Skip to main content

Anti-angiogenic Therapy for Retinal Disease

  • Chapter
  • First Online:
Pharmacologic Therapy of Ocular Disease

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 242))

Abstract

Recent breakthroughs in our understanding of the molecular pathophysiology of retinal vascular disease have allowed us to specifically target pathological angiogenesis while minimizing damage to the neurosensory retina. This is perhaps best exemplified by the development of therapies targeting the potent angiogenic growth factor and vascular permeability mediator, vascular endothelial growth factor (VEGF). Anti-VEGF therapies, initially introduced for the treatment of choroidal neovascularization in patients with age-related macular degeneration, have also had a dramatic impact on the management of retinal vascular disease and are currently an indispensable component for the treatment of macular edema in patients with diabetic eye disease and retinal vein occlusions. Emerging evidence supports expanding the use of therapies targeting VEGF for the treatment of retinal neovascularization in patients with diabetic retinopathy and retinopathy of prematurity. However, VEGF is among a growing list of angiogenic and vascular hyperpermeability factors that promote retinal vascular disease. Many of these mediators are expressed in response to stabilization of a single family of transcription factors, the hypoxia-inducible factors (HIFs), that regulate the expression of these angiogenic stimulators. Here we review the basic principles driving pathological angiogenesis and discuss the current state of retinal anti-angiogenic pharmacotherapy as well as future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu El-Asrar AM, Struyf S, Verbeke H, Van Damme J, Geboes K (2011) Circulating bone-marrow-derived endothelial precursor cells contribute to neovascularization in diabetic epiretinal membranes. Acta Ophthalmol 89(3):222–228

    Article  PubMed  Google Scholar 

  • Adamis AP, Miller JW, Bernal MT, D’Amico DJ, Folkman J, Yeo TK, Yeo KT (1994) Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol 118(4):445–450

    Article  CAS  PubMed  Google Scholar 

  • Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, Pasquale LR, Thieme H, Iwamoto MA, Park JE et al (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 331(22):1480–1487

    Article  CAS  PubMed  Google Scholar 

  • Aiello LP, Vignati L, Sheetz MJ, Zhi X, Girach A, Davis MD, Wolka AM, Shahri N, Milton RC, PKC-DRS and PKC-DRS2 Study Groups (2011) Oral protein kinase c β inhibition using ruboxistaurin: efficacy, safety, and causes of vision loss among 813 patients (1,392 eyes) with diabetic retinopathy in the protein kinase C β inhibitor-diabetic retinopathy study and the protein kinase C β inhibitor-diabetic retinopathy study 2. Retina 31(10):2084–2094

    Article  CAS  PubMed  Google Scholar 

  • Alon T, Hemo I, Itin A, Pe’er J, Stone J, Keshet E (1995) Vascular endothelial growth factor acts as a survival factor for new formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1:1024–1028

    Article  CAS  PubMed  Google Scholar 

  • Alvarez RH, Kantarjian HM, Cortes JE (2006) Biology of platelet-derived growth factor and its involvement in disease. Mayo Clin Proc 81:1241–1257

    Article  CAS  PubMed  Google Scholar 

  • Amin RH, Frank RN, Kennedy A, Eliott D, Puklin JE, Abrams GW (1997) Vascular endothelial growth factor is present in glial cells of the retina and optic nerve of human subjects with nonproliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 38(1):36–47

    CAS  PubMed  Google Scholar 

  • Anand S, Majeti BK, Acevedo LM, Murphy EA, Mukthavaram R, Scheppke L, Huang M, Shields DJ, Lindquist JN, Lapinski PE, King PD, Weis SM, Cheresh DA (2010) MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat Med 16(8):909–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashton N (1970) Retinal angiogenesis in the human embryo. Br Med Bull 26:103–106

    Article  CAS  PubMed  Google Scholar 

  • Aversa C, Leone F, Zucchini G, Serini G, Geuna E, Milani A, Valdembri D, Martinello R, Montemurro F (2015) Linifanib: current status and future potential in cancer therapy. Expert Rev Anticancer Ther 15(6):677–687

    Article  CAS  PubMed  Google Scholar 

  • Avery RL, Pieramici DJ, Rabena MD, Castellarin AA, Nasir MA, Giust MJ (2006) Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration. Ophthalmology 113(3):363–372

    Article  PubMed  Google Scholar 

  • Babapoor-Farrokhran S, Jee K, Puchner B, Hassan SJ, Xin X, Rodrigues M, Kashiwabuchi F, Ma T, Hu K, Deshpande M, Daoud Y, Solomon S, Wenick A, Lutty GA, Semenza GL, Montaner S, Sodhi A (2015) Angiopoietin-like 4 is a potent angiogenic factor and a novel therapeutic target for patients with proliferative diabetic retinopathy. Proc Natl Acad Sci U S A 112(23):E3030–E3039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakri SJ, McCannel CA, Edwards AO, Moshfeghi DM (2008) Persistent ocular hypertension following intravitreal ranibizumab. Graefes Arch Clin Exp Ophthalmol 246:955–958

    Article  CAS  PubMed  Google Scholar 

  • Bakri SJ, Moshfeghi DM, Francom S, Rundle AC, Reshef DS, Lee PP, Schaeffer C, Rubio RG, Lai P (2014) Intraocular pressure in eyes receiving monthly ranibizumab in 2 pivotal age-related macular degeneration clinical trials. Ophthalmology 121:1102–1108

    Article  PubMed  Google Scholar 

  • Barnett EM, Zhang X, Maxwell D, Chang Q, Piwnica-Worms D (2009) Single-cell imaging of retinal ganglion cell apoptosis with a cell-penetrating, activatable peptide probe in an in vivo glaucoma model. Proc Natl Acad Sci U S A 106:9391–9396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beach JM, Schwenzer KJ, Srinivas S, Kim D, Tiedeman JS (1999) Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation. J Appl Physiol 86(2):748–758

    CAS  PubMed  Google Scholar 

  • Birbrair A, Zhang T, Wang ZM, Messi ML, Olson JD, Mintz A, Delbono O (2014) Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 307(1):C25–C38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas P, Sengupta S, Choudhary R, Home S, Paul A, Sinha S (2011) Comparative role of intravitreal ranibizumab versus bevacizumab in choroidal neovascular membrane in age-related macular degeneration. Indian J Ophthalmol 59(3):191–196

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown DM, Michels M, Kaiser PK, Heier JS, Sy JP, Ianchulev T, ANCHOR Study Group (2009) Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: two-year results of the ANCHOR study. Ophthalmology 116(1):57–65

    Article  PubMed  Google Scholar 

  • Brown DM, Campochiaro PA, Singh RP, Li Z, Gray S, Saroj N, Rundle AC, Rubio RG, Murahashi WY, CRUISE Investigators (2010) Ranibizumab for macular edema after central retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology 117:1124–1133

    Article  PubMed  Google Scholar 

  • Bryan BA, Dennstedt E, Mitchell DC, Walshe TE, Noma K, Loureiro R, Saint-Geniez M, Campaigniac JP, Liao JK, D’Amore PA (2010) RhoA/ROCK signaling is essential for multiple aspects of VEGF-mediated angiogenesis. FASEB J 24(9):3186–3195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burri PH, Hlushchuk R, Djonov V (2004) Intussusceptive angiogenesis: its emergence, its characteristics, and its significance. Dev Dyn 231(3):474–488

    Article  PubMed  Google Scholar 

  • Campochiaro PA, Heier JS, Feiner L, Gray S, Saroj N, Rundle AC, Murahashi WY, Rubio RG, BRAVO Investigators (2010) Ranibizumab for macular edema after branch retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology 117:1102–1112

    Article  PubMed  Google Scholar 

  • Campochiaro PA, Clark WL, Boyer DS, Heier JS, Brown DM, Vitti R, Kazmi H, Berliner AJ, Erickson K, Chu KW, Soo Y, Cheng Y, Haller JA (2015) Intravitreal aflibercept for macular edema following branch retinal vein occlusion: the 24-week results of the VIBRANT study. Ophthalmology 122(3):538–544

    Article  PubMed  Google Scholar 

  • Cao R, Brakenhielm E, Pawliuk R, Wariaro D, Post MJ, Wahlberg E, Leboulch P, Cao Y (2003) Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med 9(5):604–613

    Article  CAS  PubMed  Google Scholar 

  • Capozzi ME, Gordon AY, Penn JS, Jayagopal A (2013) Molecular imaging of retinal disease. J Ocul Pharmacol Ther 29(2):275–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caprara C, Thiersch M, Lange C, Joly S, Samardzija M, Grimm C (2011) HIF1A is essential for the development of the intermediate plexus of the retinal vasculature. Invest Ophthalmol Vis Sci 52:2109–2117

    Article  CAS  PubMed  Google Scholar 

  • CATT Research Group, Martin DF, Maguire MG, Ying GS, Grunwald JE, Fine SL, Jaffe GJ (2011) Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med 364(20):1897–1908

    Article  Google Scholar 

  • Cerani A, Tetreault N, Menard C, Lapalme E, Patel C, Sitaras N, Beaudoin F, Leboeuf D, De Guire V, Binet F, Dejda A, Rezende FA, Miloudi K, Sapieha P (2013) Neuron-derived semaphorin 3A is an early inducer of vascular permeability in diabetic retinopathy via neuropilin-1. Cell Metab 18(4):505–518

    Article  CAS  PubMed  Google Scholar 

  • Chakravarthy U, Adamis AP, Cunningham ET Jr, Goldbaum M, Guyer DR, Katz B, Patel M, VEGF Inhibition Study in Ocular Neovascularization (V.I.S.I.O.N.) Clinical Trial Group (2006) Year 2 efficacy results of 2 randomized controlled clinical trials of pegaptanib for neovascular age-related macular degeneration. Ophthalmology 113(9):1508.e1–25

    Google Scholar 

  • Chakravarthy U, Harding SP, Rogers CA, Downes SM, Lotery AJ, Culliford LA, Reeves BC, IVAN study investigators (2013) Alternative treatments to inhibit VEGF in age-related choroidal neovascularisation: 2-year findings of the IVAN randomised controlled trial. Lancet 382(9900):1258–1267

    Article  CAS  PubMed  Google Scholar 

  • Chang JH et al (2016) Matrix metalloproteinase 14 modulates signal transduction and angiogenesis in the cornea. Surv Ophthalmol 61(4):478–497

    Article  PubMed  Google Scholar 

  • Chan-Ling T, Gock B, Stone J (1995) The effect of oxygen on vasoformative cell division. Evidence that ‘physiologic hypoxia’ is the stimulus for normal retinal vasculogenesis. Invest Ophthalmol Vis Sci 36:1201–1214

    CAS  PubMed  Google Scholar 

  • Chan-Ling T, Mcleod DS, Hughes S, Bax-ter L, Chu Y, Hasegawa T, Lutty GA (2004) Astrocyte-endothelial cell relation-ships during human retinal vascular development. Invest Ophthalmol Vis Sci 45:2020–2032

    Article  PubMed  Google Scholar 

  • Chen Y, Wiesmann C, Fuh G, Li B, Christinger HW, McKay P, de Vos AM, Lowman HB (1999) Selection and analysis of an optimized anti-VEGF antibody: crystal structure of an affinity matured Fab in complex with antigen. J Mol Biol 293:865–881

    Article  CAS  PubMed  Google Scholar 

  • Chu Y, Hughes S, Chan-Ling T (2001) Differentiation and migration of astrocyte precursor cells and astrocytes in human fetal retina: relevance to optic nerve coloboma. FASEB J 15:2013–2015

    CAS  PubMed  Google Scholar 

  • Claxton S, Fruttiger M (2003) Role of arteries in oxygen induced vaso-obliteration. Exp Eye Res 77:305–311

    Article  CAS  PubMed  Google Scholar 

  • Cohen MH, Gootenberg J, Keegan P, Pazdur R (2007) FDA drug approval summary: bevacizumab plus FOLFOX4 as second-line treatment of colorectal cancer. Oncologist 12(3):356–361

    Article  CAS  PubMed  Google Scholar 

  • Cordeiro MF, Guo L, Luong V, Harding G, Wang W, Jones HE, Moss SE, Sillito AM, Fitzke FW (2004) Real-time imaging of single nerve cell apoptosis in retinal neurodegeneration. Proc Natl Acad Sci U S A 101:13352–13356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coxon KM, Duggan J, Cordeiro MF, Moss SE (2011) Purification of annexin V and its use in the detection of apoptotic cells. Methods Mol Biol 731:293–308

    Article  CAS  PubMed  Google Scholar 

  • Cuff CA, Martiney JA, Berman JW, Brosnan CF (1996) Differential effects of transforming growth factor-ß-1 on interleukin-1-induced cellular inflammation and vascular permeability in the rabbit retina. J Neuroimmunol 70:21–28

    Article  CAS  PubMed  Google Scholar 

  • Cui YH, Chen J, Xu T, Tian HL (2015) Structure-based grafting and identification of kinase-inhibitors to target mTOR signaling pathway as potential therapeutics for glioblastoma. Comput Biol Chem 54:57–65

    Article  CAS  PubMed  Google Scholar 

  • Cunha-Vaz JG (1976) The blood-retinal barriers. Doc Ophthalmol 41:287–327

    Article  CAS  PubMed  Google Scholar 

  • D’Amico DJ, Masonson HN, Patel M, Adamis AP, Cunningham ET Jr, Guyer DR, Katz B, VEGF Inhibition Study in Ocular Neovascularization (V.I.S.I.O.N.) Clinical Trial Group (2006) Pegaptanib sodium for neovascular age-related macular degeneration: two-year safety results of the two prospective, multicenter, controlled clinical trials. Ophthalmology 113(6):992–1001

    Article  PubMed  Google Scholar 

  • Danis R, McLaughlin MM, Tolentino M, Staurenghi G, Ye L, Xu CF, Kim RY, Johnson MW, Group PEDS (2014) Pazopanib eye drops: a randomised trial in neovascular age-related macular degeneration. Br J Ophthalmol 98:172–178

    Article  PubMed  Google Scholar 

  • Datta M, Via LE, Kamoun WS, Liu C, Chen W, Seano G, Weiner DM, Schimel D, England K, Martin JD, Gao X, Xu L, Barry CE 3rd, Jain RK (2015) Anti-vascular endothelial growth factor treatment normalizes tuberculosis granuloma vasculature and improves small molecule delivery. Proc Natl Acad Sci U S A 112(6):1827–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson DW, Volpert OV, Gillis P, Crawford SE, Xu H, Benedict W, Bouck NP (1999) Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285(5425):245–248

    Article  CAS  PubMed  Google Scholar 

  • de la Zerda A, Paulus YM, Teed R, Bodapati S, Dollberg Y, Khuri-Yakub BT, Blumenkranz MS, Moshfeghi DM, Gambhir SS (2010) Photoacoustic ocular imaging. Opt Lett 35(3):270–272

    Article  PubMed  PubMed Central  Google Scholar 

  • de Oliveira Dias JR, Rodrigues EB, Maia M, Magalhães O Jr, Penha FM, Farah ME (2011) Cytokines in neovascular age-related macular degeneration: fundamentals of targeted combination therapy. Br J Ophthalmol 95(12):1631–1637

    Article  PubMed  Google Scholar 

  • Dedania VS, Bakri SJ (2015) Sustained elevation of intraocular pressure after intravitreal anti-VEGF agents: what is the evidence? Retina 35(5):841–858

    Article  CAS  PubMed  Google Scholar 

  • Diabetic Retinopathy Clinical Research Network, Wells JA, Glassman AR, Ayala AR, Jampol LM, Aiello LP, Antoszyk AN, Arnold-Bush B, Baker CW, Bressler NM, Browning DJ, Elman MJ, Ferris FL, Friedman SM, Melia M, Pieramici DJ, Sun JK, Beck RW (2015) Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N Engl J Med 372(13):1193–1203

    Article  CAS  Google Scholar 

  • Dickinson BC, Tang Y, Chang Z, Chang CJ (2011) A nuclear-localized fluorescent hydrogen peroxide probe for monitoring sirtuin-mediated oxidative stress responses in vivo. Chem Biol 18:943–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Li S, Nie G (2013) Nanotechnological strategies for therapeutic targeting of tumor vasculature. Nanomedicine (Lond) 8(7):1209–1222

    Article  CAS  Google Scholar 

  • DiPietro LA (2016) Angiogenesis and wound repair: when enough is enough. J Leukoc Biol. pii: jlb.4MR0316-102R [Epub ahead of print]

    Google Scholar 

  • Djonov VG, Kurz H, Burri PH (2002) Optimality in the developing vascular system: branching remodeling by means of intussusception as an efficient adaptation mechanism. Dev Dyn 224(4):391–402

    Article  PubMed  Google Scholar 

  • Do DV, Nguyen QD, Boyer D, Schmidt-Erfurth U, Brown DM, Vitti R, Berliner AJ, Gao B, Zeitz O, Ruckert R, Schmelter T, Sandbrink R, Heier JS, da Vinci Study Group (2012) One-year outcomes of the da Vinci Study of VEGF Trap-Eye in eyes with diabetic macular edema. Ophthalmology 119(8):1658–1665

    Article  PubMed  Google Scholar 

  • Doukas J, Mahesh S, Umeda N, Kachi S, Akiyama H, Yokoi K, Cao J, Chen Z, Dellamary L, Tam B, Racanelli-Layton A, Hood J, Martin M, Noronha G, Soll R, Campochiaro PA (2008) Topical administration of a multi-targeted kinase inhibitor suppresses choroidal neovascularization and retinal edema. J Cell Physiol 216(1):29–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Early Treatment Diabetic Retinopathy Study Research Group (1991) Results from the early treatment diabetic retinopathy study. Ophthalmology 98(Suppl 5):739–840

    Google Scholar 

  • Epstein DL, Algvere PV, von Wendt G, Seregard S, Kvanta A (2012) Bevacizumab for macular edema in central retinal vein occlusion: a prospective, randomized, double-masked clinical study. Ophthalmology 119(6):1184–1189

    Article  PubMed  Google Scholar 

  • Evans SM, Kim K, Moore CE, Uddin MI, Capozzi ME, Craft JR, Sulikowski GA, Jayagopal A (2014) Molecular probes for imaging of hypoxia in the retina. Bioconjug Chem 25(11):2030–2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fantin A, Schwarz Q, Davidson K, Normando EM, Denti L, Ruhrberg C (2011) The cytoplasmic domain of neuropilin 1 is dispensable for angiogenesis, but promotes the spatial separation of retinal arteries and veins. Development 138(19):4185–4191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Favier B, Alam A, Barron P, Bonnin J, Laboudie P, Fons P, Mandron M, Herault JP, Neufeld G, Savi P, Herbert JM, Bono F (2006) Neuropilin-2 interacts with VEGFR-2 and VEGFR-3 and promotes human endothelial cell survival and migration. Blood 108(4):1243–1250

    Article  CAS  PubMed  Google Scholar 

  • Feeney SA, Simpson DA, Gardiner TA, Boyle C, Jamison P, Stitt AW (2003) Role of vascular endothelial growth factor and placental growth factors during retinal vascular development and hyaloid regression. Invest Ophthalmol Vis Sci 44(2):839–847

    Article  PubMed  Google Scholar 

  • Ferrara N (2005) VEGF as a therapeutic target in cancer. Oncology 69(Suppl 3):11–16

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N, Damico L, Shams N, Lowman H, Kim R (2006) Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina 26:859–870

    Article  PubMed  Google Scholar 

  • Figg W, Folkman J (eds) (2008) Angiogenesis: an integrative approach from science to medicine. Springer, New York

    Google Scholar 

  • Gálvez MI (2011) Protein kinase C inhibitors in the treatment of diabetic retinopathy. Review. Curr Pharm Biotechnol 12(3):386–391

    Article  PubMed  Google Scholar 

  • Gariano RF (2003) Cellular mechanisms in retinal vascular development. Prog Retin Eye Res 22:295–306

    Article  CAS  PubMed  Google Scholar 

  • Gariano RF, Gardner TW (2005) Retinal angiogenesis in development and disease. Nature 438:960–966

    Article  CAS  PubMed  Google Scholar 

  • Gariano RF, Hu D, Helms J (2006) Expression of angiogenesis-related genes during retinal development. Gene Expr Patterns 6(2):187–192

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghanem I, Riveiro ME, Paradis V, Faivre S, de Parga PM, Raymond E (2014) Insights on the CXCL12-CXCR4 axis in hepatocellular carcinoma carcinogenesis. Am J Transl Res 6(4):340–352

    PubMed  PubMed Central  Google Scholar 

  • Gragoudas ES, Adamis AP, Cunningham ET Jr, Feinsod M, Guyer DR, VEGF Inhibition Study in Ocular Neovascularization Clinical Trial Group (2004) Pegaptanib for neovascular age-related macular degeneration. N Engl J Med 351(27):2805–2816

    Article  CAS  PubMed  Google Scholar 

  • Grisanti S, Canbek S, Kaiserling E, Adam A, Lafaut B, Gelisken F, Szurman P, Henke-Fahle S, Oficjalska-Mlynczak J, Bartz-Schmidt KU (2004) Expression of endoglin in choroidal neovascularization. Exp Eye Res 78:207–213

    Article  CAS  PubMed  Google Scholar 

  • Grunwald JE, Daniel E, Huang J, Ying GS, Maguire MG, Toth CA, Jaffe GJ, Fine SL, Blodi B, Klein ML, Martin AA, Hagstrom SA, Martin DF, CATT Research Group (2014) Risk of geographic atrophy in the comparison of age-related macular degeneration treatments trials. Ophthalmology 121(1):150–161

    Article  PubMed  Google Scholar 

  • Grunwald JE, Pistilli M, Ying GS, Maguire MG, Daniel E, Martin DF, Comparison of Age-related Macular Degeneration Treatments Trials Research Group (2015) Growth of geographic atrophy in the comparison of age-related macular degeneration treatments trials. Ophthalmology 122(4):809–816

    Article  PubMed  Google Scholar 

  • Hageman GS, Luthert PJ, Victor Chong NH, Johnson LV, Anderson DH, Mullins RF (2001) An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res 20:705–732

    Article  CAS  PubMed  Google Scholar 

  • Heier JS, Brown DM, Chong V, Korobelnik JF, Kaiser PK, Nguyen QD, Kirchhof B, Ho A, Ogura Y, Yancopoulos GD, Stahl N, Vitti R, Berliner AJ, Soo Y, Anderesi M, Groetzbach G, Sommerauer B, Sandbrink R, Simader C, Schmidt-Erfurth U, VIEW 1 and VIEW 2 Study Groups (2012) Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology 119(12):2537–2548

    Article  PubMed  Google Scholar 

  • Hilberg F, Roth GJ, Krssak M, Kautschitsch S, Sommergruber W, Tontsch-Grunt U, Garin-Chesa P, Bader G, Zoephel A, Quant J, Heckel A, Rettig WJ (2008) BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Res 68:4774–4782

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Wang X, Liu Q, Paulus YM (2015) Photoacoustic imaging in ophthalmology. Int J Ophthalmol Eye Sci 3(8):126–132

    Google Scholar 

  • Hubbi ME, Gilkes DM, Hu H, Kshitiz, Ahmed I, Semenza GL (2014) Cyclin-dependent kinases regulate lysosomal degradation of hypoxia-inducible factor 1α to promote cell-cycle progression. Proc Natl Acad Sci U S A 111(32):E3325–E3334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes S, Yang H, Chan-Ling T (2000) Vascularization of the human fetal retina: roles of vasculogenesis and angiogenesis. Invest Ophthalmol Vis Sci 41:1217–1228

    CAS  PubMed  Google Scholar 

  • Jiang A, Zhang M, Liu Z (2005) Angioblasts in adult and its role in ocular disorders due to neovascularization. Yan Ke Xue Bao 21(3):158–162, 178

    PubMed  Google Scholar 

  • Kaelin WG (2005) Proline hydroxylation and gene expression. Annu Rev Biochem 74:115–128

    Article  CAS  PubMed  Google Scholar 

  • Kapany NS, Peppers NA, Zweng HC, Flocks M (1963) Retinal photocoagulation by lasers. Nature 199:146–149

    Article  CAS  PubMed  Google Scholar 

  • Kaur C, Foulds WS, Ling EA (2008) Blood-retinal barrier in hypoxic ischaemic conditions: basic concepts, clinical features and management. Prog Retin Eye Res 27(6):622–647

    Article  CAS  PubMed  Google Scholar 

  • King A, Gottlieb E, Brooks DG, Murphy MP, Dunaief JL (2004) Mitochondria-derived reactive oxygen species mediate blue light-induced death of retinal pigment epithelial cells. Photochem Photobiol 79:470–475

    Article  CAS  PubMed  Google Scholar 

  • Kitamura T, Asai N, Enomoto A, Maeda K, Kato T, Ishida M, Jiang P, Watanabe T, Usukura J, Kondo T, Costantini F, Murohara T, Takahashi M (2008) Regulation of VEGF-mediated angiogenesis by the Akt/PKB substrate Girdin. Nat Cell Biol 10(3):329–337

    Article  CAS  PubMed  Google Scholar 

  • Knowles PP, Murray-Rust J, Kjaer S, Scott RP, Hanrahan S, Santoro M, Ibáñez CF, McDonald NQ (2006) Structure and chemical inhibition of the RET tyrosine kinase domain. J Biol Chem 281:33577–33587

    Article  CAS  PubMed  Google Scholar 

  • Kodjikian L, Souied EH, Mimoun G, Mauget-Faÿsse M, Behar-Cohen F, Decullier E, Huot L, Aulagner G, GEFAL Study Group (2013) Ranibizumab versus bevacizumab for neovascular age-related macular degeneration: results from the GEFAL noninferiority randomized trial. Ophthalmology 120(11):2300–2309

    Article  PubMed  Google Scholar 

  • Korobelnik JF, Holz FG, Roider J, Ogura Y, Simader C, Schmidt-Erfurth U, Lorenz K, Honda M, Vitti R, Berliner AJ, Hiemeyer F, Stemper B, Zeitz O, Sandbrink R, GALILEO Study Group (2014) Intravitreal aflibercept injection for macular edema resulting from central retinal vein occlusion: one-year results of the phase 3 GALILEO study. Ophthalmology 121(1):202–208

    Article  PubMed  Google Scholar 

  • Krady JK, Basu A, Allen CM, Xu Y, LaNoue KF, Gardner TW, Levison SW (2005) Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes 54(5):1559–1565

    Article  CAS  PubMed  Google Scholar 

  • Krebs I, Schmetterer L, Boltz A, Told R, Vécsei-Marlovits V, Egger S, Schönherr U, Haas A, Ansari-Shahrezaei S, Binder S, MANTA Research Group (2013) A randomised double-masked trial comparing the visual outcome after treatment with ranibizumab or bevacizumab in patients with neovascular age-related macular degeneration. Br J Ophthalmol 97(3):266–271

    Article  PubMed  Google Scholar 

  • Krispel C, Rodrigues M, Xin X, Sodhi A (2013) Ranibizumab in diabetic macular edema. World J Diabetes 4(6):310–318

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuba K, Matsumoto K, Date K, Shimura H, Tanaka M, Nakamura T (2000) HGF/NK4, a four-kringle antagonist of hepatocyte growth factor, is an angiogenesis inhibitor that suppresses tumor growth and metastasis in mice. Cancer Res 60(23):6737–6743

    CAS  PubMed  Google Scholar 

  • Kurihara T, Westenskow PD, Friedlander M (2014) Hypoxia-inducible factor (HIF)/vascular endothelial growth factor (VEGF) signaling in the retina. Adv Exp Med Biol 801:275–281

    Article  PubMed  Google Scholar 

  • Kwon SH, Shin JP, Kim IT, Park DH (2015) Aqueous levels of angiopoietin-like 4 and semaphorin 3E correlate with nonperfusion area and macular volume in diabetic retinopathy. Ophthalmology 122(5):968–975

    Article  PubMed  Google Scholar 

  • Lad EM, Cheshier SH, Kalani MY (2009) Wnt-signaling in retinal development and disease. Stem Cells Dev 18(1):7–16

    Article  CAS  PubMed  Google Scholar 

  • Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK (2002) FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev 16(12):1466–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Park HS, Shin JM, Chun MH, Oh SJ (2012) Nestin expressing progenitor cells during establishment of the neural retina and its vasculature. Anat Cell Biol 45(1):38–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Cheng H, Duong TQ (2008) Blood-flow magnetic resonance imaging of the retina. Neuroimage 39(4):1744–1751

    Article  PubMed  Google Scholar 

  • Li F, Liu J, Jas GS, Zhang J, Qin G, Xing J, Cotes C, Zhao H, Wang X, Diaz LA, Shi ZZ, Lee DY, Li KC, Li Z (2010) Synthesis and evaluation of a near-infrared fluorescent non-peptidic bivalent integrin alpha(v)beta(3) antagonist for cancer imaging. Bioconjug Chem 21:270–278

    Article  PubMed  CAS  Google Scholar 

  • Li X, Xu G, Wang Y, Xu X, Liu X, Tang S, Zhang F, Zhang J, Tang L, Wu Q, Luo D, Ke X, AURORA Study Group (2014a) Safety and efficacy of conbercept in neovascular age-related macular degeneration: results from a 12-month randomized phase 2 study: AURORA study. Ophthalmology 121:1740

    Article  PubMed  Google Scholar 

  • Li YJ, Li XH, Wang LF, Kuang X, Hang ZX, Deng Y, Du JR (2014b) Therapeutic efficacy of a novel non-peptide αvβ3 integrin antagonist for pathological retinal angiogenesis in mice. Exp Eye Res 129:119–126

    Article  CAS  PubMed  Google Scholar 

  • Liekens S, Schols D, Hatse S (2010) CXCL12-CXCR4 axis in angiogenesis, metastasis and stem cell mobilization. Curr Pharm Des 16(35):3903–3920

    Article  CAS  PubMed  Google Scholar 

  • Lin M, Hu Y, Chen Y, Zhou KK, Jin J, Zhu M, Le YZ, Ge J, Ma JX (2012) Impacts of hypoxia-inducible factor-1 knockout in the retinal pigment epithelium on choroidal neovascularization. Invest Ophthalmol Vis Sci 53(10):6197–6206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linsenmeier RA, Braun RD, McRipley MA, Padnick LB, Ahmed J, Hatchell DL, McLeod DS, Lutty GA (1998) Retinal hypoxia in long-term diabetic cats. Invest Ophthalmol Vis Sci 39(9):1647–1657

    CAS  PubMed  Google Scholar 

  • Longeras R, Farjo K, Ihnat M, Ma JX (2012) A PEDF-derived peptide inhibits retinal neovascularization and blocks mobilization of bone marrow-derived endothelial progenitor cells. Exp Diabetes Res 2012:518426

    Article  PubMed  CAS  Google Scholar 

  • Lukason M, DuFresne E, Rubin H, Pechan P, Li Q, Kim I, Kiss S, Flaxel C, Collins M, Miller J, Hauswirth W, Maclachlan T, Wadsworth S, Scaria A (2011) Inhibition of choroidal neovascularization in a nonhuman primate model by intravitreal administration of an AAV2 vector expressing a novel anti-VEGF molecule. Mol Ther 19(2):260–265

    Article  CAS  PubMed  Google Scholar 

  • Luna JD, Chan C-C, Derevjanik NL, Mahlow J, Chiu C, Peng B, Tobe T, Campochiaro PA, Vinores SA (1997) Blood-retinal barrier (BRB) breakdown in experimental autoimmune uveoretinitis: comparison with vascular endothelial growth factor, tumor necrosis factor, and interleukin-1ß-mediated breakdown. J Neurosci Res 49:268–280

    Article  CAS  PubMed  Google Scholar 

  • Luttun A, Tjwa M, Carmeliet P (2002) Placental growth factor (PlGF) and its receptor Flt-1 (VEGFR-1): novel therapeutic targets for angiogenic disorders. Ann N Y Acad Sci 979:80–93

    Article  CAS  PubMed  Google Scholar 

  • Lutty GA, Hasegawa T, Baba T, Grebe R, Bhutto I, McLeod DS (2010) Development of the human choriocapillaris. Eye (Lond) 24(3):408–415

    Article  CAS  Google Scholar 

  • Ma AC, Fung TK, Lin RH, Chung MI, Yang D, Ekker SC, Leung AY (2011) Methionine aminopeptidase 2 is required for HSC initiation and proliferation. Blood 118(20):5448–5457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr, Mingozzi F, Bennicelli J, Banfi S, Marshall KA, Testa F, Surace EM, Rossi S, Lyubarsky A, Arruda VR, Konkle B, Stone E, Sun J, Jacobs J, Dell’Osso L, Hertle R, Ma JX, Redmond TM, Zhu X, Hauck B, Zelenaia O, Shindler KS, Maguire MG, Wright JF, Volpe NJ, McDonnell JW, Auricchio A, High KA, Bennett J (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358(21):2240–2248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahon PC, Hirota K, Semenza GL (2001) FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 15(20):2675–2686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manalo DJ, Rowan A, Lavoie T, Natarajan L, Kelly BD, Ye SQ, Garcia JG, Semenza GL (2005) Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105(2):659–669

    Article  CAS  PubMed  Google Scholar 

  • Mann IC (1928) The development of the human eye. Cambridge University Press, Cambridge

    Google Scholar 

  • Marchetti C, Gasparri ML, Ruscito I, Palaia I, Perniola G, Carrone A, Farooqi AA, Pecorini F, Muzii L, Panici PB (2015) Advances in anti-angiogenic agents for ovarian cancer treatment: the role of trebananib (AMG 386). Crit Rev Oncol Hematol 94(3):302–310

    Article  PubMed  Google Scholar 

  • Martin DF, Maguire MG, Fine SL, Ying GS, Jaffe GJ, Grunwald JE, Toth C, Redford M, Ferris FL (2012) Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: two-year results. Ophthalmology 119:1388–1398

    Article  PubMed  PubMed Central  Google Scholar 

  • Mauriz JL, Martín-Renedo J, García-Palomo A, Tuñón MJ, González-Gallego J (2010) Methionine aminopeptidases as potential targets for treatment of gastrointestinal cancers and other tumours. Curr Drug Targets 11(11):1439–1457

    Article  CAS  PubMed  Google Scholar 

  • Maxwell PH (2005) Hypoxia-inducible factor as a physiological regulator. Exp Physiol 90(6):791–797

    Article  CAS  PubMed  Google Scholar 

  • Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399(6733):271–275

    Article  CAS  PubMed  Google Scholar 

  • McLeod DS, Lutty GA, Wajer SD, Flower RW (1987) Visualization of a developing vasculature. Microvasc Res 33:257–269

    Article  CAS  PubMed  Google Scholar 

  • McLeod DS, Hasegawa T, Prow T, Merges C, Lutty G (2006) The initial fetal human retinal vasculature develops by vasculogenesis. Dev Dyn 235(12):3336–3347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLeod DS, Baba T, Bhutto IA, Lutty GA (2012) Co-expression of endothelial and neuronal nitric oxide synthases in the developing vasculatures of the human fetal eye. Graefes Arch Clin Exp Ophthalmol 250(6):839–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michaelson IC (1948) The mode of development of the vascular system of the retina, with some observations on its significance for certain retinal diseases. Trans Ophthalmol Soc U K 68:137–181

    Google Scholar 

  • Michels S, Rosenfeld PJ, Puliafito CA, Marcus EN, Venkatraman AS (2005) Systemic bevacizumab (Avastin) therapy for neovascular age-related macular degeneration twelve-week results of an uncontrolled open-label clinical study. Ophthalmology 112(6):1035–1047

    Article  PubMed  Google Scholar 

  • Miki K, Miki A, Matsuoka M, Muramatsu D, Hackett SF, Campochiaro PA (2009) Effects of intraocular ranibizumab and bevacizumab in transgenic mice expressing human vascular endothelial growth factor. Ophthalmology 116:1748–1754

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitchell P, Bandello F, Schmidt-Erfurth U, Lang GE, Massin P, Schlingemann RO, Sutter F, Simader C, Burian G, Gerstner O, Weichselberger A, RESTORE Study Group (2011) The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for DME. Ophthalmology 118(4):615–625

    Article  PubMed  Google Scholar 

  • Mole DR, Pugh CW, Ratcliffe PJ, Maxwell PH (2002) Regulation of the HIF pathway: enzymatic hydroxylation of a conserved prolyl residue in hypoxia-inducible factor alpha subunits governs capture by the pVHL E3 ubiquitin ligase complex. Adv Enzyme Regul 42:333–347

    Article  CAS  PubMed  Google Scholar 

  • Morishita R, Aoki M, Hashiya N, Yamasaki K, Kurinami H, Shimizu S, Makino H, Takesya Y, Azuma J, Ogihara T (2004) Therapeutic angiogenesis using hepatocyte growth factor (HGF). Curr Gene Ther 4(2):199–206

    Article  CAS  PubMed  Google Scholar 

  • Nakamura-Ishizu A, Kurihara T, Okuno Y, Ozawa Y, Kishi K, Goda N (2012) The formation of an angiogenic astrocyte template is regulated by the neuroretina in a HIF-1-dependent manner. Dev Biol 363:106–114

    Article  CAS  PubMed  Google Scholar 

  • Nazari H, Zhang L, Zhu D et al (2015) Stem cell based therapies for age-related macular degeneration: the promises and the challenges. Prog Retin Eye Res 48:1–39

    Article  CAS  PubMed  Google Scholar 

  • Ng EW, Shima DT, Calias P, Cunningham ET Jr, Guyer DR, Adamis AP (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 5(2):123–132

    Article  CAS  PubMed  Google Scholar 

  • Nguyen QD, Brown DM, Marcus DM, Boyer DS, Patel S, Feiner L, Gibson A, Sy J, Rundle AC, Hopkins JJ, Rubio RG, Ehrlich JS, RISE and RIDE Research Group (2012) Ranibizumab for DME: results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology 119(4):789–801

    Article  PubMed  Google Scholar 

  • Okubo Y, Sekiya H, Namiki S, Sakamoto H, Iinuma S, Yamasaki M, Watanabe M, Hirose K, Iino M (2010) Imaging extrasynaptic glutamate dynamics in the brain. Proc Natl Acad Sci U S A 107:6526–6531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozaki H, Seo MS, Ozaki K, Yamada H, Yamada E, Okamoto N, Hofmann F, Wood JM, Campochiaro PA (2000) Blockage of vascular endothelial cell growth factor receptor signaling is sufficient to completely prevent retinal neovascularization. Am J Pathol 156:697–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papadopoulos N, Martin J, Ruan Q, Rafique A, Rosconi MP, Shi E, Pyles EA, Yancopoulos GD, Stahl N, Wiegand SJ (2012) Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab. Angiogenesis 15:171–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park H, Lee DS, Yim MJ, Choi YH, Park S, Seo SK, Choi JS, Jang WH, Yea SS, Park WS, Lee CM, Jung WK, Choi IW (2015) 3,3’-Diindolylmethane inhibits VEGF expression through the HIF-1α and NF-kB pathways in human retinal pigment epithelial cells under chemical hypoxic conditions. Int J Mol Med 36(1):301–308

    CAS  PubMed  Google Scholar 

  • Pechan P, Rubin H, Lukason M, Ardinger J, DuFresne E, Hauswirth WW, Wadsworth SC, Scaria A (2009) Novel anti-VEGF chimeric molecules delivered by AAV vectors for inhibition of retinal neovascularization. Gene Ther 16(1):10–16

    Article  CAS  PubMed  Google Scholar 

  • Peiris PM, Toy R, Doolittle E, Pansky J, Abramowski A, Tam M, Vicente P, Tran E, Hayden E, Camann A, Mayer A, Erokwu BO, Berman Z, Wilson D, Baskaran H, Flask CA, Keri RA, Karathanasis E (2012) Imaging metastasis using an integrin-targeting chain-shaped nanoparticle. ACS Nano 6:8783–8795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penfold PL, Provis JM, Madigan MC, van Driel D, Billson FA (1990) Angiogenesis in normal human retinal development: the involvement of astrocytes and macrophages. Graefes Arch Clin Exp Ophthalmol 228(3):255–263

    Article  CAS  PubMed  Google Scholar 

  • Pershing S, Bakri SJ, Moshfeghi DM (2013) Ocular hypertension and intraocular pressure asymmetry after intravitreal injection of anti-vascular endothelial growth factor agents. Ophthalmic Surg Lasers Imaging Retina 44:460–464

    Article  PubMed  Google Scholar 

  • Phelps DL (1990) Oxygen and developmental retinal capillary remodeling in the kitten. Invest Ophthalmol Vis Sci 31:2194–2200

    CAS  PubMed  Google Scholar 

  • Presta M, Dell’Era P, Mitola S, Moroni E, Ronca R, Rusnati M (2005) Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 16:159–178

    Article  CAS  PubMed  Google Scholar 

  • Provis JM, Leech J, Diaz CM, Penfold PL, Stone J, Keshet E (1997) Development of the human retinal vasculature: cellular relations and VEGF expression. Exp Eye Res 65:555–568

    Article  CAS  PubMed  Google Scholar 

  • Querques G, Capuano V, Frascio P, Bandello F, Souied EH (2015) Emerging therapeutic options in age-related macular degeneration. Ophthalmic Res 53(4):194–199

    Article  CAS  PubMed  Google Scholar 

  • Rajendram R, Fraser-Bell S, Kaines A, Michaelides M, Hamilton RD, Esposti SD, Peto T, Egan C, Bunce C, Leslie RD, Hykin PG (2012) A 2-year prospective randomized controlled trial of intravitreal bevacizumab or laser therapy (BOLT) in the management of diabetic macular edema: 24-month data: report 3. Arch Ophthalmol 130(8):972–979

    Article  CAS  PubMed  Google Scholar 

  • Rakoczy EP, Lai CM, Magno AL, Wikstrom ME, French MA, Pierce CM, Schwartz SD, Blumenkranz MS, Chalberg TW, Degli-Esposti MA, Constable IJ (2015) Gene therapy with recombinant adeno-associated vectors for neovascular age-related macular degeneration: 1 year follow-up of a phase 1 randomised clinical trial. Lancet 386(10011):2395–2403

    Article  CAS  PubMed  Google Scholar 

  • Ratcliffe PJ (2007) HIF-1 and HIF-2: working alone or together in hypoxia? J Clin Invest 117(4):862–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reck M, Kaiser R, Mellemgaard A, Douillard JY, Orlov S, Krzakowski M, von Pawel J, Gottfried M, Bondarenko I, Liao M, Gann CN, Barrueco J, Gaschler-Markefski B, Novello S, LUME-Lung 1 Study Group (2014) Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): a phase 3, double-blind, randomised controlled trial. Lancet Oncol 15:143–155

    Article  CAS  PubMed  Google Scholar 

  • Rich RM, Rosenfeld PJ, Puliafito CA, Dubovy SR, Davis JL, Flynn HW Jr, Gonzalez S, Feuer WJ, Lin RC, Lalwani GA, Nguyen JK, Kumar G (2006) Short-term safety and efficacy of intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration. Retina 26(5):495–511

    Article  PubMed  Google Scholar 

  • Rizzolo LJ (1997) Polarity and the development of the outer blood-retinal barrier. Histol Histopathol 12:1057–1067

    CAS  PubMed  Google Scholar 

  • Rodrigues M, Xin X, Jee K, Babapoor-Farrokhran S, Kashiwabuchi F, Ma T, Bhutto I, Hassan SJ, Daoud Y, Baranano D, Solomon S, Lutty G, Semenza GL, Montaner S, Sodhi A (2013) VEGF secreted by hypoxic Müller cells induces MMP-2 expression and activity in endothelial cells to promote retinal neovascularization in proliferative diabetic retinopathy. Diabetes 62(11):3863–3873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, Kim RY, MARINA Study Group (2006) Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 355(14):1419–1431

    Article  CAS  PubMed  Google Scholar 

  • Roy-Luzarraga M, Hodivala-Dilke K (2016) Molecular pathways: endothelial cell FAK-A target for cancer treatment. Clin Cancer Res 22(15):3718–3724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio R (2014) Long-acting anti-VEGF delivery. Retina Today: 78–80

    Google Scholar 

  • Ruzinova MB, Schoer RA, Gerald W, Egan JE, Pandolfi PP, Rafii S, Manova K, Mittal V, Benezra R (2003) Effect of angiogenesis inhibition by Id loss and the contribution of bone-marrow-derived endothelial cells in spontaneous murine tumors. Cancer Cell 4(4):277–289

    Article  CAS  PubMed  Google Scholar 

  • Sacu S, Michels S, Prager F, Weigert G, Dunavoelgyi R, Geitzenauer W, Pruente C, Schmidt-Erfurth U (2009) Randomised clinical trial of intravitreal Avastin vs photodynamic therapy and intravitreal triamcinolone: long-term results. Eye (Lond) 23(12):2223–2227

    Article  CAS  Google Scholar 

  • Salehi-Had H, Roh MI, Giani A, Hisatomi T, Nakao S, Kim IK, Gragoudas ES, Vavvas D, Guccione S, Miller JW (2011) Utilizing targeted gene therapy with nanoparticles binding alpha v beta 3 for imaging and treating choroidal neovascularization. PLoS One 6(4), e18864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampieri CL, León-Córdoba K, Remes-Troche JM (2013) Matrix metalloproteinases and their tissue inhibitors in gastric cancer as molecular markers. J Cancer Res Ther 9(3):356–363

    Article  CAS  PubMed  Google Scholar 

  • Sandercoe TM, Madigan MC, Billson FA, Penfold PL, Provis JM (1999) Astrocyte proliferation during development of the human retinal vasculature. Exp Eye Res 69:511–523

    Article  CAS  PubMed  Google Scholar 

  • Sarlos S, Rizkalla B, Moravski CJ, Cao Z, Cooper ME, Wilkinson-Berka JL (2003) Retinal angiogenesis is mediated by an interaction between the angiotensin type 2 receptor, VEGF, and angiopoietin. Am J Pathol 163(3):879–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scarpino S, D’Alena FC, Di Napoli A, Ballarini F, Prat M, Ruco LP (2003) Papillary carcinoma of the thyroid: evidence for a role for hepatocyte growth factor (HGF) in promoting tumour angiogenesis. J Pathol 199(2):243–250

    Article  CAS  PubMed  Google Scholar 

  • Schofield CJ, Ratcliffe PJ (2004) Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5(5):343–354

    Article  CAS  PubMed  Google Scholar 

  • Scholz CC, Taylor CT (2013) Targeting the HIF pathway in inflammation and immunity. Curr Opin Pharmacol 13(4):646–653

    Article  CAS  PubMed  Google Scholar 

  • Schor AM, Schor SL (2010) Angiogenesis and tumour progression: migration-stimulating factor as a novel target for clinical intervention. Eye (Lond) 24(3):450–458

    Article  CAS  Google Scholar 

  • Semenza GL (2007) Vasculogenesis, angiogenesis, and arteriogenesis: mechanisms of blood vessel formation and remodeling. J Cell Biochem 102(4):840–847

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148(3):399–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sen D, SoRelle ED, Liba O, Dalal R, Paulus YM, Kim T-W, Moshfeghi DM, de la Zerda A (2016) High resolution contrast-enhanced optical coherence tomography in mice retinae. J Biomed Opt 21(6):066002

    Article  Google Scholar 

  • Sheetz MJ, Aiello LP, Davis MD, Danis R, Bek T, Cunha-Vaz J, Shahri N, Berg PH, MBDL and MBCU Study Groups (2013) The effect of the oral PKC β inhibitor ruboxistaurin on vision loss in two phase 3 studies. Invest Ophthalmol Vis Sci 54(3):1750–1757

    Article  CAS  PubMed  Google Scholar 

  • Shih SC, Ju M, Liu N, Smith LE (2003) Selective stimulation of VEGFR-1 prevents oxygen-induced retinal vascular degeneration in retinopathy of prematurity. J Clin Invest 112(1):50–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simard JR, Getlik M, Grütter C, Pawar V, Wulfert S, Rabiller M, Rauh D (2009) Development of a fluorescent-tagged kinase assay system for the detection and characterization of allosteric kinase inhibitors. J Am Chem Soc 131:13286–13296

    Article  CAS  PubMed  Google Scholar 

  • Smith LE, Wesolowski E, McLellan A, Kostyk SK, D’Amato R, Sullivan R, D’Amore PA (1994) Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 35(1):101–111

    CAS  PubMed  Google Scholar 

  • Sodhi A, Montaner S (2015) Angiopoietin-like 4 as an emerging therapeutic target for diabetic Eye disease. JAMA Ophthalmol 133(12):1375–1376

    Article  PubMed  Google Scholar 

  • Solomon SD, Lindsley K, Vedula SS, Krzystolik MG, Hawkins BS (2014) Anti-vascular endothelial growth factor for neovascular age-related macular degeneration. Cochrane Database Syst Rev 8, CD005139

    PubMed Central  Google Scholar 

  • Stalmans I, Ng YS, Rohan R, Fruttiger M, Bouché A, Yuce A, Fujisawa H, Hermans B, Shani M, Jansen S, Hicklin D, Anderson DJ, Gardiner T, Hammes HP, Moons L, Dewerchin M, Collen D, Carmeliet P, D’Amore PA (2002) Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J Clin Invest 109:327–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefánsson E, Machemer R, de Juan E Jr, McCuen BW II, Peterson J (1992) Retinal oxygenation and laser treatment in patients with diabetic retinopathy. Am J Ophthalmol 113(1):36–38

    Article  PubMed  Google Scholar 

  • Stone J, Itin A, Alon T, Pe’er J, Gnessin H, Chan-Ling T, Keshet E (1995) Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression in neuroglia. J Neurosci 15:4738–4747

    CAS  PubMed  Google Scholar 

  • Subhani S, Vavilala DT, Mukherji M (2016) HIF inhibitors for ischemic retinopathies and cancers: options beyond anti-VEGF therapies. Angiogenesis 19(3):257–273

    Article  CAS  PubMed  Google Scholar 

  • Subramanian ML, Abedi G, Ness S, Ahmed E, Fenberg M, Daly MK, Houranieh A, Feinberg EB (2010) Bevacizumab vs ranibizumab for age-related macular degeneration: 1-year outcomes of a prospective, double-masked randomised clinical trial. Eye (Lond) 24(11):1708–1715

    Article  CAS  Google Scholar 

  • Sun D, Nakao S, Xie F, Zandi S, Bagheri A, Kanavi MR, Samiei S, Soheili ZS, Frimmel S, Zhang Z, Ablonczy Z, Ahmadieh H, Hafezi-Moghadam A (2014) Molecular imaging reveals elevated VEGFR-2 expression in retinal capillaries in diabetes: a novel biomarker for early diagnosis. FASEB J 28(9):3942–3951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda A, Baffi JZ, Kleinman ME, Cho WG, Nozaki M, Yamada K, Kaneko H, Albuquerque RJ, Dridi S, Saito K, Raisler BJ, Budd SJ, Geisen P, Munitz A, Ambati BK, Green MG, Ishibashi T, Wright JD, Humbles AA, Gerard CJ, Ogura Y, Pan Y, Smith JR, Grisanti S, Hartnett ME, Rothenberg ME, Ambati J (2009) CCR3 is a target for age-related macular degeneration diagnosis and therapy. Nature 460:225–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakur A, Scheinman RI, Rao VR, Kompella UB (2011) Pazopanib, a multitargeted tyrosine kinase inhibitor, reduces diabetic retinal vascular leukostasis and leakage. Microvasc Res 82(3):346–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The Branch Vein Occlusion Study Group (1984) Argon laser photocoagulation for macular edema in branch vein occlusion. Am J Ophthalmol 98(3):271–282

    Article  Google Scholar 

  • The Diabetic Retinopathy Study Research Group (1981) Photocoagulation treatment of proliferative diabetic retinopathy. Clinical application of Diabetic Retinopathy Study (DRS) findings. DRS report number 8. Ophthalmology 88(7):583–600

    Article  Google Scholar 

  • Todorich B, Yiu G, Hahn P (2014) Current and investigational pharmacotherapeutic approaches for modulating retinal angiogenesis. Expert Rev Clin Pharmacol 7(3):375–391

    Article  CAS  PubMed  Google Scholar 

  • Tolentino MJ (2009) Current molecular understanding and future treatment strategies for pathologic ocular neovascularization. Curr Mol Med 9(8):973–981

    Article  CAS  PubMed  Google Scholar 

  • Treps L, Conradi LC, Harjes U, Carmeliet P (2016) Manipulating angiogenesis by targeting endothelial metabolism: hitting the engine rather than the drivers – a new perspective? Pharmacol Rev 68(3):872–887

    Article  PubMed  Google Scholar 

  • Tripathi BJ, Tripathi RC (1997) Development of the human eye. In: Bron AJ, Tripathi RC, Tripathi BJ (eds) Wolff’s anatomy of the eye and orbit, 8th edn. Chapman & Hall, London

    Google Scholar 

  • Tufail A, Patel PJ, Egan C, Hykin P, da Cruz L, Gregor Z, Dowler J, Majid MA, Bailey C, Mohamed Q, Johnston R, Bunce C, Xing W, ABC Trial Investigators (2010) Bevacizumab for neovascular age related macular degeneration (ABC Trial): multicentre randomised double masked study. BMJ 340:c2459

    Article  PubMed  Google Scholar 

  • Tzeng HE, Chen PC, Lin KW, Lin CY, Tsai CH, Han SM, Teng CL, Hwang WL, Wang SW, Tang CH (2015) Basic fibroblast growth factor induces VEGF expression in chondrosarcoma cells and subsequently promotes endothelial progenitor cell-primed angiogenesis. Clin Sci (Lond) 129(2):147–158

    Article  CAS  Google Scholar 

  • Varner JA, Cheresh DA (1996) Tumor angiogenesis and the role of vascular cell integrin alphavbeta3. Important Adv Oncol 69–87

    Google Scholar 

  • Vinores SA (1995) Assessment of blood-retinal barrier integrity. Histol Histopathol 10:141–154

    CAS  PubMed  Google Scholar 

  • Vinores SA, Derevjanik NL, Ozaki H, Okamoto N, Campochiaro PA (1999) Cellular mechanisms of blood-retinal barrier dysfunction in macular edema. Doc Ophthalmol 97(3-4):217–228

    Article  CAS  PubMed  Google Scholar 

  • Vrabec JP, Lieven CJ, Levin LA (2003) Cell-type-specific opening of the retinal ganglion cell mitochondrial permeability transition pore. Invest Ophthalmol Vis Sci 44:2774–2782

    Article  PubMed  Google Scholar 

  • Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92(12):5510–5514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Li T, Wu Z, Wu Q, Ke X, Luo D, Wang H (2013) Novel VEGF decoy receptor fusion protein conbercept targeting multiple VEGF isoforms provide remarkable anti-angiogenesis effect in vivo. PLoS One 8, e70544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson-Berka JL, Rana I, Armani R, Agrotis A (2013) Reactive oxygen species, Nox and angiotensin II in angiogenesis: implications for retinopathy. Clin Sci (Lond) 124(10):597–615

    Article  CAS  Google Scholar 

  • Wu P, Nielsen TE, Clausen MH (2015) FDA-approved small-molecule kinase inhibitors. Trends Pharmacol Sci 36(7):422–439

    Article  CAS  PubMed  Google Scholar 

  • Xie F, Luo W, Zhang Z, Sun D (2012) In vivo molecular imaging in retinal disease. J Ophthalmol 2012:429387

    Article  PubMed  PubMed Central  Google Scholar 

  • Xin X, Rodrigues M, Umapathi M, Kashiwabuchi F, Ma T, Babapoor-Farrokhran S, Wang S, Hu J, Bhutto I, Welsbie DS, Duh EJ, Handa JT, Eberhart CG, Lutty G, Semenza GL, Montaner S, Sodhi A (2013) Hypoxic retinal Muller cells promote vascular permeability by HIF-1-dependent up-regulation of angiopoietin-like 4. Proc Natl Acad Sci U S A 110(36):E3425–E3434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan F, Wu H, Liu H, Deng Z, Liu H, Duan W, Liu X, Zheng H (2016) Molecular imaging-guided photothermal/photodynamic therapy against tumor by iRGD-modified indocyanine green nanoparticles. J Control Release 224:217–228

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Tsirka SE (2011) Truncation of monocyte chemoattractant protein 1 by plasmin promotes blood-brain barrier disruption. J Cell Sci 124(Pt 9):1486–1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye X, Wang Y, Nathans J (2010) The Norrin/Frizzled4 signaling pathway in retinal vascular development and disease. Trends Mol Med 16(9):417–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu DY, Cringle SJ (2001) Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog Retin Eye Res 20:175–208

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Huang S, Guo J, Zhou L, You L, Zhang T, Zhao Y (2016) Insights into the distinct roles of MMP-11 in tumor biology and future therapeutics (Review). Int J Oncol 48(5):1783–1793

    CAS  PubMed  Google Scholar 

  • Zhou AY, Bai YJ, Zhao M, Yu WZ, Huang LZ, Li XX (2014) Placental growth factor expression is reversed by antivascular endothelial growth factor therapy under hypoxic conditions. World J Pediatr 10(3):262–270

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

Johns Hopkins has filed a patent application on the use of technology to modulate the levels of ANGPTL4 for the treatment of ocular neovascular disease (US patent 14/394, 152). This work was supported by the National Eye Institute, National Institutes of Health Grant, K08-EY021189 (AS) and an Unrestricted Grant from Research to Prevent Blindness (AS), and the Heed Ophthalmic Foundation Fellows Grant (YMP) and the National Eye Institute, National Institutes of Health Grant, K12-EY022299-4 (YMP). Dr. Sodhi gratefully acknowledges the support he receives as a Special Scholar Award recipient from Research to Prevent Blindness, Inc. The funding organizations had no role in the design or conduct of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akrit Sodhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Paulus, Y.M., Sodhi, A. (2016). Anti-angiogenic Therapy for Retinal Disease. In: Whitcup, S., Azar, D. (eds) Pharmacologic Therapy of Ocular Disease. Handbook of Experimental Pharmacology, vol 242. Springer, Cham. https://doi.org/10.1007/164_2016_78

Download citation

Publish with us

Policies and ethics