Skip to main content

Linking Fluorometry to Radiometry with Physical and Chemical Transfer Standards: Instrument Characterization and Traceable Fluorescence Measurements

  • Chapter
  • First Online:
Standardization and Quality Assurance in Fluorescence Measurements I

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 5))

Abstract

Problems associated with the measurement of photoluminescence are briefly reviewed, including relevant instrument parameters affecting these measurements. Procedures for the characterization of relevant instruments are discussed, focusing on spectrofluorometers, and fit-for-purpose methods including suitable standards are recommended. The aim here is to increase the awareness of the importance of reliable instrument characterization and to improve the comparability of measurements of photoluminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic/Plenum, New York

    Google Scholar 

  2. Lakowicz JR (ed) (1992–2004) Topics in fluorescence spectroscopy series, vols 1–8. Plenum, New York

    Google Scholar 

  3. Valeur B (ed) (2002) Molecular fluorescence: principles and applications. Wiley-VCH, Weinheim

    Google Scholar 

  4. Wolfbeis OS (ed) (2001–2004) Springer series on fluorescence, methods and applications, vols 1–3. Springer, Berlin

    Google Scholar 

  5. Schulman SG (ed) (1985–1993) Molecular luminescence spectroscopy, parts 1–3. Wiley Interscience, New York

    Google Scholar 

  6. Mason WT (1999) Fluorescent and luminescent probes for biological activity, 2nd edn. Academic, San Diego

    Google Scholar 

  7. Mielenz KD (1982) Optical radiation measurements, vol 3. Measurement of photoluminescence. Academic, New York

    Google Scholar 

  8. Burgess C, Jones DG (1995) Spectrophotometry, luminescence and colour. Elsevier, Amsterdam

    Google Scholar 

  9. Gaigalas AK, Li L, Henderson O, Vogt R, Barr J, Marti G, Weaver J, Schwartz A (2001) The development of fluorescence intensity standards. J Res Natl Inst Stand Technol 106:381

    Google Scholar 

  10. Resch-Genger U, Hoffmann K, Nietfeld W, Engel A, Ebert B, Macdonald R, Neukammer J, Pfeifer D, Hoffmann A (2005) How to improve quality assurance in fluorometry: fluorescence-inherent sources of error and suited fluorescence standards. J Fluoresc 15:337

    Article  CAS  Google Scholar 

  11. Parker CA (1968) Photoluminescence of solutions. Elsevier, Amsterdam

    Google Scholar 

  12. Marin NM, MacKinnon N, MacAulay C, Chang SK, Atkinson EN, Cox D, Serachitopol D, Pikkula B, Follen M, Richards-Kortum R (2006) Calibration standards for multicenter clinical trials of fluorescence spectroscopy for in vivo diagnosis. J Biomed Opt 11:014010-1

    Google Scholar 

  13. Jameson DM, Croney JC, Moens PDJ (2003) Fluorescence: basic concepts, practical aspects, and some anecdotes. Methods Enzymol 360:1

    Article  CAS  Google Scholar 

  14. Nickel B (1996) Pioneers in photochemistry: from the Perrin diagram to the Jablonski diagram. EPA Newsletter 58:9

    CAS  Google Scholar 

  15. Nickel B (1997) Pioneers in photophysics: from the Perrin diagram to the Jablonski diagram. Part 2. EPA Newsletter 61:27

    CAS  Google Scholar 

  16. Nickel B (1998) Pioneers in photophysics: from Widemann's discovery to the Jablonski diagram. Part 2. EPA Newsletter 64:19

    CAS  Google Scholar 

  17. ASTM E 388–04 (2004, original version 1972) Spectral bandwidth and wavelength accuracy of fluorescence spectrometers. In: Annual book of ASTM standards, vol 03.06

    Google Scholar 

  18. ASTM E 578–01 (2001, original version 1983) Linearity of fluorescence measuring system. In: Annual book of ASTM standards, vol 03.06

    Google Scholar 

  19. ASTM E 579–04 (2004, original version 1984) Limit of detection of fluorescence of quinine sulfate. In: Annual book of ASTM standards, vol 03.06

    Google Scholar 

  20. Miller JN (ed) (1981) Techniques in visible and ultraviolet spectrometry, vol 2. Standards in fluorescence spectrometry. Chapman and Hall, New York

    Google Scholar 

  21. Eaton DF (1988) Reference compounds for fluorescent measurements. Pure Appl Chem 60:1107

    Article  CAS  Google Scholar 

  22. Commission Internationale de l'Eclairage (1986) Colorimetry, 2nd edn. CIE-Publ 15.2. CIE, Vienna

    Google Scholar 

  23. Rich DC, Martin D (1999) Improved model for improving the inter-instrument agreement of spectrocolorimeters. Anal Chim Acta 380:263

    Article  CAS  Google Scholar 

  24. Zwinkels J (2007) Surface fluorescence: the only standardized method of measuring luminescence. In: Resch-Genger U (ed) Standardization in fluorometry: state of the art and future challenges. Springer, Berlin

    Google Scholar 

  25. Vogt RF Jr, Marti GE, Zenger VE (2007) Need for standardization of fluorescence measurements from the regulator's view. In: Resch-Genger U (ed) Standardization in fluorometry: state of the art and future challenges. Springer, Berlin

    Google Scholar 

  26. (2004) Approved guideline for fluorescence calibration and quantitative measurements of fluorescence intensity. Clinical and Laboratory Standards Institute (CLSI), USA

    Google Scholar 

  27. Chapman JH, Förster T, Kortüm G, Parker CA, Lippert E, Melhuish WH, Nebbia G (1963) Proposal for the standardization of reporting fluorescence emission spectra. J Am Chem Soc 17:171

    Google Scholar 

  28. Saunders G, Parkes H (1999) Analytical molecular biology: quality and validation. RSC, Cambridge

    Google Scholar 

  29. (2005) ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories, 2nd edn. International Organization for Standardization, Geneva

    Google Scholar 

  30. Hollandt J, Taubert DR, Seidel J, Resch-Genger U, Gugg-Helminger A, Pfeifer D, Monte C (2005) Traceability in fluorometry: part I. Physical standards. J Fluoresc 15:301

    Article  CAS  Google Scholar 

  31. Monte C, Resch-Genger U, Pfeifer D, Taubert RD, Hollandt J (2006) Linking fluorescence measurement to radiometric units. Metrologia 43:S89

    Article  Google Scholar 

  32. Braslavsky SE (2007) Glossary of terms used in photochemistry, 3rd edn (IUPAC recommendations 2006). Pure Appl Chem 79:293

    Article  CAS  Google Scholar 

  33. Nighswander-Rempel SP (2006) Quantum yield calculation from strongly absorbing chromophores. J Fluoresc 16:483

    Article  CAS  Google Scholar 

  34. Verhoeven JW (1996) Glossary of terms used in photochemistry. Pure Appl Chem 68:2223

    Article  CAS  Google Scholar 

  35. Melhuish WH (1984) Nomenclature, symbols, units and their usage in spectrochemical analysis VI: molecular luminescence spectroscopy. Pure Appl Chem 56:231

    Article  Google Scholar 

  36. Mielenz KD (1978) Refraction correction for fluorescence spectra of aqueous solutions. Appl Opt 17:2876

    Article  Google Scholar 

  37. DeRose PC, Wang L, Cramer G, Gaigalas A, Resch-Genger U, Panne U (2007) Need for and metrological approaches toward standardization of fluorescence measurements from the view of national metrological institutes. In: Resch-Genger U (ed) Standardization in fluorometry: state of the art and future challenges. Springer, Berlin

    Google Scholar 

  38. Williams ATR, Winfield SA, Miller JN (1983) Relative fluorescence quantum yields using a computer controlled luminescence spectrometer. Analyst 108:1067

    Article  CAS  Google Scholar 

  39. Boivin LP (2002) Study of bandwidth effects in monochromator-based spectral responsivity measurements. Appl Opt 41:1929

    Article  Google Scholar 

  40. (1995) ISO; Guide to the expression of uncertainty in measurement; ISBN 92–67-10188–9, 1st edn. International Organization for Standardization, Geneva

    Google Scholar 

  41. Melhuish WH (1965) Quantum efficiencies of fluorescence of organic substances: effect of solvent and concentration of the fluorescent solute. J Phys Chem 65:229

    Article  Google Scholar 

  42. Chauvin A-S, Gumy F, Imbert D, Bünzli J-C (2004) Europium and terbium tris(dipicolinates) as secondary standards for quantum yield determination. Spectrosc Lett 37:517

    Article  CAS  Google Scholar 

  43. DeRose PC, Kramer GW (2005) Bias in the absorption coefficient determination of a fluorescent dye, Standard Reference Material 1932 fluorescein solution. J Luminesc 113:314

    Article  CAS  Google Scholar 

  44. Benson RC, Kues HA (1977) Absorption and fluorescence properties of cyanine dyes. J Chem Eng Data 22:379

    Article  CAS  Google Scholar 

  45. (2000, corrigendum 2003) ISO; General requirements for the competence of reference material producers, 2nd edn. International Organization for Standardization, Geneva

    Google Scholar 

  46. (2006) ISO; Reference materials—general and statistical principles for certification. International Organization for Standardization, Geneva

    Google Scholar 

  47. DeRose PC, Early EA, Kramer GW (2007) Qualification of a fluorescence spectrometer for measuring true fluorescence spectra. Rev Sci Instrum 78:033107

    Article  CAS  Google Scholar 

  48. Howarth P, Redgrave F (2003) Metrology in short, 2nd edn. MKom Aps, Denmark

    Google Scholar 

  49. Bosse H, Wilkening G (2005) Developments at PTB in nanometrology for support of the semiconductor industry. Meas Sci Technol 16:2155

    Article  CAS  Google Scholar 

  50. Dai G, Koenders L, Pohlenz F, Dziomba T, Danzebrink H-U (2005) Accurate and traceable calibration of one-dimensional gratings. Meas Sci Technol 16:1241

    Article  CAS  Google Scholar 

  51. Monte C, Pilz W, Resch-Genger U (2005) Linking fluorescence to the scale of spectral sensitivity—the BAM reference fluorometer. Proc SPIE 5880:588019–1

    Google Scholar 

  52. Eaton DF (1990) Recommended methods for the fluorescence decay analysis. Pure Appl Chem 62:1631

    Article  CAS  Google Scholar 

  53. Resch-Genger U, Pfeifer D, Monte C, Pilz W, Hoffmann A, Spieles M, Rurack K, Taubert DR, Schönenberger B, Nording P (2005) Traceability in fluorometry: part II. Spectral fluorescence standards. J Fluoresc 15:315

    Article  CAS  Google Scholar 

  54. Mielenz KD, Eckerle KL (1972) Spectrophotometer linearity testing using the double-aperture method. Appl Opt 11:2294

    Article  CAS  Google Scholar 

  55. Zwinkels JC, Gignac DS (1991) Automated high precision variable aperture for spectrophotometer linearity testing. Appl Opt 30:1678

    Article  CAS  Google Scholar 

  56. Hoffmann K, Monte C, Pfeifer D, Resch-Genger U (2005) Standards in fluorescence spectroscopy: simple tool for the characterization of fluorescence instruments. GIT Lab J Eur, p 29

    Google Scholar 

  57. Salit CJML et al (1996) Wavelengths of spectral lines in mercury pencil lamps. Appl Opt 35:74

    Article  Google Scholar 

  58. www.physics.nist.gov/PhysRefData/Handbook/index.html last visit: August 2007

    Google Scholar 

  59. Harrison GR (1982) MIT wavelength tables, vol 2. Wavelengths by element. MIT, Cambridge

    Google Scholar 

  60. Zaidel AN, Prokofev VK, Raiskii SM, Slavnyi VA, Shreider EY (1970) Tables of spectral lines. Plenum, New York

    Google Scholar 

  61. Calibration light source CAL-2000, MIKROPACK GmbH ( http://www.mikropack.de ) or Ocean Optics Inc ( http://www.oceanoptics.com )

  62. (2003) Certificate of analysis, Standard Reference Material 2036, near-infrared wavelength/wavenumber reflection standard. National Institute of Standards and Technology, Gaithersburg

    Google Scholar 

  63. Lifshitz IT, Meilman ML (1989) Standard sample for calibrating wavelength scales of spectral fluorometers. Sov J Opt Technol 55:487

    Google Scholar 

  64. Photon Technology International Inc. (DYAG) FA-2036

    Google Scholar 

  65. Knight A, Gaunt J, Davidson T, Chechik V, Windsor S (2004) Evaluation of the suitability of quantum dots as fluorescence standards. NPL report DQL-AS 007

    Google Scholar 

  66. Bartholomeusz D, Andrade JD (2002) Photodetector calibration method for reporting bioluminescence measurements in standardized units. In: Bioluminescence & chemiluminescence: progress & current applications. Proceedings of the Symposium on Bioluminescence and Chemiluminescence, World Scientific, Singapore, p 189

    Google Scholar 

  67. Velapoldi RA, Tonnesen HH (2004) Corrected emission spectra and quantum yields for a series of fluorescent compounds in the visible spectral region. J Fluoresc 14:465

    Article  CAS  Google Scholar 

  68. Hofstraat JW, Latuhihin MJ (1994) Correction of fluorescence spectra. Appl Spectrosc 48:436

    Article  CAS  Google Scholar 

  69. Kortüm G, Finckh B (1941–1944) Eine photographische Methode zur Aufnahme quantitativer vergleichbarer Fluoreszenzspektren. Spectrochim Acta 2:137

    Google Scholar 

  70. Lippert E, Nägele W, Seibold-Blankenstein I, Staiger U, Voss W (1959) Messung von Fluoreszenzspektren mit Hilfe von Spektralphotometern und Vergleichsstandards. Z Anal Chem 170:1

    Article  CAS  Google Scholar 

  71. Gardecki JA, Maroncelli M (1998) Set of secondary emission standards for calibration of the spectral responsivity in emission spectroscopy. Appl Spectrosc 52:1179

    Article  CAS  Google Scholar 

  72. Thompson A, Eckerle KL (1989) Standards for corrected fluorescence spectra. Proc SPIE Int Soc Opt Eng 1054:20

    CAS  Google Scholar 

  73. Eppeldauer G (1998) Spectral response based calibration method of tristimulus colorimeters. J Res Natl Inst Stand Technol 103:615

    Google Scholar 

  74. Mielenz KD, Cehelnik ED, McKenzie RL (1976) Elimination of polarization bias in fluorescence intensity measurements. J Phys Chem 64:370

    Article  CAS  Google Scholar 

  75. Azumi T, McLynn SP (1962) Polarization of the luminescence of phenanthrene. J Chem Phys 37:2413

    Article  CAS  Google Scholar 

  76. (1979) Certificate of analysis, Standard Reference Material 936, quinine sulfate dihydrate. National Bureau of Standards, Gaithersberg

    Google Scholar 

  77. (1994) Certificate of analysis, Standard Reference Material 936a, quinine sulfate dihydrate. National Institute of Standards and Technology, Gaithersberg

    Google Scholar 

  78. Velapoldi RA, Mielenz KD (1980), A fluorescence standard reference material: quinine sulfate dihydrate. NBS Spec Publ 260–64, PB 80132046, Springfield

    Google Scholar 

  79. (2006) Certificates of analysis, Certified Reference Materials BAM-F001, BAM-F002, BAM-F003, BAM-F004, and BAM-F001. Spectral fluorescence standard for the determination of the relative spectral responsivity of fluorescence instruments within its emission range. Certification of emission spectra in 1 − nm intervals. Federal Institute for Materials Research and Testing (BAM), Berlin

    Google Scholar 

  80. (2006) Certificate of analysis, Standard Reference Material 2940. Relative intensity correction standard for fluorescence spectroscopy: orange emission. Certification of emission spectra in 1-nm intervals. National Institute of Standards and Technology. http://ts.nist.gov/ts/htdocs/230/232/232.htm

  81. (2006) Certificate of analysis, Standard Reference Material 2941. Relative intensity correction standard for fluorescence spectroscopy: green emission. Certification of emission spectra in 1-nm intervals. National Institute of Standards and Technology. http://ts.nist.gov/ts/htdocs/230/232/232.htm

  82. (1989) Certificate of analysis, Standard Reference Material 1931, fluorescence emission standards for the visible region. National Institute of Standards and Technology. (This SRM is no longer available)

    Google Scholar 

  83. (2006) Certificate of analysis, Certified Reference Materials BAM-F001–BAM-F005, Calibration Kit Spectral Fluorescence Standards for the determination of the relative spectral responsivity of fluorescence instruments. Certification according to ISO guides 34 and 35 in 1-nm steps for three different spectral bandpasses of the BAM fluorometer. Federal Institute for Materials Research and Testing (BAM), Berlin

    Google Scholar 

  84. Pfeifer D, Hoffmann K, Hoffmann A, Monte C, Resch-Genger U (2006) The Calibration Kit Spectral Fluorescence Standards: a simple tool for the standardization of the spectral characteristics of fluorescence instruments. J Fluoresc 16:581

    Article  CAS  Google Scholar 

  85. Resch-Genger U, Pfeifer D (2006) Certification report, Calibration Kit Spectral Fluorescence Standards BAM-F001–BAM-F005. BAM, Berlin

    Google Scholar 

  86. Ejder E (1969) Methods of representing emission, excitation, and photoconductivity spectra. J Opt Soc A 59:223

    Article  CAS  Google Scholar 

  87. Parker CA, Rees WT (1960) Correction of fluorescence spectra and measurement of fluorescence quantum efficiency. Analyst 85:587

    Article  CAS  Google Scholar 

  88. Fox NP (1991) Trap detectors and their properties. Metrologia 28:197

    Article  Google Scholar 

  89. Melhuish WH (1975) Modified technique for determining the wavelength-sensitivity curve of a spectrofluorometer. Appl Opt 14:26

    CAS  Google Scholar 

  90. Hart SJ, Jones PJ (2001) Fiber-optic quantum counter for incident excitation correction in fluorescence measurements. Appl Spectrosc 55:1717

    Article  CAS  Google Scholar 

  91. Demas JN, Crosby GA (1971) The measurement of photoluminescence quantum yields. A review. J Phys Chem 75:991

    Article  Google Scholar 

  92. Mielenz KD, Velapoldi RA, Mavrodineanu (1977) Standardization in spectrophometry and luminescence measurements. NBS Special Publication 466, Gaithersfield

    Google Scholar 

  93. Froehlich P (1989) Under the sensitivity specification for a fluorescence spectrophotometer. Int Lab 42

    Google Scholar 

  94. Kovach RJ, Peterson WM (1994) The measurement of sensitivity in fluorescence spectroscopy. Am Lab 32G

    Google Scholar 

  95. Greenham NC, Samuel IDW, Hayes GR, Phillips RT, Kessener YARR, Moratti SC, Holmes AB, Friend RH (1995) Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers. Chem Phys Lett 241:89

    Article  CAS  Google Scholar 

  96. de Mello JC, Wittmann HF, Friend RH (1997) An improved experimental determination of external photoluminescence quantum efficiency. Adv Mater 9:230

    Article  Google Scholar 

  97. He L, Hattori R, Kanicki J (2000) Light output measurements of the organic light-emitting devices. Rev Sci Instrum 71:2104

    Article  CAS  Google Scholar 

  98. Rohwer LS, Martin JE (2005) Measuring the absolute quantum efficiency of luminescent materials. J Luminesc 115:77

    Article  CAS  Google Scholar 

  99. Madge D, Brannon JH, Cremers TL, Olmsted J III (1979) Absolute luminescence yield of cresyl violet. A standard for the red. J Phys Chem 83:696

    Article  Google Scholar 

  100. Chen RF (1972) Measurements of absolute values in biochemical fluorescence spectroscopy. J Res Natl Bur Stand 76A:593

    Google Scholar 

  101. Greenham NC, Friend RH, Bradley DDC (1994) Angular dependence of the emission from a conjugated polymer light-emitting diode: implications for efficiency calculations. Adv Mater 6:491

    Article  CAS  Google Scholar 

  102. Porrès L, Holland A, Pålson L-O, Monkmann AP, Kemp C, Beeby A (2006) Absolute measurements of photoluminescence quantum yields of solutions using an integrating sphere. J Fluoresc 16:267

    Article  CAS  Google Scholar 

  103. PÃ¥lsson L-O, Monkman AP (2002) Measurements of solid state photoluminescence quantum yields of films using a fluorimeter. Adv Mater 14:757

    Article  Google Scholar 

  104. Monte C, Pilz W, Resch-Genger U (2005) Linking fluorescence spectroscopy to the scale of spectral sensitivity: the BAM reference fluorometer. Proc SPIE 5880:588019-1

    Google Scholar 

  105. Fischer M, Georges J (1996) Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry. Chem Phys Lett 260:115

    Article  CAS  Google Scholar 

  106. Magde D, Wong R, Seybold PG (2002) Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields. Photochem Photobiol 75:327

    Article  CAS  Google Scholar 

  107. Kubin RF, Fletcher AN (1982) Fluorescence quantum yields of some rhodamine dyes. J Luminesc 27:455

    Article  Google Scholar 

  108. Boens N, Qin W, Basaric N, Hofkens J, Ameloot M, Pouget J, Lefevre J P, Valeur B, Gratton E, vandeVen M, Silva ND, Engelborghs Y, Willaert K, Sillen A, Rumbles G, Phillips D, Visser AJWG, vanHoek A, Lakowicz JR, Malak H, Gryczynski I, Szabo AG, Krajcarski DT, Tamai N, Miura A (2007) Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy. Anal Chem 77:2137

    Article  CAS  Google Scholar 

  109. Giebeler R, McGown E, French T, Owicki JC (2005) Performance validation for microplate fluorimeters. J Fluoresc 15:363

    Article  CAS  Google Scholar 

  110. Hoffmann K, Resch-Genger U, Nitschke R (2005) Simple tool for the standardization of confocal spectral imaging systems. GIT Imaging Microsc, p 18

    Google Scholar 

  111. Ray KG, McCreery RL (1997) Simplified calibration of instrument response function for Raman spectrometers based on luminescence intensity standards. Appl Spectrosc 51:108

    Article  CAS  Google Scholar 

  112. Frost KJ, McCreery RL (1998) Calibration of Raman spectrometer instrument response function with luminescence standards: an update. Appl Spectrosc 52:1614

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Resch-Genger .

Editor information

Ute Resch-Genger

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Resch-Genger, U., Pfeifer, D., Hoffmann, K., Flachenecker, G., Hoffmann, A., Monte, C. (2008). Linking Fluorometry to Radiometry with Physical and Chemical Transfer Standards: Instrument Characterization and Traceable Fluorescence Measurements. In: Resch-Genger, U. (eds) Standardization and Quality Assurance in Fluorescence Measurements I. Springer Series on Fluorescence, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2008_054

Download citation

Publish with us

Policies and ethics