Skip to main content

Gate Dielectric Scaling to 2.0—1.0 nm: SiO2 and Silicon Oxynitride

  • Chapter
High Dielectric Constant Materials

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 16))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of Ion-Implanted MOSFETs with Very Small Physical Dimensions,” IEEE J. Solid-State Circuits SC-9, p. 256 (1974)

    Article  Google Scholar 

  2. S.-H. Lo, D. A. Buchanan, Y. Taur, and W. Wang, “Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thinoxide nMOSFET's,” IEEE Electron. Device Lett. 18, pp. 209–211 (1997)

    Article  Google Scholar 

  3. Y. Taur, D. A. Buchanan, W. Chen, D. J. Frank, K. E. Ismail, S.-H. Lo, G. A. Sai-Halasz, R. G. Viswanathan, H.-J. C. Wann, S. J. Wind, and H.-S. Wong, “CMOS scaling into the nanometer regime,” Proc. IEEE 85, pp. 486–504 (1997)

    Article  Google Scholar 

  4. T. N. Nguyen, “Small-Geometry MOS Transistors: Physics and Modeling of Surface-and Buried-Channel MOSFETs,” PhD. Thesis, Stanford University, 1984

    Google Scholar 

  5. Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, New York, 1998

    Google Scholar 

  6. D.J. Frank, Y. Taur, and H.-S. Wong, “Generalized Scale Length for Two-Dimensional Effects in MOSFET's,” IEEE Electron. Device Lett. 19, p. 385 (1998)

    Google Scholar 

  7. Y. Taur, C.H. Wann, and D. J. Frank, “25 nm CMOS Design Considerations,” 1998 IEDM Technical Digest, p. 789

    Google Scholar 

  8. L. K. Han, S. Biesemans, J. Heidenreich, K. Houlihan, C. Lin, V. McGahay, T. Schiml, A. Schmidt, U. P. Schroeder, M. Stetter, C. Warm, D. Warner, R. Mahnkopf, and B. Chen, “A Modular 0.13 µm Bulk CMOS Technology for High Performance and Low Power Applications,” 2000 Symposium on VLSI Technology Digest of Technology Papers, pp.12–13

    Google Scholar 

  9. T. Ghani et al., “Scaling challenges and device design requirements for high performance sub-50nm gate length planar CMOS transistors,” in 2000 Symposium on VLSI Technology Digest of Technology papers, pp. 174–175

    Google Scholar 

  10. M. Mehrotra, J. Wu, A. Jain, T. Laaksonen, K. Kim, W. Bather, R. Koshy, J. Chen, J. Jacobs, V. Ukrainstev, L. Olsen, J. DeLoach, J. Mehigan, R. Agarwal, S. Walsh, D. Sekel, L. Tsung, M. Vaidyanathan, B. Trentman, K. Liu, S. Aur, R. Khamankar, P. Nicollian, Q. Jiang, Y. Xu, B. Campbell, P. Tiner, R. Wise, D. Scott, and M. Rodder, “60nm gate length dual-Vt CMOS for high performance applications,” 2002 Symposium on VLSI Technology Digest, pp. 124–125

    Google Scholar 

  11. F. Stern and W. E. Howard, “Properties of semiconductor surface inversion layers in the electric quantum limit,” Phys. Rev. 163, pp. 816–835, 1967

    Article  Google Scholar 

  12. F. Stern, “Self-consistent results for n-type Si inversion layers,” Phys. Rev. B 5, pp. 4891–4899 (1972)

    Article  Google Scholar 

  13. C. Moglestue, “Self-consistent calculation of electron and hole inversion charges at silicon-silicon dioxide interfaces,” J. App. Phys. 59, pp. 3175–3183 (1986)

    Article  Google Scholar 

  14. J. Suñé, P. Olivo, and B. Riccò, “Quantum-mechanical modeling of accumulation layers in MOS structure,” IEEE Trans. Electron Devices 39, pp. 1732–1739 (1992)

    Article  Google Scholar 

  15. C. Y. Wong, J. Y.-C. Sun, Y. Taur, C. S. Oh, R. Angelucci, and B. Bavari, “Doping of n+ and p+ polysilicon in a dual-gate process,” 1988 IEDM Tech. Dig., pp. 238–241

    Google Scholar 

  16. P. Habaš and S. Selberherr, “On the effect of non-degenerate doping of polysilicon gate in thin oxide MOS-devices-analytic modeling,” Solid-State Electron. 33, pp. 1539–1544, (1990)

    Article  Google Scholar 

  17. R. Rios and N. D. Arora, “Determination of ultra-thin gate oxide thicknesses for CMOS structures using quantum effects,” 1994 IEDM Technical Dig., pp. 613–616

    Google Scholar 

  18. S.-H. Lo, D. A. Buchanan, and Y. Taur, “Modeling and characterization of quantization, polysilicon depletion, and direct tunneling effects in MOSFETs with ultra-thin oxides,” IBM J. Research and Development 43, pp. 327–337 (1999)

    Google Scholar 

  19. D. A. Buchanan, “Scaling the gate dielectric: materials, integration, and reliability,” IBM J. Res. Develop. 43, pp. 245–264 (1999)

    Google Scholar 

  20. W. K. Henson, K. Z. Ahmed, E. M. Vogel, J. R. Hauser, J. J. Wortman, R. D. Venables, M. Xu, and D. Venables, “Estimating oxide thickness of tunnel oxides down to 1.4 nm using conventional capacitance-voltage measurements on MOS capacitors,” IEEE Electron Device Lett. 20, pp. 179–181 (1999)

    Article  Google Scholar 

  21. K. J. Yang and C. Hu, “MOS capacitance measurements for high leakage thin dielectrics,” IEEE Trans. Electron Devices 46, pp. 1500–1501 (1999)

    Article  Google Scholar 

  22. M. S. Krishnan, L. Chang, T.-J. King, J. Bokor, and C. Hu, “MOSFETs with 9 to 13 Å,” 1999 IEDM Technical Dig., pp. 241–244

    Google Scholar 

  23. C.-H. Choi, J.-S. Goo, T.-Y. Oh, Z Yu, R. W. Dutton, A. Bayoumi, M. Cao, P. Vande Voorde, D. Vook, and C. H. Diaz, “MOS C-V characterization of ultrathin gate oxide thickness (1.3–1.8 nm),” IEEE Electron. Device Lett. 20, pp. 292–294 (1999)

    Article  Google Scholar 

  24. K. Yang, Y.-C. King, and C. Hu, “Quantum effect in oxide thickness determination from capacitance measurement,” 1999 Symp. VLSI Tech. Digest of Technical Papers, pp. 77–78

    Google Scholar 

  25. Z. A. Weinberg, “On tunneling in metal-oxide silicon structures,” J. Appl. Phys. 53, pp. 5052–5056 (1982)

    Article  Google Scholar 

  26. J. Maserjian, “Tunneling in thin MOS structures,” J. Vac, Sci, Technol. 11, pp. 996–1003, (1974)

    Google Scholar 

  27. J. G. Simmons, “Generalized formula for the electric tunneling effect between similar electrodes separated by a thin insulating film,” J. Appl. Phys. 34, pp. 1793–1803 (1963)

    Article  Google Scholar 

  28. F. Rana, S. Tiwari, and D. A. Buchanan, “Self-consistent modeling of accumulation layers and tunneling currents through very thin oxides,” Appl. Phys. Lett. 69, pp. 1104–1106 (1996)

    Article  Google Scholar 

  29. R. E. Collin, Field Theory of Guided Waves, 2nd edn, New York: IEEE Press, 1991

    Google Scholar 

  30. H. S. Momose, M. Ono, T. Yoshitomi, T. Ohguro, S. Nakamura, M. Saito, and Hiroshi Iwai, “Tunneling gate oxide approach to ultra-high current drive in small-geometry MOSFETs,” 1994 IEDM Technical Dig., pp. 593–596

    Google Scholar 

  31. M. Rodder, S. Hattangady, N. Yu, W. Shiau, P. Nicollian, T. Laaksonen, C. P. Chao, M. Mehrotra, C. Lee, S. Murtaza, S. Aur, “A 1.2 V, 0.1 mm Gate Length CMOS Technology: Design and Process Issues,” 1998 IEDM Technical Digest, pp. 623–626

    Google Scholar 

  32. T. P. Ma, “Making silicon nitride film a vaiable gate dielectric,” IEEE Trans. Electron Devices 45, pp. 680–690 (1998)

    Article  Google Scholar 

  33. H. Yang and G. Lucovsky, “Integration of ultrathin (1.6 ∼ 2.0 nm) RPECVD oxynitride gate dielectrics into dual poly-Si gate submicron CMOSFETs,” 1999 IEDM Technical Dig., pp. 245–248

    Google Scholar 

  34. B. Yu, H. Wang, Q. Xiang, J. X. An, J. Jeon, and M.-R. Lin, “Scaling towards 35nm gate length CMOS,” 2001 Symp. VLSI Technology Digest of Technical Papers, pp. 9–10

    Google Scholar 

  35. X. Guo and T. P. Ma, “Tunneling leakage current in oxynitride: dependence on Oxygen/Nitrogen content,” IEEE Electron Device Lett. 19, no. 6, pp. 207–209 (1998)

    Article  Google Scholar 

  36. D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, and H.-S. P. Wong, “Device Scaling Limits of Si MOSFETs and Their Application Dependencies,” Proc. IEEE 89, pp. 259–288 (2001)

    Article  Google Scholar 

  37. R. Weis et al., “A highly cost efficient 8F2 DRAM cell with a double-gate vertical transistor device for 100 nm and beyond,” 2001 IEDM Technical Digest, p. 415

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lo, SH., Taur, Y. (2005). Gate Dielectric Scaling to 2.0—1.0 nm: SiO2 and Silicon Oxynitride. In: Huff, H., Gilmer, D. (eds) High Dielectric Constant Materials. Springer Series in Advanced Microelectronics, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26462-0_5

Download citation

Publish with us

Policies and ethics