Skip to main content

The Bacterial RecA Protein: Structure, Function, and Regulation

  • Chapter
  • First Online:
Molecular Genetics of Recombination

Part of the book series: Topics in Current Genetics ((TCG,volume 17))

Abstract

The bacterial RecA protein is the prototypical recombinase, promoting the central steps of DNA pairing and strand exchange in genetic recombination and recombinational DNA repair. RecA homologs are present in virtually all organisms from bacteria to humans. RecA is a multifunctional protein. As a recombinase, the protein binds to DNA in the form of a helical filament, and exhibits a DNA-dependent ATPase activity. As a nucleoprotein filament, RecA promotes a series of easily monitored DNA strand exchange reactions in vitro. In addition to its role as a recombinase, the E. coliRecA protein is also a key component of the regulatory system that controls the induction of the SOS response, and it plays a direct role in the UV mutagenesis promoted by DNA polymerase V. RecA protein is subject to multiple layers of regulation. RecA is autoregulated by its own C-terminus. Many other proteins, including the RecF, RecO, RecR, DinI, RecX, RdgC, PsiB, and SSB proteins, have either a demonstrated or probable role in modulating where and when RecA-mediated recombination events occur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aboussekhra A, Chanet R, Zgaga Z, Cassier-Chauvat C, Heude M, Fabre F (1989) RADH, a gene of Saccharomyces cerevisiae encoding a putative DNA helicase involved in DNA repair. Characteristics of radH mutants and sequence of the gene. Nucleic Acids Res 17:7211–7219

    Article  PubMed  CAS  Google Scholar 

  2. Adams DE, Tsaneva IR, West SC (1994) Dissociation of RecA filaments from duplex DNA by the RuvA and RuvB DNA repair proteins. Proc Natl Acad Sci USA 91:9901–9905

    Article  PubMed  CAS  Google Scholar 

  3. Adzuma K (1992) Stable synapsis of homologous DNA molecules mediated by the Escherichia coliRecA protein involves local exchange of DNA strands. Genes Dev 6:1679–1694

    Article  PubMed  CAS  Google Scholar 

  4. Aguilera A, Klein HL (1988) Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae. I. Isolation and genetic characterization of hyper-recombination mutations. Genetics 119:779–90

    PubMed  CAS  Google Scholar 

  5. Ahnn J, March PE, Takiff HE, Inouye M (1986) A GTP-binding protein of Escherichia coli has homology to yeast RAS proteins. Proc Natl Acad Sci USA 83:8849–8853

    Article  PubMed  CAS  Google Scholar 

  6. Alberts B, Miake-Lye R (1992) Unscrambling the puzzle of biological machines: The importance of the details. Cell 68:415–420

    Article  PubMed  CAS  Google Scholar 

  7. Ali JA, Maluf NK, Lohman TM (1999) An oligomeric form of E. coli UvrD is required for optimal helicase activity. J Mol Biol 293:815–834

    Article  PubMed  CAS  Google Scholar 

  8. Alonso JC, Stiege AC, Dobrinski B, Lurz R (1993) Purification and properties of the RecR protein from Bacillus subtilis 168. J Biol Chem 268:1424–1429

    PubMed  CAS  Google Scholar 

  9. Anderson DG, Kowalczykowski SC (1997) The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a chi-regulated manner. Cell 90:77–86

    Article  PubMed  CAS  Google Scholar 

  10. Arenson TA, Tsodikov OV, Cox MM (1999) Quantitative analysis of the kinetics of end-dependent disassembly of RecA filaments from ssDNA. J Mol Biol 288:391–401

    Article  PubMed  CAS  Google Scholar 

  11. Arnold DA, Kowalczykowski SC (2000) Facilitated loading of RecA protein is essential to recombination by RecBCD enzyme. J Biol Chem 275:12261–12265

    Article  PubMed  CAS  Google Scholar 

  12. Aylon Y, Kupiec M (2005) Cell cycle-dependent regulation of double-strand break repair – A role for the CDK. Cell Cycle 4:259–261

    PubMed  CAS  Google Scholar 

  13. Bagdasarian M, Bailone A, Bagdasarian MM, Manning PA, Lurz R, Timmis KN, Devoret R (1986) An inhibitor of SOS induction, specified by a plasmid locus in Escherichia coli. Proc Natl Acad Sci USA 83:5723–5726

    Article  PubMed  CAS  Google Scholar 

  14. Baliga R, Singleton JW, Dervan PB (1995) RecA.oligonucleotide filaments bind in the minor groove of double-stranded DNA. Proc Natl Acad Sci USA 92:10393–10397

    Article  PubMed  CAS  Google Scholar 

  15. Barre FX, Soballe B, Michel B, Aroyo M, Robertson M, Sherratt D (2001) Circles: The replication-recombination-chromosome segregation connection. Proc Natl Acad Sci USA 98:8189–8195

    Article  PubMed  CAS  Google Scholar 

  16. Baumann P, West SC (1998) Role of the human Rad51 protein in homologous recombination and double-stranded break repair. Trends Biochem Sci 23:247–251

    Article  PubMed  CAS  Google Scholar 

  17. Bazemore LR, Takahashi M, Radding CM (1997) Kinetic analysis of pairing and strand exchange catalyzed by RecA. Detection by fluorescence energy transfer. J Biol Chem 272:14672–14682

    Article  PubMed  CAS  Google Scholar 

  18. Bedale WA, Cox M (1996) Evidence for the coupling of ATP hydrolysis to the final (extension) phase of RecA protein-mediated DNA strand exchange. J Biol Chem 271:5725–5732

    Article  PubMed  CAS  Google Scholar 

  19. Benedict RC, Kowalczykowski SC (1988) Increase of the DNA strand assimilation activity of RecA protein by removal of the C terminus and structure-function studies of the resulting protein fragment. J Biol Chem 263:15513–15520

    PubMed  CAS  Google Scholar 

  20. Bierne H, Michel B (1994) When replication forks stop. Mol Microbiol 13:17–23

    Article  PubMed  CAS  Google Scholar 

  21. Bird LE, Subramanya HS, Wigley DB (1998) Helicases: a unifying structural theme? Curr Opin Struct Biol 8:14–18

    Article  PubMed  CAS  Google Scholar 

  22. Bishop AJR, Schiestl RH (2003) Role of homologous recombination in carcinogenesis. Exp Mol Pathol 74:94–105

    Article  PubMed  CAS  Google Scholar 

  23. Bishop DK (1994) RecA homologs Dmc1 and Rad51 interact to form multiple nuclear complexes prior to meiotic chromosome synapsis. Cell 79:1081–1092

    Article  PubMed  CAS  Google Scholar 

  24. Bjergbaek L, Cobb JA, Gasser SM (2002) RecQ helicases and genome stability: Lessons from model organisms and human disease. Swiss Med Wkly 132:433–442

    PubMed  CAS  Google Scholar 

  25. Bork JM, Cox MM, Inman RB (2001a) The RecOR proteins modulate RecA protein function at 5′ ends of single-stranded DNA. EMBO J 20:7313–7322

    Article  PubMed  CAS  Google Scholar 

  26. Bork JM, Cox MM, Inman RB (2001b) RecA protein filaments disassemble in the 5′ to 3′ direction on single-stranded DNA. J Biol Chem 276:45740–45743

    Article  PubMed  CAS  Google Scholar 

  27. Brendel V, Brocchieri L, Sandler SJ, Clark AJ, Karlin S (1997) Evolutionary comparisons of RecA-like proteins across all major kingdoms of living organisms. J Mol Evol 44:528–541

    Article  PubMed  CAS  Google Scholar 

  28. Brenner SL, Mitchell RS, Morrical SW, Neuendorf SK, Schutte BC, Cox MM (1987) RecA protein-promoted ATP hydrolysis occurs throughout RecA nucleoprotein filaments. J Biol Chem 262:4011–4016

    PubMed  CAS  Google Scholar 

  29. Cadman CJ, McGlynn P (2004) PriA helicase and SSB interact physically and functionally. Nucleic Acids Res 32:6378–6387

    Article  PubMed  CAS  Google Scholar 

  30. Campbell MJ, Davis RW (1999) On the in vivo function of the RecA ATPase. J Mol Biol 286:437–445

    Article  PubMed  CAS  Google Scholar 

  31. Chakraverty RK, Hickson ID (1999) Defending genome integrity during DNA replication: a proposed role for RecQ family helicases. Bioessays 21:286–94

    Article  PubMed  CAS  Google Scholar 

  32. Chanet R, Heude M, Adjiri A, Maloisel L, Fabre F (1996) Semidominant mutations in the yeast Rad51 protein and their relationships with the Srs2 helicase. Mol Cell Biol 16:4782–4789

    PubMed  CAS  Google Scholar 

  33. Chen WL, Jinks-Robertson S (1998) Mismatch repair proteins regulate heteroduplex formation during mitotic recombination in yeast. Mol Cell Biol 18:6525–6537

    PubMed  CAS  Google Scholar 

  34. Chow SA, Chiu SK, Wong BC (1992) RecA protein-promoted homologous pairing and strand exchange between intact and partially single-stranded duplex DNA. J Mol Biol 223:79–93

    Article  PubMed  CAS  Google Scholar 

  35. Churchill JJ, Anderson DG, Kowalczykowski SC (1999) The RecBC enzyme loads RecA protein onto ssDNA asymmetrically and independently of chi, resulting in constitutive recombination activation. Genes Dev 13:901–911

    PubMed  CAS  Google Scholar 

  36. Clark AJ, Sandler SJ (1994) Homologous genetic recombination: the pieces begin to fall into place. Crit Rev Microbiol 20:125–142

    PubMed  CAS  Google Scholar 

  37. Cohen PE, Pollard JW (2001) Regulation of meiotic recombination and prophase I progression in mammals. Bioessays 23:996–1009

    Article  PubMed  CAS  Google Scholar 

  38. Conley EC, West SC (1990) Underwinding of DNA associated with duplex-duplex pairing by RecA protein. J Biol Chem 265:10156–10163

    PubMed  CAS  Google Scholar 

  39. Conway AB, Lynch TW, Zhang Y, Fortin GS, Fung CW, Symington LS, Rice PA (2004) Crystal structure of a Rad51 filament. Nat Struct Biol 11:791–796

    Article  CAS  Google Scholar 

  40. Courcelle J, Hanawalt PC (2003) RecA-dependent recovery of arrested DNA replication forks. Ann Rev Genetics 37:611–646

    Article  CAS  Google Scholar 

  41. Courcelle J, Belle JJ, Courcelle CT (2004) When replication travels on damaged templates: bumps and blocks in the road. Res Microbiol 155:231–237

    Article  PubMed  CAS  Google Scholar 

  42. Cox JM, Tsodikov OV, Cox MM (2005) Organized unidirectional waves of ATP hydrolysis within a RecA filament. PLoS Biol 3:231–243

    Article  CAS  Google Scholar 

  43. Cox MM, Lehman IR (1981) Directionality and polarity in RecA protein-promoted branch migration. Proc Natl Acad Sci USA 78:6018–6022

    Article  PubMed  CAS  Google Scholar 

  44. Cox MM, Soltis DA, Lehman IR, DeBrosse C, Benkovic SJ (1983) ADP-mediated dissociation of stable complexes of RecA protein and single-stranded DNA. J Biol Chem 258:2586–2592

    PubMed  CAS  Google Scholar 

  45. Cox MM (1994) Why does RecA protein hydrolyze ATP. Trends Biochem Sci 19:217–222

    Article  PubMed  CAS  Google Scholar 

  46. Cox MM (1995) Alignment of three (but not four) DNA strands in a RecA protein filament. J Biol Chem 270:26021–26024

    PubMed  CAS  Google Scholar 

  47. Cox MM (1998) A broadening view of recombinational DNA repair in bacteria. Genes Cells 3:65–78

    Article  PubMed  CAS  Google Scholar 

  48. Cox MM (1999) Recombinational DNA repair in bacteria and the RecA protein. Prog Nucl Acids Mol Biol 63:310–366

    Google Scholar 

  49. Cox MM, Goodman MF, Kreuzer KN, Sherratt DJ, Sandler SJ, Marians KJ (2000) The importance of repairing stalled replication forks. Nature 404:37–41

    Article  PubMed  CAS  Google Scholar 

  50. Cox MM (2001a) Recombinational DNA repair of damaged replication forks in Escherichia coli: questions. Ann Rev Genetics 35:53–82

    Article  CAS  Google Scholar 

  51. Cox MM (2001b) Historical overview: Searching for replication help in all of the rec places. Proc Natl Acad Sci USA 98:8173–8180

    Article  PubMed  CAS  Google Scholar 

  52. Cox MM (2002) The nonmutagenic repair of broken replication forks via recombination. Mutat Res 510:107–120

    PubMed  CAS  Google Scholar 

  53. Cox MM (2003) The bacterial RecA protein as a motor protein. Ann Rev Microbiol 57:551–577

    Article  CAS  Google Scholar 

  54. Datta A, Adjiri A, New L, Crouse GF, Jinksrobertson S (1996) Mitotic crossovers between diverged sequences are regulated by mismatch repair proteins in Saccharomyces cerevisiae. Mol Cell Biol 16:1085–1093

    PubMed  CAS  Google Scholar 

  55. Datta S, Prabu MM, Vaze MB, Ganesh N, Chandra NR, Muniyappa K, Vijayan M (2000) Crystal structures of Mycobacterium tuberculosis RecA and its complex with ADP-AlF4: implications for decreased ATPase activity and molecular aggregation. Nucleic Acids Res 28:4964–4973

    Article  PubMed  CAS  Google Scholar 

  56. Datta S, Ganesh N, Chandra NR, Muniyappa K, Vijayan M (2003a) Structural studies on MtRecA-nucleotide complexes: insights into DNA and nucleotide binding and the structural signature of NTP recognition. Proteins 50:474–485

    Article  PubMed  CAS  Google Scholar 

  57. Datta S, Krishna R, Ganesh N, Chandra NR, Muniyappa K, Vijayan M (2003b) Crystal structures of Mycobacterium smegmatis RecA and its nucleotide complexes. J Bacteriol 185:4280–4284

    Article  PubMed  CAS  Google Scholar 

  58. de Massy B (2003) Distribution of meiotic recombination sites. Trends Genet 19:514–522

    Article  PubMed  CAS  Google Scholar 

  59. De Mot R, Schoofs G, Vanderleyden J (1994) A putative regulatory gene downstream of recA is conserved in gram-negative and gram-positive bacteria. Nucleic Acids Res 22:1313–1314

    Article  PubMed  Google Scholar 

  60. Delver EP, Belogurov AA (1997) Organization of the leading region of incn plasmid pkm101 (r46) – a regulon controlled by cup sequence elements. J Mol Biol 271:13–30

    Article  PubMed  CAS  Google Scholar 

  61. Dillingham MS, Kowalczykowski SC (2001) A step backward in advancing DNA replication: rescue of stalled replication forks by RecG. Mol Cell 8:734–736

    Article  PubMed  CAS  Google Scholar 

  62. Drees JC, Lusetti SL, Chitteni-Pattu S, Inman RB, Cox MM (2004a) A RecA filament capping mechanism for RecX protein. Mol Cell 15:789–798

    Article  PubMed  CAS  Google Scholar 

  63. Drees JC, Lusetti SL, Cox MM (2004b) Inhibition of RecA protein by the Escherichia coli RecX protein – Modulation by the RecA C terminus and filament functional state. J Biol Chem 279:52991–52997

    Article  PubMed  CAS  Google Scholar 

  64. Drees JC, Chitteni-Pattu S, McCaslin DR, Inman RB, Cox MM (2006) Inhibition of RecA protein function by the RdgC protein from Escherichia coli. J Biol Chem 281:4708–4717

    Article  PubMed  CAS  Google Scholar 

  65. Egelman E (2000) A common structural core in proteins active in DNA recombination and replication. Trends Biochem Sci 25:180–181

    Google Scholar 

  66. Egelman EH (1993) What do x-ray crystallographic and electron microscopic structural studies of the RecA protein tell us about recombination? Curr Opin Struct Biol 3:189–197

    Article  CAS  Google Scholar 

  67. Egelman EH, Stasiak A (1993) Electron microscopy of RecA-DNA complexes: two different states, their functional significance and relation to the solved crystal structure. Micron 24:309–324

    Article  CAS  Google Scholar 

  68. Eggler AL, Lusetti SL, Cox MM (2003) The C terminus of the Escherichia coli RecA protein modulates the DNA binding competition with single-stranded DNA-binding protein. J Biol Chem 278:16389–16396

    Article  PubMed  CAS  Google Scholar 

  69. Ellouze C, Selmane T, Kim HK, Tuite E, Norden B, Mortensen K, Takahashi M (1999) Difference between active and inactive nucleotide cofactors in the effect on the DNA binding and the helical structure of RecA filament – Dissociation of RecA-DNA complex by inactive nucleotides. Eur J Biochem 262:88–94

    Article  PubMed  CAS  Google Scholar 

  70. Fabre F, Chan A, Heyer WD, Gangloff S (2002) Alternate pathways involving Sgs1/Top3, Mus81/ Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication. [erratum appears in Proc Natl Acad Sci USA. 2003 Feb 4;100(3):1462]. Proc Natl Acad Sci USA 99:16887–16892

    Article  PubMed  CAS  Google Scholar 

  71. Flores MJ, Sanchez N, Michel B (2005) A fork-clearing role for UvrD. Mol Microbiol 57:1664–1675

    Article  PubMed  CAS  Google Scholar 

  72. Folta-Stogniew E, O'Malley S, Gupta R, Anderson KS, Radding CM (2004) Exchange of DNA base pairs that coincides with recognition of homology promoted by E. coliRecA protein. Mol Cell 15:965–975

    Article  PubMed  CAS  Google Scholar 

  73. Foster PL (2005) Stress responses and genetic variation in bacteria. Mutat Res 569:3–11

    PubMed  CAS  Google Scholar 

  74. Frank-Kamenetskii MD, Mirkin SM (1995) Triplex DNA structures. Ann Rev Biochem 64:65–95

    Article  PubMed  CAS  Google Scholar 

  75. Friedberg EC (2005) Suffering in silence: The tolerance of DNA damage. Nat Rev Mol Cell Biol 6:943–953

    Article  PubMed  CAS  Google Scholar 

  76. Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2006) DNA Repair and Mutagenesis, 2nd edn. ASM Press, Washington DC

    Google Scholar 

  77. Gangloff S, McDonald JP, Bendixen C, Arthur L, Rothstein R (1994) The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol Cell Biol 14:8391–8398

    PubMed  CAS  Google Scholar 

  78. Genschel J, Curth U, Urbanke C (2000) Interaction of E. coli single-stranded DNA binding protein (SSB) with exonuclease I. The carboxy-terminus of SSB is the recognition site for the nuclease. Biol Chem 381:183–192

    Article  PubMed  CAS  Google Scholar 

  79. George JW, Brosh RM Jr, Matson SW (1994) A dominant negative allele of the Escherichia coli uvrD gene encoding DNA helicase II. A biochemical and genetic characterization. J Mol Biol 235:424–435

    Article  PubMed  CAS  Google Scholar 

  80. Griffin TJ, Kolodner RD (1990) Purification and preliminary characterization of the Escherichia coli K-12 recF protein. J Bacteriol 172:6291–6299

    PubMed  CAS  Google Scholar 

  81. Grompone G, Sanchez N, Ehrlich SD, Michel B (2004) Requirement for RecFOR-mediated recombination in priA mutant. Mol Microbiol 52:551–562

    Article  PubMed  CAS  Google Scholar 

  82. Gumbs OH, Shaner SL (1998) Three mechanistic steps detected by FRET after presynaptic filament formation in homologous recombination. ATP hydrolysis required for release of oligonucleotide heteroduplex product from RecA. Biochemistry 37:11692–11706

    Article  PubMed  CAS  Google Scholar 

  83. Gupta RC, Bazemore LR, Golub EI, Radding CM (1997) Activities of human recombination protein Rad51. Proc Natl Acad Sci USA 94:463–468

    Article  PubMed  CAS  Google Scholar 

  84. Gupta RC, Folta-Stogniew E, O'Malley S, Takahashi M, Radding CM (1999) Rapid exchange of A : T base pairs is essential for recognition of DNA homology by human Rad51 recombination protein. Mol Cell 4:705–714

    Article  PubMed  CAS  Google Scholar 

  85. Gupta RC, Golub E, Bi B, Radding CM (2001) The synaptic activity of HsDmc1, a human recombination protein specific to meiosis. Proc Natl Acad Sci USA 98:8433–8439

    Article  PubMed  CAS  Google Scholar 

  86. Haber JE (2000) Partners and pathways – repairing a double-strand break. Trends Genet 16:259–264

    Article  PubMed  CAS  Google Scholar 

  87. Hanada K, Ukita T, Kohno Y, Saito K, Kato J, Ikeda H (1997) RecQ DNA helicase is a suppressor of illegitimate recombination in Escherichia coli. Proc Natl Acad Sci USA 94:3860–3865

    Article  PubMed  CAS  Google Scholar 

  88. Hanada K, Iwasaki M, Ihashi S, Ikeda H (2000) UvrA and UvrB suppress illegitimate recombination: Synergistic action with RecQ helicase. Proc Natl Acad Sci USA 97:5989–5994

    Article  PubMed  CAS  Google Scholar 

  89. Haruta N, Yu XN, Yang SX, Egelman EH, Cox MM (2003) A DNA pairing-enhanced conformation of bacterial RecA proteins. J Biol Chem 278:52710–52723

    Article  PubMed  CAS  Google Scholar 

  90. Heller RC, Marians KJ (2005) The disposition of nascent strands at stalled replication forks dictates the pathway of replisome loading during restart. Mol Cell 17:733–743

    Article  PubMed  CAS  Google Scholar 

  91. Heller RC, Marians KJ (2006) Replication fork reactivation downstream of a blocked nascent leading strand. Nature 439:557–562

    Article  PubMed  CAS  Google Scholar 

  92. Hillers KJ, Villeneuve AM (2003) Chromosome-wide control of meiotic crossing over in C. elegans. Curr Biol 13:1641–1647

    Article  PubMed  CAS  Google Scholar 

  93. Horii Z, Clark AJ (1973) Genetic analysis of the RecF pathway to genetic recombination in Escherichia coli K12: isolation and characterization of mutants. J Mol Biol 80:327–344

    Article  PubMed  CAS  Google Scholar 

  94. Hortnagel K, Voloshin ON, Kinal HH, Ma N, Schaffer-Judge C, Camerini-Otero RD (1999) Saturation mutagenesis of the E. coli RecA loop L2 homologous DNA pairing region reveals residues essential for recombination and recombinational repair. J Mol Biol 286:1097–1106

    Article  PubMed  CAS  Google Scholar 

  95. Howard-Flanders P, Bardwell E (1981) Effects of recB21, recF143, and uvrD152 on recombination in lambda bacteriophage-prophage and Hfr by F-crosses. J Bacteriol 148:739–43

    PubMed  CAS  Google Scholar 

  96. Howard-Flanders P, West SC, Stasiak A (1984) Role of RecA protein spiral filaments in genetic recombination. Nature 309:215–219

    Article  PubMed  CAS  Google Scholar 

  97. Hyrien O (2000) Mechanisms and consequences of replication fork arrest. Biochimie 82:5–17

    Article  PubMed  CAS  Google Scholar 

  98. Jain SK, Cox MM, Inman RB (1994) On the role of ATP hydrolysis in RecA protein-mediated DNA strand exchange III. Unidirectional branch migration and extensive hybrid DNA formation. J Biol Chem 269:20653–20661

    PubMed  CAS  Google Scholar 

  99. Jeggo PA, Lobrich M (2005) Artemis links ATM to double strand break rejoining. Cell Cycle 4:359–362

    PubMed  CAS  Google Scholar 

  100. Jiang H, Giedroc D, Kodadek T (1993) The role of protein-protein interactions in the assembly of the presynaptic filament for T4 homologous recombination. J Biol Chem 268:7904–7911

    PubMed  CAS  Google Scholar 

  101. Kahn R, Cunningham RP, Das Gupta C, Radding CM (1981) Polarity of heteroduplex formation promoted by Escherichia coli RecA protein. Proc Natl Acad Sci USA 78:4786–4790

    Article  PubMed  CAS  Google Scholar 

  102. Karlin S, Brocchieri L (1996) Evolutionary conservation of RecA genes in relation to protein structure and function. J Bacteriol 178:1881–1894

    PubMed  CAS  Google Scholar 

  103. Kaytor MD, Nguyen M, Livingston DM (1995) The complexity of the interaction between RAD52 and SRS2. Genetics 140:1441–1442

    PubMed  CAS  Google Scholar 

  104. Kenyon CJ, Walker GC (1980) DNA-damaging agents stimulate gene expression at specific loci in Escherichia coli. Proc Natl Acad Sci USA 77:2819–2823

    Article  PubMed  CAS  Google Scholar 

  105. Kidane D, Sanchez H, Alonso JC, Graumann PL (2004) Visualization of DNA double-strand break repair in live bacteria reveals dynamic recruitment of Bacillus subtilisRecF, RecO and RecN proteins to distinct sites on the nucleoids. Mol Microbiol 52:1627–1639

    Article  PubMed  CAS  Google Scholar 

  106. Kim JI, Cox MM, Inman RB (1992a) On the role of ATP hydrolysis in RecA protein-mediated DNA strand exchange. I. Bypassing a short heterologous insert in one DNA substrate. J Biol Chem 267:16438–16443

    PubMed  CAS  Google Scholar 

  107. Kim JI, Cox MM, Inman RB (1992b) On the role of ATP hydrolysis in RecA protein-mediated DNA strand exchange. II. Four-strand exchanges. J Biol Chem 267:16444–16449

    PubMed  CAS  Google Scholar 

  108. Klapstein K, Chou T, Bruinsma R (2004) Physics of RecA-mediated homologous recognition. Biophys J 87:1466–1477

    Article  PubMed  CAS  Google Scholar 

  109. Klein HL (2001) Mutations in recombinational repair and in checkpoint control genes suppress the lethal combination of srs2Delta with other DNA repair genes in Saccharomyces cerevisiae. Genetics 157:557–565

    PubMed  CAS  Google Scholar 

  110. Kolodner R, Fishel RA, Howard M (1985) Genetic recombination of bacterial plasmid DNA: effect of RecF pathway mutations on plasmid recombination in Escherichia coli. J Bacteriol 163:1060–1066

    PubMed  CAS  Google Scholar 

  111. Kolodner RD, Putnam CD, Myung K (2002) Maintenance of genome stability in Saccharomyces cerevisiae. Science 297:552–557

    Article  PubMed  CAS  Google Scholar 

  112. Konforti BB, Davis RW (1992) ATP hydrolysis and the displaced strand are two factors that determine the polarity of RecA-promoted DNA strand exchange. J Mol Biol 227:38–53

    Article  PubMed  CAS  Google Scholar 

  113. Konola JT, Logan KM, Knight KL (1994) Functional characterization of residues in the P-loop motif of the RecA protein ATP binding site. J Mol Biol 237:20–34

    Article  PubMed  CAS  Google Scholar 

  114. Kowalczykowski SC, Clow J, Somani R, Varghese A (1987) Effects of the Escherichia coli SSB protein on the binding of Escherichia coli RecA protein to single-stranded DNA. Demonstration of competitive binding and the lack of a specific protein-protein interaction. J Mol Biol 193:81–95

    Article  PubMed  CAS  Google Scholar 

  115. Kowalczykowski SC, Krupp RA (1987) Effects of Escherichia coli SSB protein on the single-stranded DNA-dependent ATPase activity of Escherichia coli RecA protein. Evidence that SSB protein facilitates the binding of RecA protein to regions of secondary structure within single-stranded DNA. J Mol Biol 193:97–113

    Article  PubMed  CAS  Google Scholar 

  116. Kowalczykowski SC, Dixon DA, Eggleston AK, Lauder SD, Rehrauer WM (1994) Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 58:401–65

    PubMed  CAS  Google Scholar 

  117. Kowalczykowski SC, Eggleston AK (1994) Homologous pairing and DNA strand-exchange proteins. Annu Rev Biochem 63:991–1043

    PubMed  CAS  Google Scholar 

  118. Kowalczykowski SC, Krupp RA (1995) DNA-strand exchange promoted by RecA protein in the absence of ATP: implications for the mechanism of energy transduction in protein-promoted nucleic acid transactions. Proc Natl Acad Sci USA 92:3478–3482

    Article  PubMed  CAS  Google Scholar 

  119. Kowalczykowski SC (2000) Initiation of genetic recombination and recombination-dependent replication. Trends Biochem Sci 25:156–165

    Article  PubMed  CAS  Google Scholar 

  120. Krejci L, Van Komen S, Li Y, Villemain J, Reddy MS, Klein H, Ellenberger T, Sung P (2003) DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423:305–309

    Article  PubMed  CAS  Google Scholar 

  121. Kreuzer KN (2005) Interplay between DNA replication and recombination in prokaryotes. Ann Rev Microbiol 59:43–67

    Article  CAS  Google Scholar 

  122. Krishna R, Manjunath GP, Kumar P, Surolia A, Chandra NR, Muniyappa K, Vijayan M (2006) Crystallographic identification of an ordered C-terminal domain and a second nucleotide-binding site in RecA: new insights into allostery. Nucleic Acids Res 34:2186–2195

    Article  PubMed  CAS  Google Scholar 

  123. Kubista M, Simonson T, Sjöback R, Widlund H, Johansson A (1996) In: Sarma RH, MH Sarma (ed) Biological structure and function: Proceedings of the ninth Conversation, The State University of New York. Adenine press, New York. Towards an understanding of the mechanism of DNA strand exchange promoted by RecA protein, pp 49–59

    Google Scholar 

  124. Kumar KA, Muniyappa K (1992) Use of structure-directed DNA ligands to probe the binding of recA protein to narrow and wide grooves of DNA and on its ability to promote homologous pairing. J Biol Chem 267:24824–24832

    PubMed  CAS  Google Scholar 

  125. Kumura K, Sekiguchi M, Steinum AL, Seeberg E (1985) Stimulation of the UvrABC enzyme-catalyzed repair reactions by the UvrD protein (DNA helicase II). Nucleic Acids Res 13:1483–1492

    Article  PubMed  CAS  Google Scholar 

  126. Kuzminov A (1996) Recombinational repair of DNA damage. RG Landes Company, Georgetown, Texas

    Google Scholar 

  127. Kuzminov A (1999) Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev 63:751–813

    PubMed  CAS  Google Scholar 

  128. Lahue RS, Au KG, Modrich P (1989) DNA mismatch correction in a defined system. Science 245:160–164

    Article  PubMed  CAS  Google Scholar 

  129. Lane HE, Denhardt DT (1975) The rep mutation. IV. Slower movement of replication forks in Escherichia coli rep strains. J Mol Biol 97:99–112

    Article  PubMed  CAS  Google Scholar 

  130. Larminat F, Defais M (1989) Modulation of the SOS response by truncated RecA proteins. Mol Gen Genet 216:106–112

    Article  PubMed  CAS  Google Scholar 

  131. Lavery PE, Kowalczykowski SC (1988) Biochemical basis of the temperature-inducible constitutive protease activity of the RecA441 protein of Escherichia coli. J Mol Biol 203:861–874

    Article  PubMed  CAS  Google Scholar 

  132. Lavery PE, Kowalczykowski SC (1990) Properties of recA441 protein-catalyzed DNA strand exchange can be attributed to an enhanced ability to compete with SSB protein. J Biol Chem 265:4004–4010

    PubMed  CAS  Google Scholar 

  133. Lavery PE, Kowalczykowski SC (1992) A postsynaptic role for single-stranded DNA-binding protein in recA protein-promoted DNA strand exchange. J Biol Chem 267:9315–9320

    PubMed  CAS  Google Scholar 

  134. Lee BI, Kim KH, Park SJ, Eom SH, Song HK, Suh SW (2004) Ring-shaped architecture of RecR: implications for its role in homologous recombinational DNA repair. EMBO J 23:2029–2038

    Article  PubMed  CAS  Google Scholar 

  135. Lee JW, Cox MM (1990) Inhibition of RecA protein-promoted ATP hydrolysis. II. Longitudinal assembly and disassembly of RecA protein filaments mediated by ATP and ADP. Biochemistry 29:7677–7683

    Article  PubMed  CAS  Google Scholar 

  136. Lee SK, Johnson RE, Yu SL, Prakash L, Prakash S (1999) Requirement of yeast SGS1 and SRS2 genes for replication and transcription. Science 286:2339–2342

    Article  PubMed  CAS  Google Scholar 

  137. Lieber MR, Ma YM, Pannicke U, Schwarz K (2003) Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 4:712–720

    Article  PubMed  CAS  Google Scholar 

  138. Lindsley JE, Cox MM (1990a) On RecA protein-mediated homologous alignment of 2 DNA molecules – 3 strands versus 4 strands. J Biol Chem 265:10164–10171

    PubMed  CAS  Google Scholar 

  139. Lindsley JE, Cox MM (1990b) Assembly and disassembly of RecA protein filaments occurs at opposite filament ends: relationship to DNA strand exchange. J Biol Chem 265:9043–9054

    PubMed  CAS  Google Scholar 

  140. Little JW (1991) Mechanism of specific LexA cleavage – autodigestion and the role of RecA coprotease. Biochimie 73:411–422

    Article  PubMed  CAS  Google Scholar 

  141. Lloyd RG (1983) lexA dependent recombination in uvrD strains of Escherichia coli. Mol Gen Genet 189:157–161

    Article  PubMed  CAS  Google Scholar 

  142. Lonberg N, Kowalczykowski S, Paul L, von Hippel P (1981) Interactions of Bacteriophage T4-coded gene 32 protein with nucleic acids. III. Binding properties of two specific proteolytic digestion products of the protein (G32PI and G32PIII). JMB 145:123–138

    Article  CAS  Google Scholar 

  143. Lovett ST, Sutera VA (1995) Suppression of recJ exonuclease mutants of Escherichia coli by alterations in DNA helicases II (UvrD) and IV (HelD). Genetics 140:27–45

    PubMed  CAS  Google Scholar 

  144. Lovett ST, Hurley RL, Sutera VA, Aubuchon RH, Lebedeva MA (2002) Crossing over between regions of limited homology in Escherichia coli: RecA-dependent and RecA-independent pathways. Genetics 160:851–859

    PubMed  CAS  Google Scholar 

  145. Luisi-DeLuca C, Kolodner R (1994) Purification and characterization of the Escherichia coli RecO protein. Renaturation of complementary single-stranded DNA molecules catalyzed by the RecO protein. J Mol Biol 236:124–138

    Article  PubMed  CAS  Google Scholar 

  146. Luisi-DeLuca C (1995) Homologous pairing of single-stranded DNA and superhelical double-stranded DNA catalyzed by RecO protein from Escherichia coli. J Bacteriol 177:566–572

    PubMed  CAS  Google Scholar 

  147. Lusetti SL, Inman RB, Cox MM (2001) Short C-terminal deletions of the RecA protein: I. Effects on duplex DNA binding. J Biol Chem submitted

    Google Scholar 

  148. Lusetti SL, Cox MM (2002) The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Ann Rev Biochem 71:71–100

    Article  PubMed  CAS  Google Scholar 

  149. Lusetti SL, Shaw JJ, Cox MM (2003a) Magnesium ion-dependent activation of the RecA protein involves the C terminus. J Biol Chem 278:16381–16388

    Article  PubMed  CAS  Google Scholar 

  150. Lusetti SL, Wood EA, Fleming CD, Modica MJ, Korth J, Abbott L, Dwyer DW, Roca AI, Inman RB, Cox MM (2003b) C-terminal deletions of the Escherichia coli RecA protein – Characterization of in vivo and in vitro effects. J Biol Chem 278:16372–16380

    Article  PubMed  CAS  Google Scholar 

  151. Lusetti SL, Drees JC, Stohl EA, Seifert HS, Cox MM (2004a) The DinI and RecX proteins are competing modulators of RecA function. J Biol Chem 279:55073–55079

    Article  PubMed  CAS  Google Scholar 

  152. Lusetti SL, Voloshin ON, Inman RB, Camerini-Otero RD, Cox MM (2004b) The DinI protein stabilizes RecA protein filaments. J Biol Chem 279:30037–30046

    Article  PubMed  CAS  Google Scholar 

  153. Lusetti SL, Hobbs MD, Stohl EA, Chitteni-Pattu S, Inman RB, Seifert HS, Cox MM (2006) The RecF protein antagonizes RecX function via direct interaction. Mol Cell 21:41–50

    Article  PubMed  CAS  Google Scholar 

  154. MacFarland KJ, Shan Q, Inman RB, Cox MM (1997) RecA as a motor protein. Testing models for the role of ATP hydrolysis in DNA strand exchange. J Biol Chem 272:17675–17685

    Article  PubMed  CAS  Google Scholar 

  155. Madiraju MV, Templin A, Clark AJ (1988) Properties of a mutant recA-encoded protein reveal a possible role for Escherichia coli recF-encoded protein in genetic recombination. Proc Natl Acad Sci USA 85:6592–6596

    Article  PubMed  CAS  Google Scholar 

  156. Madiraju MV, Clark AJ (1992) Evidence for ATP binding and double-stranded DNA binding by Escherichia coli RecF protein. J Bacteriol 174:7705–7710

    PubMed  CAS  Google Scholar 

  157. Madiraju MV, Lavery PE, Kowalczykowski SC, Clark AJ (1992) Enzymatic properties of the RecA803 protein, a partial suppressor of recF mutations. Biochemistry 31:10529–10535

    Article  PubMed  CAS  Google Scholar 

  158. Madiraju MVVS, Clark AJ (1991) Effect of RecF protein on reactions catalyzed by RecA protein. Nucleic Acids Res 19:6295–6300

    Article  PubMed  CAS  Google Scholar 

  159. Mahdi AA, Lloyd RG (1989a) The recR locus of Escherichia coli K-12: molecular cloning, DNA sequencing and identification of the gene product. Nucleic Acids Res 17:6781–6794

    Article  PubMed  CAS  Google Scholar 

  160. Mahdi AA, Lloyd RG (1989b) Identification of the recR locus of Escherichia coli K-12 and analysis of its role in recombination DNA repair. Mol Gen Genet 216:503–510

    Article  PubMed  CAS  Google Scholar 

  161. Makharashvili N, Koroleva O, Bera S, Grandgenett DP, Korolev S (2004) A novel structure of DNA repair protein RecO from Deinococcus radiodurans. Structure 12:1881–1889

    Article  PubMed  CAS  Google Scholar 

  162. Malkov VA, Camerini-Otero RD (1995) Photocross-links between single-stranded DNA and Escherichia coli RecA protein map to loops L1 (amino acid residues 157–164) and L2 (amino acid residues 195–209). J Biol Chem 270:30230–30233

    Article  PubMed  CAS  Google Scholar 

  163. Maluf NK, Fischer CJ, Lohman TM (2003) A dimer of Escherichia coli UvrD is the active form of the helicase in vitro. J Mol Biol 325:913–935

    Article  PubMed  CAS  Google Scholar 

  164. Mankouri HW, Craig TJ, Morgan A (2002) SGS1 is a multicopy suppressor of srs2: functional overlap between DNA helicases. Nucleic Acids Res 30:1103–1113

    Article  PubMed  CAS  Google Scholar 

  165. Marians KJ (2000a) Replication and recombination intersect. Curr Opin Genet Dev 10:151–156

    Article  PubMed  CAS  Google Scholar 

  166. Marians KJ (2000b) PriA-directed replication fork restart in Escherichia coli. Trends Biochem Sci 25:185–189

    Article  PubMed  CAS  Google Scholar 

  167. Matson SW (1986) Escherichia coli helicase II (urvD gene product) translocates unidirectionally in a 3′ to 5′ direction. J Biol Chem 261:10169–10175

    PubMed  CAS  Google Scholar 

  168. Matson SW (1989) Escherichia coli DNA helicase II (uvrD gene product) catalyzes the unwinding of DNA.RNA hybrids in vitro. Proc Natl Acad Sci USA 86:4430–4434

    Article  PubMed  CAS  Google Scholar 

  169. McGlynn P, Lloyd RG (2002) Genome stability and the processing of damaged replication forks by RecG. Trends Genet 18:413–419

    Article  PubMed  CAS  Google Scholar 

  170. McGlynn P (2004) Links between DNA replication and recombination in prokaryotes. Curr Opin Genet Dev 14:107–112

    Article  PubMed  CAS  Google Scholar 

  171. McKenzie GJ, Harris RS, Lee PL, Rosenberg SM (2000) The SOS response regulates adaptive mutation. Proc Natl Acad Sci USA 97:6646–6651

    Article  PubMed  CAS  Google Scholar 

  172. McKenzie GJ, Lee PL, Lombardo MJ, Hastings PJ, Rosenberg SM (2001) SOS mutator DNA polymerase IV functions in adaptive mutation and not adaptive amplification. Mol Cell 7:571–579

    Article  PubMed  CAS  Google Scholar 

  173. Mechanic LE, Hall MC, Matson SW (1999) Escherichia coli DNA helicase II is active as a monomer. J Biol Chem 274:12488–12498

    Article  PubMed  CAS  Google Scholar 

  174. Mendonca VM, Kaiser-Rogers K, Matson SW (1993) Double helicase II (uvrD)-helicase IV (helD) deletion mutants are defective in the recombination pathways of Escherichia coli. J Bacteriol 175:4641–4651

    PubMed  CAS  Google Scholar 

  175. Mendonca VM, Klepin HD, Matson SW (1995) DNA helicases in recombination and repair: construction of a delta uvrD delta helD delta recQ mutant deficient in recombination and repair. J Bacteriol 177:1326–1335

    PubMed  CAS  Google Scholar 

  176. Menetski JP, Kowalczykowski SC (1989) Enhancement of Escherichia coli RecA protein enzymatic function by dATP. Biochemistry 28:5871–5881

    Article  PubMed  CAS  Google Scholar 

  177. Menetski JP, Bear DG, Kowalczykowski SC (1990) Stable DNA heteroduplex formation catalyzed by the Escherichia coli RecA protein in the absence of ATP hydrolysis. Proc Natl Acad Sci USA 87:21–25

    Article  PubMed  CAS  Google Scholar 

  178. Michel B, Flores MJ, Viguera E, Grompone G, Seigneur M, Bidnenko V (2001) Rescue of arrested replication forks by homologous recombination. Proc Natl Acad Sci USA 98:8181–8188

    Article  PubMed  CAS  Google Scholar 

  179. Michel B, Grompone G, Flores MJ, Bidnenko V (2004) Multiple pathways process stalled replication forks. Proc Natl Acad Sci USA 101:12783–12788

    Article  PubMed  CAS  Google Scholar 

  180. Milne GT, Ho T, Weaver DT (1995) Modulation of Saccharomyces cerevisiae DNA double-strand break repair by SRS2 and RAD51. Genetics 139:1189–1199

    PubMed  CAS  Google Scholar 

  181. Modrich P (1989) Methyl-directed DNA mismatch correction. J Biol Chem 264:6597–6600

    PubMed  CAS  Google Scholar 

  182. Moore T, McGlynn P, Ngo HP, Sharples GJ, Lloyd RG (2003) The RdgC protein of Escherichia coli binds DNA and counters a toxic effect of RecFOR in strains lacking the replication restart protein PriA. EMBO J 22:735–745

    Article  PubMed  CAS  Google Scholar 

  183. Moran NA, Baumann P (2000) Bacterial endosymbionts in animals. Curr Opin Microbiol 3:270–275

    Article  PubMed  CAS  Google Scholar 

  184. Moreau PL (1988) Overproduction of single-stranded-DNA-binding protein specifically inhibits recombination of UV-irradiated bacteriophage DNA in Escherichia coli. J Bacteriol 170:2493–2500

    PubMed  CAS  Google Scholar 

  185. Morel P, Hejna JA, Ehrlich SD, Cassuto E (1993) Antipairing and strand transferase activities of E. coli helicase II (UvrD). Nucleic Acids Res 21:3205–3209

    Article  PubMed  CAS  Google Scholar 

  186. Morel P, Stasiak A, Ehrlich SD, Cassuto E (1994) Effect of length and location of heterologous sequences on RecA-mediated strand exchange. J Biol Chem 269:19830–19835

    PubMed  CAS  Google Scholar 

  187. Morimatsu K, Horii T (1995) The DNA-binding site of the RecA protein. Photochemical cross-linking of Tyr103 to single-stranded DNA. Eur J Biochem 228:772–778

    Article  PubMed  CAS  Google Scholar 

  188. Morimatsu K, Kowalczykowski SC (2003) RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: A universal step of recombinational repair. Mol Cell 11:1337–1347

    Article  PubMed  CAS  Google Scholar 

  189. Morrison C, Shinohara A, Sonoda E, Yamaguchi-Iwai Y, Takata M, Weichselbaum RR, Takeda S (1999) The essential functions of human Rad51 are independent of ATP hydrolysis. Mol Cell Biol 19:6891–6897

    PubMed  CAS  Google Scholar 

  190. Morrison PT, Lovett ST, Gilson LE, Kolodner R (1989) Molecular analysis of the Escherichia coli recO gene. J Bacteriol 171:3641–3649

    PubMed  CAS  Google Scholar 

  191. Müller B, Koller T, Stasiak A (1990) Characterization of the DNA binding activity of stable RecA-DNA complexes: interaction between the two DNA binding sites within RecA helical filaments. J Mol Biol 212:97–112

    Article  PubMed  Google Scholar 

  192. Myung K, Datta A, Chen C, Kolodner RD (2001) SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppresses genome instability and homeologous recombination. Nat Genet 27:113–116

    Article  PubMed  CAS  Google Scholar 

  193. Myung K, Kolodner RD (2002) Suppression of genome instability by redundant S-phase checkpoint pathways in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 99:4500–4507

    Article  PubMed  CAS  Google Scholar 

  194. Nastri HG, Knight KL (1994) Identification of residues in the L1 region of the RecA protein, which are important to recombination or coprotease activities. J Biol Chem 269:26311–26322

    PubMed  CAS  Google Scholar 

  195. New JH, Sugiyama T, Zaitseva E, Kowalczykowski SC (1998) Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature 391:337–338

    Article  Google Scholar 

  196. Ogawa T, Yu X, Shinohara A, Egelman EH (1993) Similarity of the yeast RAD51 filament to the bacterial RecA filament. Science 259:1896–1899

    Article  PubMed  CAS  Google Scholar 

  197. Osborn AJ, Elledge SJ, Zou L (2002) Checking on the fork: the DNA-replication stress-response pathway. Trends Cell Biol 12:509–516

    Article  PubMed  CAS  Google Scholar 

  198. Ossanna N, Mount DW (1989) Mutations in uvrD induce the SOS response in Escherichia coli. J Bacteriol 171:303–307

    PubMed  CAS  Google Scholar 

  199. Pages V, Koffel-Schwartz N, Fuchs RP (2003) recX, a new SOS gene that is co-transcribed with the recA gene in Escherichia coli. DNA Repair 2:273–284

    Article  PubMed  CAS  Google Scholar 

  200. Papavinasasundaram KG, Movahedzadeh F, Keer JT, Stoker NG, Colston MJ, Davis EO (1997) Mycobacterial recA is cotranscribed with a potential regulatory gene called recX. Mol Microbiol 24:141–153

    Article  PubMed  CAS  Google Scholar 

  201. Papavinasasundaram KG, Colston MJ, Davis EO (1998) Construction and complementation of a recA deletion mutant of Mycobacterium smegmatis reveals that the intein in Mycobacterium tuberculosis recA does not affect RecA function. Mol Microbiol 30:525–534

    Article  PubMed  CAS  Google Scholar 

  202. Passy SI, Yu X, Li ZF, Radding CM, Masson JY, West SC, Egelman EH (1999) Human Dmc1 protein binds DNA as an octameric ring. Proc Natl Acad Sci USA 96:10684–10688

    Article  PubMed  CAS  Google Scholar 

  203. Petranovic M, Zahradka K, Zahradka D, Petranovic D, Nagy B, Salaj-Smic E (2001) Genetic evidence that the elevated levels of Escherichia coli helicase II antagonize recombinational DNA repair. Biochimie 83:1041–1047

    Article  PubMed  CAS  Google Scholar 

  204. Pham P, Bertram JG, O'Donnell M, Woodgate R, Goodman MF (2001) A model for SOS-lesion-targeted mutations in Escherichia coli. Nature 409:366–370

    Article  PubMed  CAS  Google Scholar 

  205. Pham P, Seitz EM, Saveliev S, Shen X, Woodgate R, Cox MM, Goodman MF (2002) Two distinct modes of RecA action are required for DNA polymerase V-catalyzed translesion synthesis. Proc Natl Acad Sci USA 99:11061–11066

    Article  PubMed  CAS  Google Scholar 

  206. Podyminogin MA, Meyer RB, Gamper HB (1995) Sequence-specific covalent modification of DNA by cross-linking oligonucleotides. Catalysis by RecA and implication for the mechanism of synaptic joint formation. Biochemistry 34:13098–13108

    Article  PubMed  CAS  Google Scholar 

  207. Podyminogin MA, Meyer RB, Gamper HB (1996) RecA-catalyzed, sequence-specific alkylation of DNA by crosslinking oligonucleotides. Effects of length and nonhomologous base substitution. Biochemistry 35:7267–7274

    Article  PubMed  CAS  Google Scholar 

  208. Postow L, Ullsperger C, Keller RW, Bustamante C, Vologodskii AV, Cozzarelli NR (2001) Positive torsional strain causes the formation of a four-way junction at replication forks. J Biol Chem 267:2790–2796

    Article  Google Scholar 

  209. Pugh BF, Cox MM (1987) Stable binding of RecA protein to duplex DNA. Unraveling a paradox. J Biol Chem 262:1326–1336

    PubMed  CAS  Google Scholar 

  210. Pugh BF, Cox MM (1988) General mechanism for RecA protein binding to duplex DNA. J Mol Biol 203:479–493

    Article  PubMed  CAS  Google Scholar 

  211. Pugh BF, Schutte BC, Cox MM (1989) Extent of duplex DNA underwinding induced by RecA protein binding in the presence of ATP. J Mol Biol 205:487–492

    Article  PubMed  CAS  Google Scholar 

  212. Qian XG, Wu Y, He YJ, Luo Y (2005) Crystal structure of Methanococcus voltae RadA in complex with ADP: Hydrolysis-induced conformational change. Biochemistry 44:13753–13761

    Article  PubMed  CAS  Google Scholar 

  213. Rajan R, Bell CE (2004) Crystal structure of RecA from Deinococcus radiodurans: Insights into the structural basis of extreme radioresistance. J Mol Biol 344:951–963

    Article  PubMed  CAS  Google Scholar 

  214. Ramirez BE, Voloshin ON, Camerini-Otero RD, Bax A (2000) Solution structure of DinI provides insight into its mode of RecA inactivation. Protein Sci 9:2161–2169

    PubMed  CAS  Google Scholar 

  215. Rangarajan S, Woodgate R, Goodman MF (2002) Replication restart in UV-irradiated Escherichia coli involving pols II, III, V, PriA, RecA and RecFOR proteins. Mol Microbiol 43:617–628

    Article  PubMed  CAS  Google Scholar 

  216. Register JC III, Griffith J (1985) The direction of RecA protein assembly onto single strand DNA is the same as the direction of strand assimilation during strand exchange. J Biol Chem 260:12308–12312

    PubMed  CAS  Google Scholar 

  217. Rehrauer WM, Kowalczykowski SC (1993) Alteration of the nucleoside triphosphate (NTP) catalytic domain within Escherichia coli recA protein attenuates NTP hydrolysis but not joint molecule formation. J Biol Chem 268:1292–1297

    PubMed  CAS  Google Scholar 

  218. Rehrauer WM, Kowalczykowski SC (1996) The DNA binding site(s) of the Escherichia coli RecA protein. J Biol Chem 271:11996–2002

    Article  PubMed  CAS  Google Scholar 

  219. Rice KP, Chaput JC, Cox MM, Switzer C (2000) RecA protein promotes strand exchange with DNA substrates containing isoguanine and 5-methyl isocytosine. Biochemistry 39:10177–10188

    Article  PubMed  CAS  Google Scholar 

  220. Robu ME, Inman RB, Cox MM (2001) RecA protein promotes the regression of stalled replication forks in vitro. Proc Natl Acad Sci USA 98:8211–8218

    Article  PubMed  CAS  Google Scholar 

  221. Robu ME, Inman RB, Cox MM (2004) Situational repair of replication forks – Roles of RecG and RecA proteins. J Biol Chem 279:10973–10981

    Article  PubMed  CAS  Google Scholar 

  222. Roca AI, Cox MM (1990) The RecA protein: structure and function. CRC Crit Rev Biochem Mol Biol 25:415–456

    CAS  Google Scholar 

  223. Roca AI, Cox MM (1997) RecA protein: structure, function, and role in recombinational DNA repair. Prog Nucleic Acid Res Mol Biol 56:129–223

    Article  PubMed  CAS  Google Scholar 

  224. Rocha EPC, Cornet E, Michel B (2005) Comparative and evolutionary analysis of the bacterial homologous recombination systems. PLoS Genet 1:e15

    Article  PubMed  CAS  Google Scholar 

  225. Rosselli W, Stasiak A (1990) Energetics of RecA-mediated recombination reactions – without ATP hydrolysis RecA can mediate polar strand exchange but is unable to recycle. J Mol Biol 216:335–352

    Article  PubMed  CAS  Google Scholar 

  226. Rosselli W, Stasiak A (1991) The ATPase activity of RecA is needed to push the DNA strand exchange through heterologous regions. EMBO J 10:4391–4396

    PubMed  CAS  Google Scholar 

  227. Runyon GT, Bear DG, Lohman TM (1990) Escherichia coli helicase II (UvrD) protein initiates DNA unwinding at nicks and blunt ends. Proc Natl Acad Sci USA 87:6383–6387

    Article  PubMed  CAS  Google Scholar 

  228. Rupp WD, Howard-Flanders P (1968) Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol 31:291–304

    Article  PubMed  CAS  Google Scholar 

  229. Ryder L, Sharples GJ, Lloyd RG (1996) Recombination-dependent growth in exonuclease-depleted recBC sbcBC strains of Escherichia coli K-12. Genetics 143:1101–1114

    PubMed  CAS  Google Scholar 

  230. Sandler SJ, Clark AJ (1993) Use of high and low level overexpression plasmids to test mutant alleles of the recF gene of Escherichia coli K-12 for partial activity. Genetics 135:643–654

    PubMed  CAS  Google Scholar 

  231. Sandler SJ (1994) Studies on the mechanism of reduction of UV-inducible sulAp expression by recF overexpression in Escherichia coli K-12. Mol Gen Genet 245:741–749

    Article  PubMed  CAS  Google Scholar 

  232. Sandler SJ, Clark AJ (1994) RecOR suppression of recF mutant phenotypes in Escherichia coli K-12. J Bacteriol 176:3661–3672

    PubMed  CAS  Google Scholar 

  233. Sandler SJ (1996) Overlapping functions for recF and priA in cell viability and UV-inducible SOS expression are distinguished by dnaC809 in Escherichia coli K-12. Mol Microbiol 19:871–880

    Article  PubMed  CAS  Google Scholar 

  234. Sandler SJ, Samra HS, Clark AJ (1996a) Differential suppression of priA2::kan phenotypes in Escherichia coli K-12 by mutations in priA, lexA, and dnaC. Genetics 143:5–13

    PubMed  CAS  Google Scholar 

  235. Sandler SJ, Satin LH, Samra HS, Clark AJ (1996b) recA-like genes from three archaean species with putative protein products similar to Rad51 and Dmc1 proteins of the yeast Saccharomyces cerevisiae. Nucleic Acids Res 24:2125–2132

    Article  PubMed  CAS  Google Scholar 

  236. Sandler SJ, Marians KJ, Zavitz KH, Coutu J, Parent MA, Clark AJ (1999) dnaC mutations suppress defects in DNA replication- and recombination-associated functions in priB and priC double mutants in Escherichia coli K-12. Mol Microbiol 34:91–101

    Article  PubMed  CAS  Google Scholar 

  237. Sandler SJ, Marians KJ (2000) Role of PriA in replication fork reactivation in Escherichia coli. J Bacteriol 182:9–13

    PubMed  CAS  Google Scholar 

  238. Sandler SJ (2001) RecFOR protein. Encyclopedia of Life Sciences Nature Publishing Group: online

    Google Scholar 

  239. Sano Y (1993) Role of the recA-related gene adjacent to the recA gene in Pseudomonas aeruginosa. J Bacteriol 175:2451–2454

    PubMed  CAS  Google Scholar 

  240. Sarno R, McGillivary G, Sherratt DJ, Actis LA, Tolmasky ME (2002) Complete nucleotide sequence of Klebsiella pneumoniae multiresistance plasmid pJHCMW1. Antimicrob Agents Chemother 46:3422–3427

    Article  PubMed  CAS  Google Scholar 

  241. Sawitzke JA, Stahl FW (1992) Phage lambda has an analog of Escherichia coli recO, recR and recF genes. Genetics 130:7–16

    PubMed  CAS  Google Scholar 

  242. Sawitzke JA, Stahl FW (1994) The phage lambda orf gene encodes a trans-acting factor that suppresses Escherichia coli recO, recR, and recF mutations for recombination of lambda but not of E. coli. J Bacteriol 176:6730–6737

    PubMed  CAS  Google Scholar 

  243. Schild D (1995) Suppression of a new allele of the yeast RAD52 gene by overexpression of RAD51, mutations in srs2 and ccr4, or mating-type heterozygosity. Genetics 140:115–127

    PubMed  CAS  Google Scholar 

  244. Schlacher K, Leslie K, Wyman C, Woodgate R, Cox MM, Goodman MF (2005) DNA polymerase V and RecA protein, a minimal mutasome. Mol Cell 17:561–572

    Article  PubMed  CAS  Google Scholar 

  245. Schlacher K, Pham P, Cox MM, Goodman MF (2006) Roles of DNA polymerase V and RecA protein in SOS damage-induced mutation. Chem Rev 106:406–419

    Article  PubMed  CAS  Google Scholar 

  246. Schutte BC, Cox MM (1987) Homology-dependent changes in adenosine 5'-triphosphate hydrolysis during RecA protein promoted DNA strand exchange: evidence for long paranemic complexes. Biochemistry 26:5616–5625

    Article  PubMed  CAS  Google Scholar 

  247. Sehorn MG, Sigurdsson S, Bussen W, Unger VM, Sung P (2004) Human meiotic recombinase Dmc1 promotes ATP-dependent homologous DNA strand exchange. Nature 429:433–437

    Article  PubMed  CAS  Google Scholar 

  248. Seitz EM, Brockman JP, Sandler SJ, Clark AJ, Kowalczykowski SC (1998) RadA protein is an archaeal RecA protein homolog that catalyzes DNA strand exchange. Genes Dev 12:1248–1253

    PubMed  CAS  Google Scholar 

  249. Seitz EM, Haseltine CA, Kowalczykowski SC (2001) DNA Recombination and repair in the Archaea. In: Blum P (ed) ``Archaea: Ancient Microbes, Extreme Environments, and the Origin of Life''. Advances in Applied Microbiology 50:101–169

    Google Scholar 

  250. Shan Q, Cox MM (1996) RecA protein dynamics in the interior of RecA nucleoprotein filaments. J Mol Biol 257:756–774

    Article  PubMed  CAS  Google Scholar 

  251. Shan Q, Cox MM, Inman RB (1996) DNA strand exchange promoted by RecA K72R. Two reaction phases with different Mg2+ requirements. J Biol Chem 271:5712–5724

    Article  PubMed  CAS  Google Scholar 

  252. Shan Q, Bork JM, Webb BL, Inman RB, Cox MM (1997) RecA protein filaments: end-dependent dissociation from ssDNA and stabilization by RecO and RecR proteins. J Mol Biol 265:519–540

    Article  PubMed  CAS  Google Scholar 

  253. Shan Q, Cox MM (1998) On the mechanism of RecA-mediated repair of double-strand breaks: no role for four-strand DNA pairing intermediates. Mol Cell 1:309–317

    Article  PubMed  CAS  Google Scholar 

  254. Shibata T, Nishinaka T, Mikawa T, Aihara H, Kurumizaka H, Yokoyama S, Ito Y (2001) Homologous genetic recombination as an intrinsic dynamic property of a DNA structure induced by RecA/Rad51-family proteins: A possible advantage of DNA over RNA as genomic material. Proc Natl Acad Sci USA 98:8425–8432

    Article  PubMed  CAS  Google Scholar 

  255. Shinohara A, Ogawa H, Ogawa T (1992) Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69:457–470

    Article  PubMed  CAS  Google Scholar 

  256. Slupphaug G, Kavli B, Krokan HE (2003) The interacting pathways for prevention and repair of oxidative DNA damage. Mutat Res 531:231–251

    PubMed  CAS  Google Scholar 

  257. Smith GR (1989) Homologous recombination in prokaryotes: enzymes and controlling sites. Genome 31:520–527

    PubMed  CAS  Google Scholar 

  258. Smith KC (2004) Recombinational DNA repair: the ignored repair systems. Bioessays 26:1322–1326

    Article  PubMed  CAS  Google Scholar 

  259. Spies M, Dillingham MS, Kowalczykowski SC (2005) Translocation by the RecB motor is an absolute requirement for chi-recognition and RecA protein loading by RecBCD enzyme. J Biol Chem 280:37078–37087

    Article  PubMed  CAS  Google Scholar 

  260. Spies M, Kowalczykowski SC (2006) The RecA binding locus of RecBCD is a general domain for recruitment of DNA strand exchange proteins. Mol Cell 21:573–580

    Article  PubMed  CAS  Google Scholar 

  261. Stasiak A, Di Capua E (1982) The helicity of DNA in complexes with RecA protein. Nature (London) 299:185–186

    Article  CAS  Google Scholar 

  262. Stohl EA, Seifert HS (2001) The recX gene potentiates homologous recombination in Neisseria gonorrhoeae. Mol Microbiol 40:1301–1310

    Article  PubMed  CAS  Google Scholar 

  263. Stohl EA, Brockman JP, Burkle KL, Morimatsu K, Kowalczykowski SC, Siefert HS (2003) Escherichia coli RecX inhibits RecA recombinase and coprotease activities in vitro and in vivo. J Biol Chem 278:2278–2285

    Article  PubMed  CAS  Google Scholar 

  264. Story RM, Steitz TA (1992) Structure of the RecA Protein-ADP complex. Nature 355:374–376

    Article  PubMed  CAS  Google Scholar 

  265. Story RM, Weber IT, Steitz TA (1992) The structure of the E. coli RecA protein monomer and polymer. Nature 355:318–325

    Article  PubMed  CAS  Google Scholar 

  266. Story RM, Bishop DK, Kleckner N, Steitz TA (1993) Structural relationship of bacterial RecA proteins to recombination proteins from bacteriophage T4 and yeast. Science 259:1892–1896

    Article  PubMed  CAS  Google Scholar 

  267. Sukchawalit R, Vattanaviboon P, Utamapongchai S, Vaughn G, Mongkolsuk S (2001) Characterization of Xanthomonas oryzae pv. oryzae recX, a gene that is required for high-level expression of recA. FEMS Microbiol Lett 205:83–89

    Article  PubMed  CAS  Google Scholar 

  268. Sung P (1994) Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science 265:1241–1243

    Article  PubMed  CAS  Google Scholar 

  269. Sung P, Stratton SA (1996) Yeast Rad51 recombinase mediates polar DNA strand exchange in the absence of ATP hydrolysis. J Biol Chem 271:27983–27986

    Article  PubMed  CAS  Google Scholar 

  270. Takahashi M, Kubista M, Nordén B (1991) Co-ordination of multiple DNA molecules in RecA fiber evidenced by linear dichroism spectroscopy. Biochimie 73:219–226

    Article  PubMed  CAS  Google Scholar 

  271. Takiff HE, Chen SM, Court DL (1989) Genetic analysis of the rnc operon of Escherichia coli. J Bacteriol 171:2581–90

    PubMed  CAS  Google Scholar 

  272. Tamas I, Klasson L, Canback B, Naslund AK, Eriksson AS, Wernegreen JJ, Sandstrom JP, Moran NA, Andersson SGE (2002) 50 million years of genomic stasis in endosymbiotic bacteria. Science 296:2376–2379

    Article  PubMed  CAS  Google Scholar 

  273. Tateishi S, Horii T, Ogawa T, Ogawa H (1992) C-terminal truncated Escherichia coli RecA protein RecA5327 has enhanced binding affinities to single- and double-stranded DNAs. J Mol Biol 223:115–129

    Article  PubMed  CAS  Google Scholar 

  274. Thompson LH, Schild D (1999) The contribution of homologous recombination in preserving genome integrity in mammalian cells. Biochimie 81:87–105

    Article  PubMed  CAS  Google Scholar 

  275. Thompson LH, Schild D (2002) Recombinational DNA repair and human disease. Mutat Res 509:49–78

    PubMed  CAS  Google Scholar 

  276. Thompson TB, Thomas MG, Escalante-Semerena JC, Rayment IR (1998) Three-dimensional structure of adenosylcobinamide kinase/adenosylcobinamide phoshate guanylyltransferase from Salmonella typhimurium determined to 2.3 resolution. Biochemistry 37:686–695

    Article  Google Scholar 

  277. Ullsperger CJ, Cox MM (1995) Quantitative RecA protein binding to the hybrid duplex product of DNA strand exchange. Biochemistry 34:10859–10866

    Article  PubMed  CAS  Google Scholar 

  278. Umezu K, Chi NW, Kolodner RD (1993) Biochemical interaction of the Escherichia coli RecF, RecO, and RecR proteins with RecA protein and single-stranded DNA binding protein. Proc Natl Acad Sci USA 90:3875–3879

    Article  PubMed  CAS  Google Scholar 

  279. Umezu K, Kolodner RD (1994) Protein interactions in genetic recombination in Escherichia coli. Interactions involving RecO and RecR overcome the inhibition of RecA by single-stranded DNA-binding protein. J Biol Chem 269:30005–30013

    PubMed  CAS  Google Scholar 

  280. van Gent DC, Hoeijmakers JHJ, Kanaar R (2001) Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2:196–206

    Article  PubMed  Google Scholar 

  281. VanLoock MS, Yu X, Yang S, Galkin VE, Huang H, Rajan SS, Anderson WF, Stohl EA, Seifert HS, Egelman EH (2003) Complexes of RecA with LexA and RecX differentiate between active and Inactive RecA nucleoprotein filaments. J Mol Biol 333:345–354

    Article  PubMed  CAS  Google Scholar 

  282. Veaute X, Jeusset J, Soustelle C, Kowalczykowski SC, Le Cam E, Fabre F (2003) The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423:309–312

    Article  PubMed  CAS  Google Scholar 

  283. Veaute X, Delmas P, Selva M, Jeusset J, Le Cam E, Matic I, Fabre F, Petit MA (2005) UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli. EMBO J 24:180–189

    Article  PubMed  CAS  Google Scholar 

  284. Velankar SS, Soultanas P, Dillingham MS, Subramanya HS, Wigley DB (1999) Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell 97:75–84

    Article  PubMed  CAS  Google Scholar 

  285. Venkatesh R, Ganesh N, Guhan N, Reddy MS, Chandrasekhar T, Muniyappa K (2002) RecX protein abrogates ATP hydrolysis and strand exchange promoted by RecA: Insights into negative regulation of homolgous recombination. Proc Natl Acad Sci USA 99:12091–12096

    Article  PubMed  CAS  Google Scholar 

  286. Venkitaraman AR (2001) Chromosome stability, DNA recombination and the BRCA2 tumour suppressor. Curr Opin Cell Biol 13:338–343

    Article  PubMed  CAS  Google Scholar 

  287. Vierling S, Weber T, Wohlleben W, Muth G (2000) Transcriptional and mutational analyses of the Streptomyces lividans recX gene and its interference with RecA activity. J Bacteriol 182:4005–4011

    Article  PubMed  CAS  Google Scholar 

  288. Voloshin ON, Ramirez BE, Bax A, Camerini-Otero RD (2001) A model for the abrogation of the SOS response by an SOS protein: a negatively charged helix in DinI mimics DNA in its interaction with RecA. Genes Dev 15:415–427

    Article  PubMed  CAS  Google Scholar 

  289. Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951

    PubMed  CAS  Google Scholar 

  290. Wang TC, Chang HY, Hung JL (1993) Cosuppression of recF, recR and recO mutations by mutant recA alleles in Escherichia coli cells. Mutat Res 294:157–166

    PubMed  CAS  Google Scholar 

  291. Wang Y, Adzuma K (1996) Differential proximity probing of two DNA binding sites in the Escherichia coli RecA protein using photo-cross-linking methods. Biochemistry 35:3563–3571

    Article  PubMed  CAS  Google Scholar 

  292. Washburn BK, Kushner SR (1991) Construction and analysis of deletions in the structural gene (uvrD) for DNA helicase II of Escherichia coli. J Bacteriol 173:2569–2575

    PubMed  CAS  Google Scholar 

  293. Webb BL, Cox MM, Inman RB (1995) An interaction between the Escherichia coli RecF and RecR proteins dependent on ATP and double-stranded DNA. J Biol Chem 270:31397–31404

    Article  PubMed  CAS  Google Scholar 

  294. Webb BL, Cox MM, Inman RB (1997) Recombinational DNA repair – the RecF and RecR proteins limit the extension of RecA filaments beyond single-strand DNA gaps. Cell 91:347–356

    Article  PubMed  CAS  Google Scholar 

  295. Webb BL, Cox MM, Inman RB (1999) ATP hydrolysis and DNA binding by the Escherichia coli RecF protein. J Biol Chem 274:15367–15374

    Article  PubMed  CAS  Google Scholar 

  296. West SC, Cassuto E, Howard-Flanders P (1981) Heteroduplex formation by RecA protein: polarity of strand exchanges. Proc Natl Acad Sci USA 78:6149–6153

    Article  PubMed  CAS  Google Scholar 

  297. West SC (1992) Enzymes and molecular mechanisms of genetic recombination. Annu Rev Biochem 61:603–640

    Article  PubMed  CAS  Google Scholar 

  298. Whitby MC, Lloyd RG (1995) Altered SOS induction associated with mutations in recF, recO and recR. Mol Gen Genet 246:174–179

    Article  PubMed  CAS  Google Scholar 

  299. Williams KR, Spicer EK, LoPresti MB, Guggenheimer RA, Chase JA (1983) Limited proteolysis studies on the Escherichia coli single-stranded DNA binding protein: evidence for a functionally homologous domain in both the Escherichia coli and T4 DNA binding proteins. J Biol Chem 258:3346–3355

    PubMed  CAS  Google Scholar 

  300. Witte G, Urbanke C, Curth U (2003) DNA polymerase III chi subunit ties single-stranded DNA binding protein to the bacterial replication machinery. Nucleic Acids Res 31:4434–4440

    Article  PubMed  CAS  Google Scholar 

  301. Wittung P, Nordén B, Kim SK, Takahashi M (1994) Interactions between DNA molecules bound to RecA filament. Effects of base complementarity. J Biol Chem 269:5799–5803

    PubMed  CAS  Google Scholar 

  302. Wong I, Amaratunga M, Lohman TM (1993) Heterodimer formation between Escherichia coli Rep and UvrD proteins. J Biol Chem 268:20386–20391

    PubMed  CAS  Google Scholar 

  303. Wu Y, He Y, Moya IA, Qian XG, Luo Y (2004) Crystal structure of archaeal recombinase RadA: A snapshot of its extended conformation. Mol Cell 15:423–435

    Article  PubMed  CAS  Google Scholar 

  304. Wu Y, Qian XG, He YJ, Moya IA, Luo Y (2005) Crystal structure of an ATPase-active form of rad51 homolog from Methanococcus voltae – Insights into potassium dependence. J Biol Chem 280:722–728

    PubMed  CAS  Google Scholar 

  305. Xiao J, Singleton SF (2002) Elucidating a key intermediate in homologous DNA strand exchange: Structural characterization of the RecA-triple-stranded DNA complex using fluorescence resonance energy transfer. J Mol Biol 320:529–558

    Article  PubMed  CAS  Google Scholar 

  306. Xiao J, Lee AM, Singleton SF (2006) Construction and evaluation of a kinetic scheme for RecA-mediated DNA strand exchange. Biopolymers 81:473–496

    Article  PubMed  CAS  Google Scholar 

  307. Xing X, Bell CE (2004a) Crystal structures of Escherichia coli RecA in a compressed helical filament. J Mol Biol 342:1471–1485

    Article  PubMed  CAS  Google Scholar 

  308. Xing X, Bell CE (2004b) Crystal structures of Escherichia coli RecA in complex with MgADP and MnAMP-PNP. Biochemistry 43:16142–16152

    Article  PubMed  CAS  Google Scholar 

  309. Xu LW, Marians KJ (2003) PriA mediates DNA replication pathway choice at recombination intermediates. Mol Cell 11:817–826

    Article  PubMed  CAS  Google Scholar 

  310. Yancey-Wrona JE, Matson SW (1992) Bound Lac repressor protein differentially inhibits the unwinding reactions catalyzed by DNA helicases. Nucleic Acids Res 20:6713–6721

    Article  PubMed  CAS  Google Scholar 

  311. Yancey-Wrona JE, Camerini-Otero RD (1995) The search for DNA homology does not limit stable homologous pairing promoted by RecA protein. Curr Biol 5:1149–1158

    Article  PubMed  CAS  Google Scholar 

  312. Yang MK, Chou ME, Yang YC (2001) Molecular characterization and expression of the recX gene of Xanthomonas campestris pv. citri. Curr Microbiol 42:257–263

    PubMed  CAS  Google Scholar 

  313. Yasuda T, Nagata T, Ohmori H (1996) Multicopy suppressors of the cold-sensitive phenotype of the pcsA68 (dinD68) mutation in Escherichia coli. J Bacteriol 178:3854–3859

    PubMed  CAS  Google Scholar 

  314. Yasuda T, Morimatsu K, Horii T, Nagata T, Ohmori H (1998) Inhibition of Escherichia coli RecA coprotease activities by DinI. EMBO J 17:3207–3216

    Article  PubMed  CAS  Google Scholar 

  315. Yasuda T, Morimatsu K, Kato R, Usukura J, Takahashi M, Ohmori H (2001) Physical interactions between DinI and RecA nucleoprotein filament for the regulation of SOS mutagenesis. EMBO J 20:1192–202

    Article  PubMed  CAS  Google Scholar 

  316. Yoshimasu M, Aihara H, Ito Y, Rajesh S, Ishibe S, Mikawa T, Yokoyama S, Shibata T (2003) An NMR study on the interaction of Escherichia coli DinI with RecA-ssDNA complexes. Nucleic Acids Res 31:1735–1743

    Article  PubMed  CAS  Google Scholar 

  317. Yu X, Egelman EH (1991) Removal of the RecA C-terminus results in a conformational change in the RecA-DNA filament. J Struct Biol 106:243–254

    Article  PubMed  CAS  Google Scholar 

  318. Yu X, Egelman EH (1992) Structural data suggest that the active and inactive forms of the RecA filament are not simply interconvertible. J Mol Biol 227:334–346

    Article  PubMed  CAS  Google Scholar 

  319. Yu X, Jacobs SA, West SC, Ogawa T, Egelman EH (2001) Domain structure and dynamics in the helical filaments formed by RecA and Rad51 on DNA. Proc Natl Acad Sci USA 98:8419–8424

    Article  PubMed  CAS  Google Scholar 

  320. Yurchenko V, Xue Z, Sadofsky MJ (2006) SUMO modification of human XRCC4 regulates its localization and function in DNA double-strand break repair. Mol Cell Biol 26:1786–1794

    Article  PubMed  CAS  Google Scholar 

  321. Zavitz KH, Marians KJ (1992) ATPase-deficient mutants of the Escherichia coli DNA replication protein PriA are capable of catalyzing the assembly of active primosomes. J Biol Chem 267:6933–6940

    PubMed  CAS  Google Scholar 

  322. Zhou X, Adzuma K (1997) DNA strand exchange mediated by the Escherichia coli RecA protein initiates in the minor groove of double-stranded DNA. Biochemistry 36:4650–4661

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael M. Cox .

Editor information

Andrés Aguilera Rodney Rothstein

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cox, M.M. (2006). The Bacterial RecA Protein: Structure, Function, and Regulation. In: Aguilera, A., Rothstein, R. (eds) Molecular Genetics of Recombination. Topics in Current Genetics, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4735_2006_0205

Download citation

Publish with us

Policies and ethics