Advertisement

Compound Regulated Morphological Operations and Their Application to the Analysis of Line-Drawings

  • Gady Agam
  • Its’hak Dinstein
Conference paper
  • 358 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1941)

Abstract

Regulated morphological operations, which are defined by extending the fitting interpretation of the ordinary morphological operations, have been shown to be less sensitive to noise and small intrusions or protrusions on the boundary of shapes. The compound regulated morphological operations, as defined in this paper, extend the fitting interpretation of the ordinary compound morphological operations. Consequently, these regulated morphological operations enhance the ability of the ordinary morphological operations to quantify geometrical structure in signals in a way that agrees with human perception. The properties of the compound regulated morphological operations are described, and they are shown to be idempotent, thus manifesting their ability to filter basic characteristics of the input signal. The paper concludes with some examples of applications of compound regulated morphological operations for the analysis of line-drawings.

Keywords

mathematical morphology regulated morphology compound operations graphifics recognition document analysis line-drawinganalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Ronse,“Fourier analysis, mathematical morphology, and vision ”,Technical Report WD54,Philips Research Laboratory, Brussels, Belgium,1989. 59Google Scholar
  2. 2.
    D. Sinha and E. R. Dougherty,“Fuzzy mathematical morphology ”, J. of Visual Communications and Image Representation Vol. 3, No. 3, pp.286–302,1992. 59CrossRefGoogle Scholar
  3. 3.
    J. Bloch and H. Maitre,“Fuzzy mathematical morphology ”,Annals of Mathematics and Artificial Intelligence Vol. 10, pp.55–84, 1994. 59CrossRefMathSciNetGoogle Scholar
  4. 4.
    P. Kuosmanen and J. Astola,“Soft morphological filtering ”, J. of Mathematical imaging and Vision Vol. 5, pp. 231–262, 1995. 59zbMATHCrossRefGoogle Scholar
  5. 5.
    F. Y. Shih and C. C. Pu,“Analysis of the properties of soft morphological filtering using threshold de omposition ”,IEEE Trans. on Signal Processing Vol. 43, No.2, pp.539–544, 1995. 59CrossRefGoogle Scholar
  6. 6.
    G. Agam and I. Dinstein,“Generalized morphological operators applied to mapanalysis ”, in Advances in Structural and Syntactical Pattern Recognition P. Perner, P. Wang, A. Rosenfeld eds.,LNCS Vol. 1121, pp.60–69, 1996. 59Google Scholar
  7. 7.
    M. A. Zmuda and L. A. Tamburino,“Effiient algorithms for the soft morphological operators ”, IEEE Trans. PAMI Vol. 18, No.11, pp.1142–1147, 1996. 59Google Scholar
  8. 8.
    G. Agam and I. Dinstein,“Regulated morphological operations ”,Pattern Recog-nition Vol. 32, No.6, pp.947–971, May, 1999. 59CrossRefGoogle Scholar
  9. 9.
    G. Agam, H. Luo, and I. Dinstein,“Morphological approach for dashed lines detection ”, in Graphics Recognition: Methods and Applications R. Kasturi, K. Tombre eds.,LNCS Vol.1072, pp.92–105, 1996. 59Google Scholar
  10. 10.
    G. Agam and I. Dinstein,“Directional decomposition of line-drawing images based on regulated morphological operations ”, in Graphics Recognition: Algorithms and Systems K. Tombre and A. K. Chhabra eds.,LNCS Vol.1389, pp.21–34, 1998. 59,64Google Scholar
  11. 11.
    R. M. Haralick, S. R. Sternberg, and X. Zhuang,“Image analysis using mathematical morphology ”, IEEE Trans. PAMI Vol. 9, No.4, pp.532–550, 1987. 60Google Scholar
  12. 12.
    G. Agam and I. Dinstein,“Effient implementation of regulated morphological operations based on directional interval coding ”, in Proc. SSPR’98 Sydney, Australia,1998. 64Google Scholar
  13. 13.
    C. Ronse,“Why mathematical morphology needs omplete lattices ”, Signal Pro-cessing Vol.21, No.2, pp.129–154, 1990. 66Google Scholar
  14. 14.
    J. Serra, Image Analysis and Mathematical Morphology Academi Press, 1982. 67Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Gady Agam
    • 1
  • Its’hak Dinstein
    • 2
  1. 1.Department of Electrical and Computer EngineeringEcole PolytechniqueMontrealCanada
  2. 2.Department of Electrical and Computer EngineeringBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations