Determination of discrete sampling grids with optimal topological and spectral properties

  • Luis Ibáñez
  • Chafiaâ Hamitouche
  • Christian Roux
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1176)


This paper proposes 2D, 3D and 4D discrete sampling grids with optimal topological and spectral properties. It is shown here that those grids have advantages with respect to the classically used ℤn grid. The proposed 3D grids are used to achieve surface extraction from volume data. Results are shown for a medical imaging application.


Multidimensional discrete sampling Compact Grids 3D topology 


  1. 1.
    A. Rosenfeld, A. Kak Digital picture processing Academic Press Inc. 1982.Google Scholar
  2. 2.
    J.K. Udupa, G.T. Herman 3-D Imaging in Medicine CRC Press, 1989.Google Scholar
  3. 3.
    C. Kittel Introduction to solid-state physics John Wiley & Sons Inc. 1971.Google Scholar
  4. 4.
    D. Schwarzenbach Cristalographie Presses polytechniques et universitaires romandes, 1993.Google Scholar
  5. 5.
    J.H. Conway, N.J.A. Sloane Sphere packing lattice and groups Second edition, Springer-Verlag, A series of comprehensive studies in mathematics. 1993.Google Scholar
  6. 6.
    H.S.M. Coxeter Introduction to Geometry second edition John Wiley & Sons Inc. 1969.Google Scholar
  7. 7.
    K. Miyazaki An adventure in multidimensional space A Wile Inter-science publication, John Wiley & Sons Inc. 1983Google Scholar
  8. 8.
    E. Viterbo, E. Biglieri Computing the voronoi cell of a lattice: the diamond-cutting algorithm IEEE transactions on information theory; Vol 42, No. 1, January 1996.Google Scholar
  9. 9.
    L.C. Kinsey Topology of surfaces Undergraduate Texts in Mathematics, Spriger-Verlag, New York, 1993.Google Scholar
  10. 10.
    V. Kovalevsky Shape in picture, a mathematical desciption of shape in gray levels images. Springer-Verlag; NATO ASI series, Series F: Computer and systems science Vol 126. 1992.Google Scholar
  11. 11.
    D.E. Dudgeon, R.M. Mersereau Multidimensional digital signal processing Prentice-Hall, Englwood Cliffs; NJ; 1984.Google Scholar
  12. 12.
    D. Nogly, M. Schladt. Digital Topology on Graphs Computer Vision and Image Understanding, Vol. 63, No. 2; March; pp 394–396, 1996.Google Scholar
  13. 13.
    W.E. Lorensen, H.E. Cline. Marching Cubes: A high resolution 3D surface construction algorith Computer Graphics, Vol. 21, No. 4, Jul 1987. pp 163–169.Google Scholar
  14. 14.
    E.R. Dougherty Mathematical Morphology in image processing. Marcel Dekker, New York 1991.Google Scholar
  15. 15.
    J. Serra Image Analysis and Mathematical Morphology. Academic Press Inc. 1982Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Luis Ibáñez
    • 1
  • Chafiaâ Hamitouche
    • 1
  • Christian Roux
    • 1
  1. 1.Département Image et Traitement de l'InformationENST - Bretagne, Technopôle de Brest-IroiseBrestFrance

Personalised recommendations