Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 299))

Abstract

The Picornaviridae encompass many positive-strand RNA viruses, all of which share a generally similar genome design and capsid structure, but which induce quite diverse diseases in humans and other animals. Picornavirus strains of the same serotype have been shown to express different virulence (or pathogenic) phenotypes when studied in animal models, demonstrating that key elements of pathogenesis reside in the viral genome. However, the genetics that determine the virulence phenotype of any picornavirus are poorly understood. Picornaviruses do not have virulence genes perse, but the design of the capsid and howit interacts with the virus receptor expressed on the host cell surface, specific sequences within the nontranslated regions of the viral genome, as well as coding sequences that result in different protein sequences may all have a part in determining the virulence phenotype. Virulence may be better understood as a continuum from an apparent inability to induce disease to the ability to cause severe pathogenic changes. Ultimately, the ability of a picornavirus to induce disease depends upon viral genetics and how they are modulated by the host environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agol VI, Paul AV, Wimmer E (1999) Paradoxes of the replication of picornaviral genomes. Virus Res 62:129–147

    Article  CAS  PubMed  Google Scholar 

  • Arias A, Ruiz-Jarabo C, Escarmis C, Domingo E (2004) Fitness increase of memory genomes in a viral quasispecies. J Mol Biol 339:405–412

    Article  CAS  PubMed  Google Scholar 

  • Arnesjo B, Eden T, Ihse I, Nordenfelt E, Ursing B (1976) Enterovirus infections in acute pancreatitis—a possible etiological connection. Scand J Gastroenterol 11:645–649

    CAS  PubMed  Google Scholar 

  • Bae Y, Yoon J (1993) Determination of diabetogenicity attributable to a single amino acid, Ala776, on the polyprotein of encephalomyocarditis virus. Diabetes 42:435–443

    CAS  PubMed  Google Scholar 

  • Bae Y, Eun M, Yoon J (1989) Genomic differences between the diabetogenic and nondiabetogenic variants of encephalomyocarditis virus. Virology 170:282–287

    Article  CAS  PubMed  Google Scholar 

  • Belsham GJ, Sonenberg N (1996) RNA-protein interactions in regulation of picornavirus RNA translation. Microbiol Rev 60:499–511

    CAS  PubMed  Google Scholar 

  • Borman A, Le Mercier P, Girard M, Kean K (1997) Comparison of picornaviral IRES-driven internal initiation of translation in cultured cells of different origins. Nucleic Acids Res 25:925–932

    Article  CAS  PubMed  Google Scholar 

  • Brown F, Talbot P, Burrows R (1973) Antigenic differences between isolates of swine vesicular disease virus and their relationship to coxsackie B5 virus. Nature 245:315–316

    CAS  PubMed  Google Scholar 

  • Chapman N, Ramsingh A, Tracy S (1997) Genetics of coxsackievirus virulence. Curr Top Microbiol Immunol 223:227–258

    CAS  PubMed  Google Scholar 

  • Daniels JB, Pappenheimer AM, Richardson S (1952) Observations on encephalomyelitis of mice (DA strain) J Exp Med 96:517–530

    Article  CAS  PubMed  Google Scholar 

  • Domingo E, Escarmis C, Sevilla N, Moya A, Elena SF, Quer J, Novella IS, Holland JJ (1996) Basic concepts in RNA virus evolution. FASEB J 10:859–864

    CAS  PubMed  Google Scholar 

  • Domingo E, Escarmis C, Baranowski E, Ruiz-Jarabo C, Carrillo E, Nunez J, Sobrino F (2003) Evolution of foot-and-mouth disease virus. Virus Res 91:47–63

    Article  CAS  PubMed  Google Scholar 

  • Dowdle WR, De Gourville E, Kew OM, Pallansch M, Wood D (2004) Polio eradication: the OPV paradox. Rev Med Virol 13:277–291

    Google Scholar 

  • Drescher KM, Kono K, Bopegamage S, Carson SD, Tracy S (2004) Coxsackievirus B3 infection and type 1 diabetes development in NOD mice: insulitis determines susceptibility of pancreatic islets to virus infection. Virology 329:381–394

    CAS  PubMed  Google Scholar 

  • Duke G, Palmenberg AC (1989) Cloning and synthesis of infectious cardiovirus RNAs containing short, discrete poly (C) tracts. J Virol 63:1822–1826

    CAS  PubMed  Google Scholar 

  • Duke G, Osorio J, Palmenberg A (1990) Attenuation of Mengo virus through genetic engineering of the 5′ noncoding poly (C) tract. Nature 343:474–476

    Article  CAS  PubMed  Google Scholar 

  • Dunn G, Bradrick S, Chapman N, Tracy S, Romero J (2003) The stem loop II within the 5′ nontranslated region of clinical coxsackievirus B3 genomes determines cardiovirulence phenotype in a murine model. J Infect Dis 15:1552–1561

    Google Scholar 

  • Dunn JJ, Chapman NM, Tracy S, Romero JR (2000) Natural genetics of cardiovirulence in coxsackievirus B3 clinical isolates: localization to the 5′ non-translated region. J Virol 74:4787–4794

    Article  CAS  PubMed  Google Scholar 

  • Evans D, Dunn G, Minor PD, Schild GC, Cann AJ, Stanway G, Almond JW, Currey K, Maizel J (1985) Increased neurovirulence associated with a single nucleotide change in a noncoding region of the Sabin type 3 poliovaccine genome. Nature 314:548–550

    CAS  PubMed  Google Scholar 

  • Fotiadis C, Kilpatrick DR, Lipton HL (1991) Comparison of the binding characteristics to BHK-21 cells of viruses representing the two Theiler’s virus neurovirulence groups. Virology 182:365–370

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Rodriguez M, Roos RP (1990) Strains from both Theiler’s virus subgroups encode a determinant for demyelination. J Virol 64:6345–6348

    CAS  PubMed  Google Scholar 

  • Grant RA, Filman DJ, Fujinami RS, Icenogle JP, Hogle JM (1992) Three-dimensional structure of Theiler’s virus. Proc Nat Acad Sci U S A 89:2061–2065

    CAS  Google Scholar 

  • Hahn H, Palmenberg A (1995) Encephalomyocarditis viruses with short poly (C) tracts are more virulent than their mengovirus counterparts. J Virol 69:2697–2699

    CAS  PubMed  Google Scholar 

  • Halim S, Ramsingh AI (2000) A point mutation in VP1 of coxsackievirus B4 alters antigenicity. Virology 269:86–94

    Article  CAS  PubMed  Google Scholar 

  • Imrie CW, Ferguson J, Sommerville R (1977) Coxsackie and mumpsvirus infection in a prospective study of acute pancreatitis. Gut 18:53–56

    CAS  PubMed  Google Scholar 

  • Jnaoui K, Michiels T (1999) Analysis of cellular mutants resistant to Theiler’s virus infection: differential infection of L929 cells by persistent and neurovirulent strains. J Virol 73:7248–7254

    CAS  PubMed  Google Scholar 

  • Jun H, Kang Y, Yoon J, Notkins A (1997) Gain or loss of diabetogenicity resulting from a single point mutation in recombinant encephalomyocarditis virus. J Virol 71:9782–9785

    CAS  PubMed  Google Scholar 

  • Kandolf R, Sauter M, Aepinus C, Schnorr J, Selinka H, Klingel K (1999) Mechanisms and consequences of enterovirus persistence in cardiac myocytes and cells of the immune system. Virus Res 62:149–158

    Article  CAS  PubMed  Google Scholar 

  • Kanno T, Inoue T, Mackay D, Kitching P, Yamaguchi S, Shirai J (1998) Viruses produced from complementary DNA of virulent and avirulent strains of swine vesicular disease virus retain the in vivo and in vitro characteristics of the parental strains. Arch Virol 143:1055–1062

    Article  CAS  PubMed  Google Scholar 

  • Kanno T, Mackay D, Inoue T, Wilsden G, Yamakawa M, Yamazoe R, Yamaguchi S, Shirai J, Kitching P, Murakami Y (1999) Mapping the genetic determinants of pathogenicity and plaque phenotype in swine vesicular disease virus. J Virol 73:2710–2716

    CAS  PubMed  Google Scholar 

  • Kanno T, Mackay D, Wilsden G, Kitching P (2001) Virulence of swine vesicular disease virus is determined at two amino acids in capsid protein VP1 and A protease. Virus Res 80:101–107

    Article  CAS  PubMed  Google Scholar 

  • Kawamura N, Kohara M, Abe S, Komatsu T, Tago K, Arita M, Nomoto A (1989) Determinants in the 5′ noncoding region of poliovirus Sabin 1 RNA that influence the attenuation phenotype. J Virol 63:1302–1309

    CAS  PubMed  Google Scholar 

  • Kennedy JD, Talbot IC, Tanner MS (1986) Severe pancreatitis and fatty liver progressing to cirrhosis associated with coxsackie B4 infection in a three year old with alpha-1-antitrypsin deficiency. Acta Paediatr Scand 75:336–339

    CAS  PubMed  Google Scholar 

  • Knowles N, McCauley JW (1997) Coxsackievirus B5 and the relationship to swine vesicular disease virus. Curr Top Microbiol Immunol 223:153–168

    CAS  PubMed  Google Scholar 

  • La Monica N, Racaniello VR (1989) Differences in replication of attenuated and neurovirulent polioviruses in human neuroblastoma cell line SH-SYY J Virol 63:2357–2360

    PubMed  Google Scholar 

  • Lal S, Fowler D, Losasso C, Berg G (1988) Coxsackie virus-induced acute pancreatitis in a long-term dialysis patient. Am J Kidney Dis 11:434–436

    CAS  PubMed  Google Scholar 

  • LaRue R, Myers S, Brewer L, Shaw D, Brown C, Seal B, Njenga M (2003) A wild-type porcine encephalomyocarditis virus containing a short poly (C) tract is pathogenic to mice, pigs, and cynomolgus macaques. J Virol 77:9136–9146

    Article  CAS  PubMed  Google Scholar 

  • Le S, Zuker M (1990) Common structures of the 5′ non-coding RNA in enteroviruses and rhinoviruses. J Mol Biol 216:729–741

    Article  CAS  PubMed  Google Scholar 

  • Lindberg A, Andersoon P, Savolainen C, Mulders MN, Hovi T (2003) Evolution of the genome of human enterovirus B: incongruence between phylogenies of the VP1 and CD regions indicates frequent recombination within the species. J Gen Virol 84:1223–1235

    Article  CAS  PubMed  Google Scholar 

  • Lipton HL, Dal Canto MC (1979) The TO strains of Theiler’s viruses cause’ slow-virus like’ infection in mice. Ann Neurol 6:25–28

    Article  CAS  PubMed  Google Scholar 

  • Lorch Y, Freidmann A, Lipton HL, Kotler M (1981) Theiler’smurine encephalomyelitis cirrus group includes two distinct genetic subgroups that differ pathologically and biologically. J Virol 40:560–567

    CAS  PubMed  Google Scholar 

  • Luo M, Vriend G, Kamer G, Minor I, Arnold E, Rossmann MG, Boege U, Scraba DG, Duke G, Palmenberg A (1987) The atomic structure of Mengo virus at 3.0 A resolution. Science 235:182–191

    CAS  PubMed  Google Scholar 

  • Luo M, He C, Toth KS, Zhang CX, Lipton HL (1992) Three-dimensional structure of Theiler’s murine encephalomyelitis virus (BeAn strain) Proc Nat Acad Sci U S A 89:2409–2413

    CAS  Google Scholar 

  • Macadam AJ, Pollard SR, Ferguson G, Dunn G, Skuce R, Almond J, Minor PD (1991) The 5′ noncoding region of the type 2 poliovirus vaccine strain contains determinants of attenuation and temperature sensitivity. Virology 181:451–458

    Article  CAS  PubMed  Google Scholar 

  • Macadam AJ, Pollard SR, Ferguson G, Skuce R, Wood D, Almond JW, Minor PD (1993) Genetic basis of attenuation of the Sabin type 2 vaccine strain of poliovirus in primates. Virology 192:18–26

    Article  CAS  PubMed  Google Scholar 

  • Malnou C, Werner A, Borman AM, Westhof E, Kean K (2004) Effects of vaccine strain mutations in domain V of the internal ribosome entry segment compared in the wild type poliovirus type 1 context. J Biol Chem 279:10261–10269

    CAS  PubMed  Google Scholar 

  • Martin L, Duke G, Osorio J, Hall DJ, Palmenberg A (1996) Mutational analysis of the mengovirus poly (C) tract and surrounding heteropolymeric sequences. J Virol 70:2027–2031

    CAS  PubMed  Google Scholar 

  • Martin L, Neal Z, McBride M, Palmenberg A (2000) Mengovirus and encephalomyocarditis virus poly (C) tract lengths can affect virus growth in murine cell culture. J Virol 74:3074–3081

    CAS  PubMed  Google Scholar 

  • McCright IJ, Tsunoda I, Whitby FG, Fujinami RS (1999) Theiler’s viruses with mutations in loop I of VP1 lead to altered trophism and pathogenesis. J Virol 73:2814–2824

    CAS  PubMed  Google Scholar 

  • Minor PD (1992) The molecular biology of poliovaccines. J Gen Virol 73:3065–3077

    CAS  PubMed  Google Scholar 

  • Minor PD (1993) Attenuation and reversion of the Sabin vaccine strains of poliovirus. Dev Biol Stand 78:17–26

    CAS  PubMed  Google Scholar 

  • Minor PD (2003) Polio vaccines and the cessation of vaccination. Exp Rev Vaccines 2:99–104

    Google Scholar 

  • Oberste MS, Penaranda S, Pallansch M (2004) RNA recombination plays a major role in genomic change during circulation of coxsackie B viruses. J Virol 78:2948–2955

    CAS  PubMed  Google Scholar 

  • Ochs K, Zeller A, Saleh L, Bassili G, Song Y, Sonntag A, Niepmann M (2002) Impaired binding of standard initiation factors mediates poliovirus translation attenuation. J Virol 77:115–122

    Article  Google Scholar 

  • Omata T, Kohara S, Kuge S, Komatsu T, Abe S, Semler B, Kameda A, Itoh H, Arita M, Wimmer E, Nomoto A (1986) Genetic analysis of the attenuation phenotype of poliovirus type. J Virol 58:348–358

    CAS  PubMed  Google Scholar 

  • Osorio J, Martin L, Palmenberg A (1996) The immunogenic and pathogenic potential of short poly (C) tract Mengo viruses. Virology 223:344–350

    Article  CAS  PubMed  Google Scholar 

  • Pallansch M, Roos RP (2001) Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. In: Knipe DM, Howley PM (eds) Fields virology. Lipincott Williams and Wilkins, Philadelphia, pp 723–776

    Google Scholar 

  • Palmenberg A, Osorio J (1994) Cardioviral poly (C) tracts and viral pathogenesis. Arch Virol Suppl 9:67–77

    CAS  PubMed  Google Scholar 

  • Pevear DC, Calendoff M, Rozhon E, Lipton HL (1987) Analysis of the complete nucleotide sequences of the picornavirus Theiler’s murine encephalomyelitis virus indicates that it is closely related to cardioviruses. J Virol 61:1507–1516

    CAS  PubMed  Google Scholar 

  • Pevear DC, Borkowski J, Calendoff M, Oh CK, Ostrowski B, Lipton HL (1988) Insights into Theiler’s virus neurovirulence based on genomic comparison of the neurovirulent GDVII and less virulent BeAn strains. Virology 165:1–12

    Article  CAS  PubMed  Google Scholar 

  • Racaniello V (1988) Poliovirus neurovirulence. Adv Virus Res 34:217–246

    CAS  PubMed  Google Scholar 

  • Racaniello VR, Ren R (1996) Poliovirus biology and pathogenesis. Curr Top Microbiol Immunol 206:305–325

    CAS  PubMed  Google Scholar 

  • Ramsingh AI (1997) Coxsackievirus and pancreatitis. Front Biosci 2:53–62

    Google Scholar 

  • Ramsingh AI, Collins DN (1995) A point mutation in the VP4 coding sequence of coxsackievirus B4 influences virulence. J Virol 69:7278–7281

    CAS  PubMed  Google Scholar 

  • Ramsingh A, Salck J, Silkworth M, Hixson A (1989) Severity of disease induced by a pancreotropic coxsackie B4 virus correlates with the HKq locus of the major histocompatibility complex. Virus Res 14:347–358

    Article  CAS  PubMed  Google Scholar 

  • Ramsingh AI, Lee WT, Collins DN, Armstrong LE (1999) T cells contribute to disease severity during coxsackievirus B4 infection. J Virol 73:3080–3086

    CAS  PubMed  Google Scholar 

  • Roberts L, Seamons R, Belsham GJ (1998) Recognition of picornavirus internal ribosome entry sites within cells; influence of cellular and viral proteins. RNA 4:520–529

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez M, David CS (1985) Demyelination induced by Theiler’s virus: influence of the H-2 haplotype. J Immunol 135:2145–2148

    CAS  PubMed  Google Scholar 

  • Ross ME, Onodera T, Hayashi K, Notkins A (1975) Virus-induced diabetes mellitus. V Biological differences between the M variant and other strains of encephalomyocarditis virus. Infect Immun Infect Immun 12:1224–1226

    CAS  Google Scholar 

  • Rueckert RR (1996) Picornaviridae: the viruses and their replication. In Fields BN, Knipe DM, Howley PM (eds), Virology. Raven Press, New York, pp 609–654

    Google Scholar 

  • Sabin AB (1955) Characteristics and genetic potentialities of experimentally produced and naturally occurring variants of poliomyelitis virus. Ann N Y Acad Sci 61:924–939

    CAS  PubMed  Google Scholar 

  • Sabin AB, Boulger LR (1973) History of Sabin attenuated poliovirus oral live vaccine strains. J Biol Stand 1:115–118

    Article  Google Scholar 

  • Savolainen C, Blomqvist S, Hovi T (2003) Human rhinoviruses. Paediatr Respir Rev 4:91–98

    Article  PubMed  Google Scholar 

  • Svitkin Y, Maslova S, Agol V (1985) The genomes of attenuated and virulent poliovirus strains differ in their in vitro translation efficiencies. Virology 147:243–252

    Article  CAS  PubMed  Google Scholar 

  • Tam P, Messner R (1997) Coxsackievirus-induced chronic inflammatory myopathy: virus variants distinguish between acute cytopathic effects and pathogenesis of chronic disease. Virology 233:199–209

    Article  CAS  PubMed  Google Scholar 

  • Tam P, Messner R (1999) Molecular mechanisms of coxsackievirus persistence in chronic inflammatory myopathy: viral RNA persists through formation of a double-stranded complex without associated genomic mutations or evolution. J Virol 73:10113–10121

    CAS  PubMed  Google Scholar 

  • Tam PE, Schmidt A, Ytterberg S, Messner R (1994) Duration of virus persistence and its relationship to inflammation in the chronic phase of coxsackievirus B1-induced murine polymyositis. J Lab Clin Med 123:346–356

    CAS  PubMed  Google Scholar 

  • Tam PE, Weberse-Sanders M, Messner R (2003) Multiple viral determinants mediate myopathogenicity in coxsackievirus B1-induced chronic inflammatory myopathy. J Virol 77:11849–11854

    CAS  PubMed  Google Scholar 

  • Tracy S, Chapman N, Tu Z (1992) Coxsackievirus B3 from an infectious cDNA copy of the genome is cardiovirulent in mice. Arch Virol 122:399–409

    CAS  PubMed  Google Scholar 

  • Tracy S, Chapman NM, Romero J, Ramsingh AI (1996) Genetics of coxsackievirus B cardiovirulence and inflammatory heart muscle disease. Trends Microbiol 4:175–179

    Article  CAS  PubMed  Google Scholar 

  • Tracy S, Chapman N, Mahy B (1997) The coxsackie B viruses. Curr Top Microbiol Immunol 223

    Google Scholar 

  • Tracy S, Hofling K, Pirruccello S, Lane PH, Reyna SM, Gauntt C (2000) Group B coxsackievirus myocarditis and pancreatitis in mice: connection between viral virulence phenotypes. J Med Virol 62:70–81

    Article  CAS  PubMed  Google Scholar 

  • Tracy S, Drescher KM, Chapman NM, Kim K-S, Carson SD, Pirruccello S, Lane PH, Romero JR, Leser JS (2002) Toward testing the hypothesis that group B coxsackieviruses (CVB) trigger insulin-dependent diabetes: Inoculating nonobese diabetic mice with CVB markedly lowers diabetes incidence. J Virol 76:12097–12111

    Article  CAS  PubMed  Google Scholar 

  • Tsunoda I, Iwasaki Y, Terunuma H, Sako K, Fujinami RS (1996) A comparative study of acute and chronic diseases induced by two subgroups of Theiler’s murine encephalomyelitis virus. Acta Neuropathol (Berl) 91:595–602

    Article  CAS  PubMed  Google Scholar 

  • Tsunoda I, Wada Y, Libbey JE, Cannon TS, Whitby FG, Fujinami RS (2001) Prolonged gray matter disease without demyelination caused by Theiler’s murine encephalomyelitis virus with a mutation in VP2 puff B J Virol 75:7494–7505

    Article  CAS  PubMed  Google Scholar 

  • Tu Z, Chapman N, Hufnagel G, Tracy S, Romero JR, Barry WH, Currey K, Shapiro B (1995) The cardiovirulent phenotype of coxsackievirus B3 is determined at a single site in the genomic 5′ non-translated region. J Virol 69:4607–4618

    CAS  PubMed  Google Scholar 

  • Ursing B (1973) Acute pancreatitis in coxsackie B infection. BMJ 3:524–525

    CAS  PubMed  Google Scholar 

  • Wada Y, McCright IJ, Whitby FG, Tsunoda I, Fujinami RS (1998) Replacement of loop II of VP-1 of the DA strain with loop II of the GDVII strain of Theiler’smurine encephalomyelitis virus alters neurovirulence, viral persistence and demyelination. J Virol 72:7557–7562

    CAS  PubMed  Google Scholar 

  • Ward C, Stokes M, Flanegan JB (1988) Direct measurement of the poliovirus RNA polymerase error frequency in vitro. J Virol 62:558–562

    CAS  PubMed  Google Scholar 

  • Yoon J, McClintock P, Onodera T, Notkins A (1980) Virus-induced diabetes mellitus. XVIII. Inhibition by a nondiabetogenic variant of encephalomyocarditis virus. J Exp Med 152:878–892

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Wilsden G, Knowles NJ, McCauley JW (1993) Complete nucleotide sequence of a coxsackie B5 virus and its relationship to swine vesicular disease virus. J Gen Virol 74:945–953

    Google Scholar 

  • Zhou L, Lin X, Green TJ, Lipton HL, Luo M (1997) Role of sialyloligosaccharide binding in Theiler’s virus persistence. J Virol 71:9701–9712

    CAS  PubMed  Google Scholar 

  • Zhou L, Luo Y, Wu Y, Tsao J, Luo M (2000) Sialylation of the host receptor may modulate entry of the demyelinating persistent Theiler’s virus. J Virol 74:1929–1937

    Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tracy, S., Chapman, N.M., Drescher, K.M., Kono, K., Tapprich, W. (2006). Evolution of Virulence in Picornaviruses. In: Domingo, E. (eds) Quasispecies: Concept and Implications for Virology. Current Topics in Microbiology and Immunology, vol 299. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26397-7_7

Download citation

Publish with us

Policies and ethics