Advertisement

Accurate L-Corner Measurement Using USEF Functions and Evolutionary Algorithms

  • Gustavo Olague
  • Benjamín Hernández
  • Enrique Dunn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2611)

Abstract

Corner feature extraction is studied in this paper as a global optimization problem. We propose a new parametric corner modeling based on a Unit Step Edge Function (USEF) that defines a straight line edge. This USEF function is a distribution function, which models the optical and physical characteristics present in digital photogrammetric systems. We search model parameters characterizing completely single gray-value structures by means of least squares fit of the model to the observed image intensities. As the identification results relies on the initial parameter values and as usual with non-linear cost functions in general we cannot guarantee to find the global minimum. Hence, we introduce an evolutionary algorithm using an affine transformation in order to estimate the model parameters. This transformation encapsulates within a single algebraic form the two main operations, mutation and crossover, of an evolutionary algorithm. Experimental results show the superiority of our L-corner model applying several levels of noise with respect to simplex and simulated annealing.

Keywords

Simulated Annealing Evolutionary Algorithm Synthetic Image Corner Detection Angle Corner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. W. Gruen. “Adaptive Least Squares Correlation: A Powerful Image Matching Technique”. S. Afr. Journal of Photogrammetry, Remote Sensing and Cartography. 14(3), pp. 175–187. 1985.Google Scholar
  2. 2.
    L. Alvarez and F. Morales. “Affine Morphological Multiscale Analysis of Corners and Multiple Junctions”. International Journal of Computer Vision. 25(2), pp. 95–107, Kluwer Academic Publishers, 1997.CrossRefGoogle Scholar
  3. 3.
    Ebner, M., and Zell, A. “Evolving a Task Specific Image Operator.” In Evolutionary Image Analysis, Signal Processing and Telecommunications. LNCS 1596, Poli et al. (Eds.), EvoIASP. 1999.CrossRefGoogle Scholar
  4. 4.
    J. Canny. “A Computational Approach to Edge Detection”. IEEE Trans. on Pattern Analysis and Machine Intelligence. Vol. 8, No. 6, November, 1986.Google Scholar
  5. 5.
    S. Baker, S. K. Nayar and H. Murase. “Parametric Feature Detection”. International Journal of Computer Vision, 27(1), pp. 27–50, Kluwer Academic Publishers, 1998.CrossRefGoogle Scholar
  6. 6.
    R. Deriche and G. Giraudon. “A Computational Approach for Corner and Vertex Detection”. International Journal of Computer Vision, 10(2), pp. 101–124, Kluwer Academic Publishers, 1993.CrossRefGoogle Scholar
  7. 7.
    T. Lindeberg. “Feature Detection with Automatic Scale Selection”. International Journal of Computer Vision. 30(2), pp. 79–116, Kluwer Academic Publishers, 1998.CrossRefGoogle Scholar
  8. 8.
    D. Marr and E. Hildreth. “Theory of Edge Detection”. Proc. Roy. Soc. London, 207, pp. 187–217, 1980.Google Scholar
  9. 9.
    R. Mehrotra and S. Nichani. “Corner Detection”. Pattern Recognition. Vol. 23, No. 11, pp. 1223–1233, 1990.CrossRefGoogle Scholar
  10. 10.
    H. P. Moravec. “Towards automatic visual obstacle avoidance”. In Proceedings of the 5th International Joint Conference on Artificial Intelligence, pp. 584, Cambridge, Massachusetts, USA. 1977.Google Scholar
  11. 11.
    K. Rohr. “Recognizing Corners by Fitting Parametric Models”. International Journal of Computer Vision. 9(3), pp. 213–230, Kluwer Academic Publishers, 1992.CrossRefGoogle Scholar
  12. 12.
    P. L. Rosin. “Augmenting Corner Descriptors”. Graphical Models and Image Processing. Vol. 58, No. 3, May, pp. 286–294, 1996.CrossRefGoogle Scholar
  13. 13.
    Z. Zheng, H. Wang and E. K. Teoh. “Analysis of Gray Level Corner Detection”. Pattern Recognition Letters. 20, pp. 149–162, Elsevier, 1999.zbMATHCrossRefGoogle Scholar
  14. 14.
    G. Olague and R. Mohr. “Optimal Camera Placement for Accurate Reconstruction”. Pattern Recognition, Vol.35(4), pp. 927–944, 2002.zbMATHCrossRefGoogle Scholar
  15. 15.
    Tsai, D.-M., Hou, H.-T., Su, H.-J. “Boundary-base Corner Detection using Eigenvalues of Covariance Matrices.” Pattern Recognition Letters 20, 31–40. Elsevier, 1999.zbMATHCrossRefGoogle Scholar
  16. 16.
    Medioni, G., and Yasumoto, Y. “ Corner Detection and Curve Representation using cubic B-splines.” Computer Vision, Graphics and Image Processing. 39, 267–278., 1987.CrossRefGoogle Scholar
  17. 17.
    Sohn, K., Kim, J. H., Alexander, W. E. “A Mean Field Annealing Aproach to Robust Corner Detection.” IEEE Transactions on System, Man, and Cybernetics-Part B 28, 82–90. 1998.CrossRefGoogle Scholar
  18. 18.
    Beaudet, P. R. “Rotationally Invariant Image Operators.” In Proc. of the International Conference on Pattern Recognition. 579–583. 1978.Google Scholar
  19. 19.
    Dreschler, L., and Nagel, H. H. “ On the Selection of Critical Points and Local Curvature Extrema of Region Boundaries for Interframe Matching.“ In Proc. of the International Conference on Pattern Recognition. 542–544. 1982Google Scholar
  20. 20.
    L. Kitchen and A. Rosenfeld. “Gray Level Corner Detection”. Pattern Recognition Letters. No. 1, pp. 95–102, 1982.Google Scholar
  21. 21.
    Wang, H. and Brady M., “Real-time Corner Detection Algorithms for motion Estimation.” Image and Vision Computing. 13 (9). 1995.Google Scholar
  22. 22.
    G. Olague and B. Hernández. “Autonomous Model Based Corner Detection using Evolutionary Algorithms”. In American Society for Photogrammetry and Remote Sensing. 12 pages. ASPRS Annual Conference 2001Google Scholar
  23. 23.
    G. Olague and B. Hernández. “Flexible Model-based Multi-corner Detector for Accurate Measurements and Recognition”. 16th International Conference on Pattern Recognition. IEEE Computer Society Press. pp. 578–583, Vol. 2, 11–15 August 2002. Québec, Canada.Google Scholar
  24. 24.
    W. H. Press, B. P. Flanery, S. A. Teukolsky and W. T. Vetterling. “Numerical Recipes in C”. Cambridge University Press, Second Edition. 1992.Google Scholar
  25. 25.
    M. Gen and R. Cheng. “Genetic Algorithms and Engineering Design”. John Wiley and Sons, Inc. 1997.Google Scholar
  26. 26.
    C. Janikow and Z. Michalewicz. “An Experimental Comparison of Binary and Floating Point Representations in Genetic Algorithms”. In Proceedings of the Fourth International Conference on Genetic Algorithms. pp. 31–36, San Mateo California, USA. 1991.Google Scholar
  27. 27.
    Dougherty, E. R. Random Processes for Image and Signal Processing. SPIE Optical Engineering Press, and IEEE Press, Inc.1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Gustavo Olague
    • 1
  • Benjamín Hernández
    • 2
  • Enrique Dunn
    • 1
  1. 1.Departamento de Ciencias de la Computación, División de Física AplicadaCentro de Investigación Científica y de Estudios Superiores de EnsenadaEnsenadaMéxico
  2. 2.Observatorio Astronómico NacionalInstituto de Astronomá, Ensenada Universidad Nacional Autónoma de MéxicoEnsenadaMéxico

Personalised recommendations