. Sandler SJ, Samra HS, Clark AJ (1996) Differential suppression of priA2::kan phenotypes in Escherichia coli K-12 by mutations in priA, lexA, and dnaC. Genetics 143:5–13

    PubMed  CAS  Google Scholar 

  112. Sano Y (1993) Role of the recA-related gene adjacent to the recA gene in Pseudomonas aeruginosa. J Bacteriol 175:2451–2454

    PubMed  CAS  Google Scholar 

  113. Sargentini NJ, Smith KC (1986) Quantitation of the involvement of the recA, recB, recC, recF, recJ, recN, lexA, radA, radB, uvrD, and umuC genes in the repair of X-ray-induced DNA double-strand breaks in Escherichia coli. Radiat Res 107:58–72

    Article  PubMed  CAS  Google Scholar 

  114. Saveson CJ, Lovett ST (1997a) Enhanced deletion formation by aberrant DNA replication in Escherichia coli. Genetics 146:457–470

    PubMed  CAS  Google Scholar 

  115. Saveson CJ, Lovett ST (1997b) Enhanced deletion formation by aberrant DNA replication in Escherichia coli. Genetics 146:457–470

    PubMed  CAS  Google Scholar 

  116. Schapiro JM, Libby SJ, Fang FC (2003) Inhibition of bacterial DNA replication by zinc mobilization during nitrosative stress. Proc Natl Acad Sci USA 100:8496–8501

    Article  PubMed  CAS  Google Scholar 

  117. Seigneur M, Bidnenko V, Ehrlich SD, Michel B (1998) RuvAB acts at arrested replication forks. Cell 95:419–430

    Article  PubMed  CAS  Google Scholar 

  118. Seigneur M, Ehrlich SD, Michel B (2000) RuvABC-dependent double-strand breaks in dnaBts mutants require RecA. Mol Microbiol 38:565–574

    Article  PubMed  CAS  Google Scholar 

  119. Shan Q, Bork JM, Webb BL, Inman RB, Cox MM (1997) RecA protein filaments: End-dependent dissociation from ssDNA and stabilization by RecO and RecR proteins. J Mol Biol 265:519–540

    Article  PubMed  CAS  Google Scholar 

  120. Sherratt DJ (2003) Bacterial chromosome dynamics. Science 301:780–785

    Article  PubMed  CAS  Google Scholar 

  121. Singleton MR, Dillingham MS, Gaudier M, Kowalczykowski SC, Wigley DB (2004) Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks. Nature 432:187–193

    Article  PubMed  CAS  Google Scholar 

  122. Singleton MR, Scaife S, Wigley DB (2001) Structural analysis of DNA replication fork reversal by RecG. Cell 107:79–89

    Article  PubMed  CAS  Google Scholar 

  123. Singleton SF, Xiao J (2001) The stretched DNA geometry of recombination and repair nucleoprotein filaments. Biopolymers 61:145–158

    Article  PubMed  CAS  Google Scholar 

  124. Smith KC (2004) Recombinational DNA repair: the ignored repair systems. Bioessays 26:1322–1326

    Article  PubMed  CAS  Google Scholar 

  125. Spies M, Dillingham MS, Kowalczykowski SC (2005) Translocation by the RecB motor is an absolute requirement for {chi}-recognition and RecA protein loading by RecBCD enzyme. J Biol Chem 280:37078–37087

    Article  PubMed  CAS  Google Scholar 

  126. Steiner WW, Kuempel PL (1998) Sister chromatid exchange frequencies in Escherichia coli analyzed by recombination at the dif resolvase site. J Bacteriol 180:6269–6275

    PubMed  CAS  Google Scholar 

  127. Stohl EA, Brockman JP, Burkle KL, Morimatsu K, Kowalczykowski SC, Seifert HS (2003) Escherichia coli RecX inhibits RecA recombinase and coprotease activities in vitro and in vivo. J Biol Chem 278:2278–2285

    Article  PubMed  CAS  Google Scholar 

  128. Taylor AF, Smith GR (2003) RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity. Nature 423:889–893

    Article  PubMed  CAS  Google Scholar 

  129. Thoms B, Wackernagel W (1987) Regulatory role of recF in the SOS response of Escherichia coli: impaired induction of SOS genes by UV irradiation and nalidixic acid in a recF mutant. J Bacteriol 169:1731–1736

    PubMed  CAS  Google Scholar 

  130. Tseng YC, Hung JL, Wang TCV (1994) Involvement of RecF pathway recombination genes in postreplication repair in UV-irradiated Escherichia coli cells. Mutat Res 315:1–9

    PubMed  CAS  Google Scholar 

  131. Tuteja N, Tuteja R (2004) Unraveling DNA helicases. Motif, structure, mechanism and function. Eur J Biochem 271:1849–1863

    Article  PubMed  CAS  Google Scholar 

  132. van Gool AJ, Hajibagheri NM, Stasiak A, West SC (1999) Assembly of the Escherichia coli RuvABC resolvasome directs the orientation of Holliday junction resolution. Genes Dev 13:1861–1870

    Article  PubMed  Google Scholar 

  133. Veaute X, Delmas S, Selva M, Jeusset J, Le Cam E, Matic I, Fabre F, Petit MA (2005) UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli. EMBO J 24:180–189

    Article  PubMed  CAS  Google Scholar 

  134. Vincent SD, Mahdi AA, Lloyd RG (1996) The RecG branch migration protein Escherichia coli dissociates R-loops. J Mol Biol 264:713–721

    Article  PubMed  CAS  Google Scholar 

  135. Wang TC (2005) Discontinuous or semi-discontinuous DNA replication in Escherichia coli? Bioessays 27:633–636

    Article  PubMed  CAS  Google Scholar 

  136. Wang TC, Smith KC (1983) Mechanisms for recF-dependent and recB-dependent pathways of postreplication repair in UV-irradiated Escherichia coli uvrB. J Bacteriol 156:1093–1098

    PubMed  CAS  Google Scholar 

  137. Wang TC, Smith KC (1986) Postreplicational formation and repair of DNA double-strand breaks in UV-irradiated Escherichia coli uvrB cells. Mutat Res 165:39–44

    PubMed  CAS  Google Scholar 

  138. Wang TC, Smith KC (1988) Different effects of recJ and recN mutations on the postreplication repair of UV-damaged DNA in Escherichia coli K-12. J Bacteriol 170:2555–2559

    PubMed  CAS  Google Scholar 

  139. Wang TCV, Chang HY, Hung JL (1993) Cosuppression of recF-mutation, recR-mutation and recO-mutation by mutant recA alleles in Escherichia coli cells. Mutat Res 294:157–166

    PubMed  CAS  Google Scholar 

  140. Webb BL, Cox MM, Inman RB (1997) Recombinational DNA repair: The RecF and RecR proteins limit the extension of RecA filaments beyond single-strand DNA gaps. Cell 91:347–356

    Article  PubMed  CAS  Google Scholar 

  141. West SC (1997) Processing of recombination intermediates by the RuvABC proteins. Ann Rev Genet 31:213–244

    Article  PubMed  CAS  Google Scholar 

  142. Whitby MC, Lloyd RG (1995a) Altered SOS induction associated with mutations in recF, recO and recR. Mol Gen Genet 246:174–179

    Article  PubMed  CAS  Google Scholar 

  143. Whitby MC, Lloyd RG (1995b) Branch migration of three-strand recombination intermediates by RecG, a possible pathway for securing exchanges initiated by 3′-tailed duplex DNA. EMBO J 14:3302–3310

    PubMed  CAS  Google Scholar 

  144. Whitby MC, Vincent SD, Lloyd RG (1994) Branch migration of Holliday junctions: Identification of RecG protein as a junction specific: DNA helicase. EMBO J 13:5220–5228

    PubMed  CAS  Google Scholar 

  145. Witkin EM (1991) RecA protein in the SOS response - milestones and mysteries. Biochimie 73:133–141

    Article  PubMed  CAS  Google Scholar 

  146. Xiao J, Singleton SF (2002) Elucidating a key intermediate in homologous DNA strand exchange: structural characterization of the RecA-triple-stranded DNA complex using fluorescence resonance energy transfer. J Mol Biol 320:529–558

    Article  PubMed  CAS  Google Scholar 

  147. Xu L, Marians KJ (2003) PriA mediates DNA replication pathway choice at recombination intermediates. Mol Cell 11:817–826

    Article  PubMed  CAS  Google Scholar 

  148. Zieg J, Kushner SR (1977) Analysis of genetic recombination between two partially deleted lactose operons of Escherichia coli K-12. J Bacteriol 131:123–132

    PubMed  CAS  Google Scholar 

  149. Zieg J, Maples VF, Kushner SR (1978) Recombinant levels of Escherichia coli K-12 mutants deficient in various replication, recombination, or repair genes. J Bacteriol 134:958–966

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bénédicte Michel .

Editor information

Andrés Aguilera Rodney Rothstein

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Michel, B., Baharoglu, Z., Lestini, R. (2006). Genetics of Recombination in the Model Bacterium Escherichia Coli. In: Aguilera, A., Rothstein, R. (eds) Molecular Genetics of Recombination. Topics in Current Genetics, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4735_2006_0211

Download citation

Publish with us

Policies and ethics