Combinations of Local Search and Exact Algorithms

  • Irina Dumitrescu
  • Thomas Stützle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2611)


In this paper we describe the advantadges and disadvantages of local search and exact methods of solving NP-hard problems and see why combining the two approaches is highly desirable.We review some of the papers existent in the literature that create new algorithms from such combinations. In this paper we focus on local search approaches that are strengthened by the use of exact algorithms.


Local Search Travelling Salesman Problem Exact Algorithm Variable Neighbourhood Search Local Search Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. H. L. Aarts and J. K. Lenstra, editors. Local Search in Combinatorial Optimization. John Wiley & Sons, Chichester, 1997.zbMATHGoogle Scholar
  2. 2.
    R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Inc. Englewood Cliffs, NJ, 1993.Google Scholar
  3. 3.
    D. Applegate, R. Bixby, V. Chvátal, and W. Cook. On the solution of traveling salesman problem. Documenta Mathematica, Extra Volume ICM III:645–656, 1998.Google Scholar
  4. 4.
    D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Finding Tours in the TSP. Technical Report 99885, Forschungsinstitut für Diskrete Mathematik, University of Bonn, Germany, 1999.Google Scholar
  5. 5.
    E.K. Burke, P. Cowling, and R. Keuthen. Embedded local search and variable neighbourhood search heuristics applied to the travelling salesman problem. Technical report, University of Nottingham, 2000.Google Scholar
  6. 6.
    E.K. Burke, P.I. Cowling, and R. Keuthen. Effective local and guided variable neighbourhood search methods for the asymmetric travelling salesman problem. EvoWorkshop 2001, LNCS, 2037:203–212, 2001.Google Scholar
  7. 7.
    J. Carlier. The one-machine sequencing problem. European Journal of Operational Research, 11:42–47, 1982.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    R. K. Congram. Polynomially Searchable Exponential Neighbourhoods for Sequencing Problems in Combinatorial Optimisation. PhD thesis, University of Southampton, Faculty of Mathematical Studies, UK, 2000.Google Scholar
  9. 9.
    R. K. Congram, C. N. Potts, and S. van de Velde. An iterated dynasearch algorithm for the single-machine total weighted tardiness scheduling problem. INFORMS Journal on Computing, 14(1):52–67, 2002.CrossRefMathSciNetGoogle Scholar
  10. 10.
    M. Dorigo and G. Di Caro. The Ant Colony Optimization meta-heuristic. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 11–32. McGraw Hill, London, UK, 1999.Google Scholar
  11. 11.
    M. Dorigo and T. Stützle. The ant colony optimization metaheuristic:Algorithms, applications and advances. In F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics. Kluwer Academic Publishers, To appear in 2002.Google Scholar
  12. 12.
    I. Dumitrescu. Constrained Shortest Path and Cycle Problems. PhD thesis, The University of Melbourne, 2002.
  13. 13.
    M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco, CA, 1979.Google Scholar
  14. 14.
    P. C. Gilmore. Optimal and suboptimal algorithms for the quadratic assignment problem. Journal of the SIAM, 10:305–313, 1962.zbMATHMathSciNetGoogle Scholar
  15. 15.
    F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Boston, MA, 1997.zbMATHGoogle Scholar
  16. 16.
    P. Hansen and N. Mladenovic. Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, chapterAn Introduction to Variable Neighborhood Search, pages 433–458. Kluwer Academic Publishers, Boston, MA, 1999.Google Scholar
  17. 17.
    K. Helsgaun. An effective implementation of the lin-kernighan traveling salesman heuristic. European Journal of Operational Research, 126:106–130, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    D. S. Johnson, G. Gutin, L. A. McGeoch, A. Yeo, W. Zhang, and A. Zverovitch. Experimental analysis of heuristics for the ATSP. In G. Gutin and A. Punnen, editors, The Traveling Salesman Problem and its Variations, pages 445–487. Kluwer Academic Publishers, 2002.Google Scholar
  19. 19.
    E. L Lawler. The quadratic assignment problem. Management Science, 9:586–599, 1963.zbMATHMathSciNetGoogle Scholar
  20. 20.
    H. R. LourenÇo, O. Martin, and T. Stützle. Iterated local search. In F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics, volume 57 of International Series in Operations Research & Management Science, pages 321–353. Kluwer Academic Publishers, Norwell, MA, 2002.Google Scholar
  21. 21.
    H.R. LourenÇo.A Computational Study of the Job-Shop and the Flow-Shop Scheduling Problems. PhD thesis, School of Or & IE, Cornell University, Ithaca, NY, 1993.Google Scholar
  22. 22.
    H.R. LourenÇo. Job-shop scheduling: Computational study of local search and large-step optimization methods. European Journal of Operational Research, 83:347–367, 1995.zbMATHCrossRefGoogle Scholar
  23. 23.
    V. Maniezzo. Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem. INFORMS Journal on Computing, 11(4):358–369, 1999.zbMATHMathSciNetGoogle Scholar
  24. 24.
    O. Martin, S.W. Otto, and E.W. Felten. Combining simulated annealing with local search heuristics. Annals of Operations Research, 63:57–75, 1996.zbMATHCrossRefGoogle Scholar
  25. 25.
    G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization. JohnWiley & Sons, 1988.Google Scholar
  26. 26.
    N. Robertson and P.D. Seymour. Graph minors. X. Obstructions to tree-decomposition. Journal of Combinatorial Theory, 52:153–190, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    K.E. Rosing and C.S. ReVelle. Heuristic concentration: Two stage solution construction. European Journal of Operational Research, pages 955–961, 1997.Google Scholar
  28. 28.
    K.E. Rosing and C.S. ReVelle. Heuristic concentration and tabu search: A head to head comparison. European Journal of Operational Research, 117(3):522–532, 1998.CrossRefGoogle Scholar
  29. 29.
    K.E. Rossing. Heuristic concentration: a study of stage one. ENVIRON PLANN B 27(1):137–150, 2000.CrossRefGoogle Scholar
  30. 30.
    B. Roy and B. Sussmann. Les problemes d’ordonnancement avec constraintes disjonctives. Notes DS no. 9 bis, SEMA.Google Scholar
  31. 31.
    P.M. Thompson and J.B. Orlin. The theory of cycle transfers. Working Paper No. OR 200-89, 1989.Google Scholar
  32. 32.
    P.M. Thompson and H.N. Psaraftis. Cyclic transfer algorithm for multivehicle routing and scheduling problems. Operations Research, 41:935–946, 1993.zbMATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    M. Vasquez and J-K. Hao. A hybrid approach for the 0-1 multidimensional knapsack problem. In Proceedings of the IJCAI-01, pages 328–333, 2001.Google Scholar
  34. 34.
    C. Voudouris. Guided Local Search for Combinatorial Optimization Problems. PhD thesis, Department of Computer Science, University of Essex, Colchester, UK, 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Irina Dumitrescu
    • 1
  • Thomas Stützle
    • 1
  1. 1.CS Department, Intellectics GroupDarmstadt University of TechnologyDarmstadtGermany

Personalised recommendations