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Abstrac t .  This paper proposes 2D, 3D and 4D discrete sampling grids 
with optimal topological and spectra] properties. It is shown here that 
those grids have advantages with respect to the classically used 23 n grid. 
The proposed 3D grids are used to achieve surface extraction from vol- 
ume data. Results are shown for a medical imaging application. 
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1 I n t r o d u c t i o n  

Multidimensional signal processing often uses discrete sampling grids obtained 
as the tensor product of one-dimensional sampling grids. In a N-D space, the 
points of the ~ space are used as the natural sampling grid. It is shown here 
that  this is not the best choice, because it makes very difficult to define a correct 
topology on it [1][2][10][12] and it oversamples the signal [11]. In this paper, we 
propose to construct optimal sampling grids, based on the compact spherical 
packing lattice concept well referenced in the geometry, information theory and 
solid state physics fields [6][5][3]. The obtained grids have interesting topological 
properties, that makes easier to solve the problem of surface extraction from 
volume data, which is extensively treated in the image processing area for the 
2~ 3 sampling grid. 

2 D e t e r m i n a t i o n  o f  t o p o l o g i c a l l y  o p t i m a l  g r i d s  

2.1 N o t i ons  

Vorono i  region:  Given a N-dimensional grid (or "lattice") The Voronoi region 
V(~,~i) of a grid point 1Oi is defined as [8]: 

V(~, iO~)={~EIR":I[  ~- f i IN<- l [~ ' - /~ j  ![ V j ~ i }  
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where the/Sj are the others grid points. The Voronoi region or Voronoi cell 
of a regular lattice, fills the N-D space by simple tilling. For the 2~ ~ grid, the 
Voronoi region is a N-D cube. 

Cove r ing  rad ius :  When a multidimensional sphere is replicated in a grid, by 
just touching the spheres between them, the ratio between the volume of one 
sphere and the volume of the grid's Voronoi cell is a measure of space filling, 
known as "covering radius". There is a superior limit for the covering radius in 
each dimension. The grid (or "lattice") having this radius is called the compact, 
lattice, it is possible to have several lattices with the maximum covering radius. 

R e c i p r o c a l  Gr id :  A grid can be defined by using a vector basis {~31}, so that  
the relative position between two grid points is always a linear combination of 
the basis vectors with integer coefficients (diophantine equation)J4]. The grid 
defined by the basis {~} has a reciprocal grid generated by the vector basis {fi~} 
orthonormal to {vi}. It can be calculed by forming a matrix A whose colnmns 
are the basis vectors, and taking its pseudo-inverse B: 

A = {~i} B = A(ATA) -1 {ui} = B 

The basis {ill} is called the dual basis of {~i}. The volume of the Voronoi 
cell can be calculated by taking the determinant, of the A matrix. 

The multidimensional Fourier Transform of a distribution of dirac deltas 
placed on the grid points, is a distribution of dirac deltas placed on the recip- 
rocal grid points.  This property is extensively used in cristallography to rely 
diffraction images of cristals with its lattice structure. 

2.2 Topo logy  def in i t ion  on t h e  gr id  

Topological characteristics of discrete grids become very important when tasks 
such as object recognition and extraction are faced. Great efforts are made to 
define correct topologies over discrete structures [12][2][10][9], particularly in the 
image processing community. The two main approaches (which can give rise to 
similar topologies) are: 
a)The assimilation of the discrete grid to a K-complex structure, 
b) The definition of discrete neighborhoods in each grid point. 
The first approach is considered in this work since it provides a clear image of 
the grid geometrical properties. 
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2.3 K - c o m p l e x  de f i n i t i on  

A N-cell is a set whose interior is homeomorphic to the N-D disc: 

D '~ = {~ e IR'~: II ~ I1< 1} 
with the additional property that its boundary or frontier must be divided into 
a finite number of lower-dimensional cells, called the faces of the N-cell. A 0-D 
cell is a point, a 1-D cell is a line segment, a 2-D cell is a polygon and a 3-D cell 
is a polyhedron [9]. 

A K-complex is a finite set of cells: K = [..J {(r : o- is a cell}, such that: 

1. if rr is a cell in K,  then all faces of ~ are elements of K. 

2. if ~r and r are cells in If., then Interior(~) ~ Interior(r)  = r 

The dimension of K is the dimension of the highest dimension cell. 

2.4 D i s c r e t e  gr id  as a K - c o m p l e x  

To define a K-complex over a N-D discrete grid, Voronoi cells of the grid are 
taken as N-cells. Their (N-1)-D frontiers are (N - 1)-cells and so on. 

To achieve a contour extraction, the sampling grid points should be seg- 
mented first. The segmentation classifies each point as being "object" or "back- 
ground" (and so classifies the associated N-cells). The contour extraction consists 
in tracking the ( N -  1)-cells between "object" and "background" N-cells. This 
collection of ( N -  1)-cells can be used to build a ( N -  1)D "contour" K-complex, 
by adding all the lower dimensional cells of the original K-complex which are 
neighbors of the contour (N - 1)-cells. 

The great advantage of the compact grid topology, (that we have verified in 
dimensions two to four), is that the (N-2) -ce l l s  joint always (N)-cells in number 
of three, and their three ( N -  1)-dimensional frontier cells too. This arrange- 
ment guaranties that  a binary segmentation of the N-cells will produce only 
two contour (N - 1)-cells joined at the same (N - 2)-cell. This property simpli- 
fies the cell connection process, since no ambiguity is possible in the (N-2)-cel ls .  

The 2Z '~ grid can also define a K-complex topology, however it has (N - 2)- 
cells which joint four (N)-cells with their four (N - 1)-cells leading to a well 
known ambiguity in the contour extraction process when two diagonaly opposed 
(N)-cells belong to "object" and the other two to "background". 



184 

Fig. 1. Ambiguous case in 2E ~ grid topology 

2-D t o p o l o g y  The topology of the compact 2-D grid is obtained from the K- 
complex built by taking the hexagonal Voronoi cells as 2-cells, line segments 
between two hexagonal cells as 1-cells and points at vertex of the hexagonal 
cells as 0-cells. It should be recalled that the hexagonal grid is its own reciprocal 
(following the definition in section 2.1), so the topology of the optimal sampling 
grid is the same of the compact grid. Contour extraction is simplified because 
at every 0-cell, only two of the three adjacents 1-cells can belong to contour. 

_ J  \ 
// 

r  
Fig. 2. K-complex associated to the compact 2-D grid 

3-D gr id  t o p o l o g y  The 3-D compact grid is the face-centered cubic lattice 
(FCC), which generates a K-complex whose 3-cells are rhombic dodecahedrons 
(Figure 3-a) [7][3], and as mentioned above, they joint at their edges in number 
of three. The dihedral angle of the faces is 120 ~ The rhombic dodecahedron 
faces, edges and vertex define respectively the 2-cells, 1-cells and 0-cells of the 
K-complex. 

The reciprocal of the compact FCC grid is the body-centered cubic lattice 
(BCC), whose Voronoi cells are truncated octahedrons (Figure 3-b). The K- 
complex is built by taking the truncated octahedrons as 3-cells, and its faces, 
edges and vertex respectively as 2-cells, 1-cells, and 0-cells. The truncated oc- 
tahedron has six square faces and eight regular hexagonal faces, It, edges joint, 
always two hexagons and a square (in the space filling structure). Truncated oc- 
tahedron can be replicated to fill the 3-D space with the property of joining three 
polyhedrons at, each edge. Its dihedral angles are 109.470 between two hexagonal 
faces, and 125.260 between the square and hexagonal faces. 
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Fig. 3. Rhombic dodecahedron (a), Truncated Octahedron (b) 

The K-complex topology associated to the BCC and FCC lattices can then 
be used to simplify the surface extraction process from 3D binary segmented 
data. 

4-D grid topo logy  The 4-D compact grid has a 4-D Voronoi cell formed by 
twenty 3-D rhombohedra, with 6 rhombic 2-D faces each one. A K-complex 
topology is defined using this 4-D Voronoi cell as 4-cells, rhombohedra as 3-cells, 
rhombic faces as 2-D cells, and so on. A rhombohedra is common to exactly 
three grid points, this lets also to track a 3-D K-complex around a 4-D object 
segmented in the grid. 

3 Signal Processing Analysis 

The Shannon theorem states the correct sampling rate for one-dimensional band- 
limited continuous signals by considering the interaction of their spectra in the 
frequency domain [1][11]. The recommended sampling rate is the double of the 
maximum frequency of the signal. A lower sampling rate will loss information, 
while a higher sampling rate will introduce redundancy. 

The process of sampling a signal with a grid, corresponds in the spectral 
domain, to convolve the signal spectrum with the reciprocal of the sampling 
grid (defined in section 2.1). Considering signals with isotropic properties, that 
is, having spectra with a multidimensional spherical support, it is possible to 
assimilate the sampling process to a spherical packing problem in the multidi- 
mensional frequency domain. 
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Multidimensional spherical supported spectra must be replicated in the fe- 
quency domain by just touching the supports between them. Superimposed sup- 
ports will give rise to aliasing problems, while vaccum space in the frequency 
domain will represent oversampling (redundancy). The optimal filling of the fre- 
quency domain is the fundamental condition to obtain a non-redundant sampling 
of the signal. 

The problem of packing spheres compactly in regular lattices is well known 
[5][6]. The solution for the 2-D case is the hexagonal lattice, and for the 3-D 
case is the FCC lattice [3]. From the solid state point of view the 2~ ~ sampling 
grid is associated to the simple cubic lattice. 

The optimal sampling grid is defined here as the reciprocal of the compact 
grid. This choice leads to obtain the maximum covering radius in the frequency 
domain and hence reduce the redundancy to its minimum value [11]. The con,- 
pact grid size is adjusted to the signal maximum frequency Fr to have a compact 
grid with a nearest neirborhood distance of 2F~. Therefore, the nearest neirbor- 
hood distance of the sampling grid is 1/(2F~.). 

3.1 1-D sampling 

A 1-D signal having a spectrum with maximnm frequency F~, that is, a sup- 
port [-Fr F~] can be optimally sampled by using a grid of period 1/2F~. The 
spectrum support is the 1-D sphere of radius R = Fr whose volume is 2R. The 
Voronoi cell of the 2~ t sampling grid is the segment [ -R,  R] which has a volume 
2R. The compact lattice in IR 1 space is the same 2~ 1 grid, so the vohlme of the 
compact Voronoi cell is 2R. 
Then,the covering radius in the 1-D case is 100%, which lets sample the signal 
without loss of information nor redundancy. 

3.2 2-D sampling 

A 2-D signal having a spectrum with maximum frequency Fc, has as spectral 
support the circle of radius R = Fr with volume lrR ~. The 2~ 2 grid has a Voronoi 
cell of volume 4R 2, then a covering radius of ~r/4 ~ 78.53%. 
The compact 2-D lattice is the hexagonal grid, defined by the base: 

= [1, o] = [ , / I / 2 , 1 / 2 ]  

The reciprocal grid is defined by: 

--  [0, 24 /3] = 

which also generates an hexagonal grid. 
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The Voronoi cell of the hexagonal grid with a inscribed circle of radius R, 
has a volume of 2v~R ~, with a covering radius of v~r /6  ,,~ 90.69%. 

The ratio between the covering radius of the 2Z 2 grid and the hexagonal grid 
is v/3/2 ,~ 0.8660 [6] which means that the number of samples of the reciprocal 
hexagonal lattice is the 86.60% of the number of samples needed in the 2g 2 grid, 
when both sample the signal without information losses. 

3.3 3-D sampling 

A band-limited isotropic 3-D signal with maximum frequency F~ has a sphere 
of radius R = Fc as spectral support. The sphere volume is 4rrR3/3, while the 
Voronoi cell of the Z a grid has a volume of 8R a, that is a covering radius of 
rr/6 z 52.36%. 

The compact 3-D grid is the FCC lattice defined by the base: 

9o = [1/2, 1/2, 0] 91 : [1/2, O, 1/2] 92 -= [0, 1/2, 1/2] 

Its reciprocal is the BCC lattice defined by the base: 

f i o= [ - ! , -1 ,1 ]  "~I = [ -1 ,1 , -1 ]  "~2=[1 , - I , - i ]  

The Voronoi cell of the FCC grid is the rhombic dodecahedron [7][3] of vol- 
ume 4v/2R a, with covering radius of v~Tr/6 ~ 74.04%. The reciprocal of the 
FCC lattice is the BCC lattice, so the optimal grid to sample a 3-D signal is the 
BCC lattice with a nearest neighbor distance of 1/(2Fc). 

The ratio between the covering radius of the ~ 3  grid and the BCC grid is 
v/2/2 ~ 0.7071, then the 3-D signal sampled with the BCC grid has the 70.71% 
of the number of samples needed in the 2g a grid. 

3.4 4-D sampling 

A 4-D signal with maximum frequency Fr has a 4-D sphere of radius R - F~ 
as support. The sphere volume is rr2R4/2. The Voronoi cell of the 2~ 4 grid is 
the 4-D cube of side 2R, with volume 16R 4, which gives a covering radius of 
~-2/32 ~ 30.84%. 

The compact 4-D grid can be constructed based on the 3-D grid as: 
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V0 = [1/2, 1/2,0,0]  ~1 : [1/2,0, 1/2,0] 
~2 = [0, 1/2, 1/2, 0] 9a = [1/4, 1/4, 1/4, v~/41 

The corresponding dual basis is: 

N0 = [1, 1 , - 1 , - v ~ / 5 1  ~1 = [1,-1,  1 , -V~/5]  
~ = [-1, 1, 1 , - ~ / 5 1  ~3 = [0, 0, 0, 4v~/5] 

It should be noted that  a rotation of the basis vector is also a valid basis, 
and so it is possible to find several forms for the basis of the same grid. 

The 4-D compact grid has a Voronoi cell of volume 4x/~R 4 which done a 
covering radius of v/57r2/40 ~ 55.17%. The ratio between the two grids is x/~/4, 
what means that  the optimal grid has the 55.90% of samples of the Z 4 grid. 

Table 1. summarizes the basic relations of the 2~ ~ sampling grid against the 
compact grid for dimensions one to four. Emphasize should be made about the 
progressive reduction of the covering radius as space dimension grows, mak- 
ing more relevant the use of compact grids. The cube volume and the compact 
voronoi cell volume are calculated for the appropriated scale to have an inscribed 
sphere of radius R. 

Sphere Volmne 
Cube Volume 
Compact Voronoi cell volume 
2~ "~ covering 
Compact covering 
2~ n / Compact 

1-D 2-D 3-D 4-D 
2R 7rR 2 4rR3/3  7r2R~/2 
2R 4R 2 8R 3 16R 4 
2R 2x/~R 2 4x/~R 3 4V~R 4 

100 ~0 78.53 % 52.36 % 30.84 % 
100 % 9(}.69 ~0 74.04 % 55.17 % 
1(}0 ~0 86.6(I % 70.71% 55.9{1% 

Table 1. Space covering relations for 1-D to 4-D grids 

4 A p p l i c a t i o n :  S u r f a c e  e x t r a c t i o n  f r o m  v o l u m e  d a t a  

A Surface extraction algorithm is detailed here for the FCC lattice and its re- 
ciprocal, the BCC lattice; both endowed with a K-complex topolgy. Algorithm's 
global scheme is inspired from the classical "Marching Cubes Algorithm" [13]. 
The subjacent topology mentioned above is used to guide the connection be- 
tween faces. The objective is to extract the surface of a segmented object in the 
volume data. Grid points are represented by its voronoi cell, while surface points 
are represented by the faces of voronoi cells. 
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The algorithm starts with a detection step in which all the voronoi cells are 
tested to find "object" cells adjacents to "background" cells. Surface points Pi 
are located along the line joining the pair of cells In a second step, the surface 
points pi should be connected between them to generate a 2-D K-complex. This 
connection is achieved following the neighborhood relations of faces in the K- 
complex structure. 

Two surface points Pi would be connected if the associated faces of the voronoi 
cell have an edge in common in the space filling structure. 

Compac t  grid The K-complex topology for the compact grid has rhombic do- 
decahedrons as 3-cells. When this polyhedron is replicated to fill the 3D space, 
each rhombie face has eight neighbor faces, two at each of its four sides. If a 
face belong to the surface, only one of the two faces joined at the same side 
could belong to the surface (since the 3-cell segmentation is binary). This reduce 
the connection process to the test of eight potential links at each surface point pi 

In the implementation, a code is assigned to each pi, this code represents 
the geometrical position of its associated face in the voronoi cell polyhedron. A 
table of neighborhoods is used to select the faces in the K-complex structure 
that should be tested. If a tested face belongs to the surface too, a link is set 
between the points associated to the pair of faces. 

Reciprocal  of  the  compact  grid The K-complex topology for the reciprocal 
compact grid has truncated octahedrons as 3-cells. Whose faces are six squares 
and eight regular hexagons [7][3]. When this polyhedron is replicated to fill the 
3D space, the hexagonal faces have twelve neighbor faces (at each side there 
are one hexagonal and one square face joined), and the square faces have eight 
neighbor faces (two hexagonal faces at each side). 

The points Pi found in the detection step, receive a code corresponding to the 
geometrical position of its associated face in the voronoi cell. A table of neighbor 
faces in the K-complex are used to select the faces that should be tested. If a 
neighbor face belongs to the surface, the points associated to each one of the 
faces are linked. 

Tr iangula t ion  The connection step produces a 2-D K-complex which repre- 
sents the object's surface. It is interesting to modify this structure and built a 
triangulation on it. Especially, for rendering and manipulation purposes. This is 
achieved by searching all the non-triangular 2-cells, and adding l-cells between 
its 0-cells, to form triangles inside. 
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5 R e s u l t s  

The surface extraction method has been tested on a medical volume data. The 
original volume is a pubic bone CT scan sampled with a 2Z a grid. To test the 
proposed optimal grids, they have been built from the ~a  grid by adding sam- 
pling points [3]. Figure 4. shows the rendering of surfaces extracted from the 
volume. At left the BCC grid is used. At right the FCC grid is used. 

Fig. 4. Surface from oversampled Optimal grid (left), Reciprocal optimM grid (right) 

The addition of point to the sampling grid oversamples the signal, so in the 
tests, the same CT scan has been resampled at the theorical optimal density of 
each grid, the surfaces extracted are shown in Figure 5. 

Fig. 5. Surface from adapted sampled Optimal grid (left), Reciprocal optimal grid (right) 

Artifacts remaining from the sampling grid are consequence of the method 
used to estimate the nodes positions (a simply linear interpolation between the 
two concerned grid points). Actually, B-spline cubic interpolation is nsed, based 
on the original CT scan volume data, which generates smoother surfaces. 

6 D i s c u s s i o n  

Two objections are usually made on the use of other grids than the 2~ '~ one. The 
first is that original data are normally represented on a 2~ ~ grid, the second is 
the computational simplicity offered by the 2~" grid. 

The first argument is valid in general when the data acquisition device uses 
a 2Z" sampling, and then a resampling (by an interpolation reconstruction) is 
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needed to convert to another grid. However, in the particular case of Computer 
Tomography, the volume data is the result of a reconstruction from projections 
which has been made over a 2Z 3 grid only for simplicity reasons. Results presented 
in this paper, shows that  it is interesting to develop reconstruction algorithms 
over optimal grids (BCC or FCC lattices) because they provide spectral and 
topologicM advantages. 

The second argument, is limited to the application. It is obvious that  data 
access is simpler in the 2~ '~ grid, but topology based applications will be sim- 
pler on the optimal and the reciprocal optimal grid, (the surface tracking shown 
here is an example). In particular, mathematical morphology operations have a 
better digital representation on the compact grid than on the 2~ ~ grid [14]. For 
this reason the compact grid is the prefered choice in this field [15]. 

7 Conclusion 

Sampling grids with optimal topological and spectral properties have been de- 
termined here for 2D, 3D and 4D spaces. These grids are based on the spherical 
packing concept. The proposed grids optimize the density of points needed to 
sample a band-limited signal without loss of information. The use of the BCC 
lattice is recommended as the optimal sampling grid in 3D space. This grid op- 
timizes the spectral ocupation (minimize redundancy), and supports a coherent 
topology. 

The FCC lattice, gives a lower spectral occupation than the BCC lattice 
(greater than that of the 2g" grid, anyway), but offers a simpler topology, which 
in certains applications could be more important. A simple algorithm of surface 
extraction has been derived for 3D volume data, over the optimal grid and its 
reciprocal. 
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