Skip to main content

Halogen Bonding in Hypervalent Iodine Compounds

  • Chapter
  • First Online:
Hypervalent Iodine Chemistry

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 373))

Abstract

Halogen bonds occur when electrophilic halogens (Lewis acids) attractively interact with donors of electron density (Lewis bases). This term is commonly used for interactions undertaken by monovalent halogen derivatives. The aim of this chapter is to show that the geometric features of the bonding pattern around iodine in its hypervalent derivatives justify the understanding of some of the longer bonds as halogen bonds. We suggest that interactions directionality in ionic and neutral λ3-iodane derivatives is evidence that the electron density distribution around iodine atoms is anisotropic, a region of most positive electrostatic potential exists on the extensions of the covalent bonds formed by iodine, and these positive caps affect, or even determine, the crystal packing of these derivatives. For instance, the short cation–anion contacts in ionic λ3-iodane and λ5-iodane derivatives fully match the halogen bond definition and geometrical prerequisites. The same holds for the short contacts the cation of ionic λ3-iodanes forms with lone-pair donors or the short contacts given by neutral λ3-iodanes with incoming nucleophiles. The longer and weaker bonds formed by iodine in hypervalent compounds are usually called secondary bondings and we propose that the term halogen bond can also be used. Compared to the term secondary bond, halogen bond may possibly be more descriptive of some bonding features, e.g., its directionality and the relationships between structure of interacting groups and interaction strength.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dohi T, Kita Y (2015) In: Kahio T (ed) Hypervalent iodine in iodine chemistry and applications. Wiley, Hoboken

    Google Scholar 

  2. Zhdankin VV (2013) Hypervalent iodine chemistry: preparation, structure, and synthetic applications of polyvalent iodine compounds. Wiley, Hoboken

    Book  Google Scholar 

  3. Wirth T (2005) Hypervalent iodine in synthesis: scope and new directions. Angew Chem Int Ed 44:3656–3665

    Article  CAS  Google Scholar 

  4. Wirth T (ed) (2003) Hypervalent iodine chemistry: modern developments in organic synthesis, Topics in current chemistry series 224. Springer, Berlin

    Google Scholar 

  5. Varvoglis A (1997) Hypervalent iodine in organic synthesis. Academic, London

    Google Scholar 

  6. Varvoglis A (1992) The organic chemistry of polycoordinated iodine. VCH, New York

    Google Scholar 

  7. Zhdankin VV, Stang PJ (2008) Chem Rev 108:5299–5358

    Article  CAS  Google Scholar 

  8. Zhdankin VV, Maydanovych O, Herschbach J, Bruno J, Matveeva ED, Zefirov NS (2002) Tetrahedron Lett 43:2359–2361

    Article  CAS  Google Scholar 

  9. Huang Z, Yu X, Huang X (2002) J Org Chem 67:8261–8264

    Article  CAS  Google Scholar 

  10. Stang P, Zhdankin VV (1996) Chem Rev 96:1123–1178

    Article  CAS  Google Scholar 

  11. Moriarty RM, Prakash I, Prakash O, Freeman WA (1984) J Am Chem Soc 106:6082–6084

    Article  CAS  Google Scholar 

  12. Desiraju GR, Ho PS, Kloo L, Legon AC, Marquardt R, Metrangolo P, Politzer P, Resnati G, Rissanen K (2013) Pure Appl Chem 35:1711–1713

    Google Scholar 

  13. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 38:386–395

    Article  CAS  Google Scholar 

  14. Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Angew Chem Int Ed 47:6114–6127

    Article  CAS  Google Scholar 

  15. Metrangolo P, Resnati G (2008) Science 321:918–919

    Article  CAS  Google Scholar 

  16. Priimagi A, Cavallo G, Metrangolo P, Resnati G (2013) Acc Chem Res 46:2686–2695

    Article  CAS  Google Scholar 

  17. Metrangolo P, Resnati G (eds) (2015) Halogen bonding vol I and vol II. Impact on materials chemistry and life sciences, Topics in current chemistry series 358. Springer, Switzerland

    Google Scholar 

  18. Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  19. Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) J Mol Model 13:305–311

    Article  CAS  Google Scholar 

  20. Metrangolo P, Pilati T, Resnati G (2006) CrystEngComm 8:946–947

    Article  CAS  Google Scholar 

  21. Nyburg SC, Szymansky JT (1968) Chem Commun 669–671

    Google Scholar 

  22. Nyburg SC, Faerman CH (1985) Acta Crystallogr B 41:274–279

    Article  Google Scholar 

  23. Hathwar VR, Guru Row TN (2011) J Phys Chem A 114:13434–13441

    Article  CAS  Google Scholar 

  24. Brezgunova ME, Aubert E, Dahaoui S, Fertey P, Lebègue S, Jelsch C, Angyàn JG, Espinosa E (2012) Cryst Growth Des 12:5273–5386

    Article  CAS  Google Scholar 

  25. Hantzsch A (1915) Chem Ber 48:797–816

    Article  CAS  Google Scholar 

  26. Nakamoto K, Margoshes M, Rundle RE (1955) J Am Chem Soc 77:6480–6486

    Article  CAS  Google Scholar 

  27. Schleyer P (1959) J Am Chem Soc 81:3164–3165

    Article  CAS  Google Scholar 

  28. Nelyubina YV, Antipin MY, Dunin DS, Kotov VY, Lyssenko KA (2010) Chem Commun 46:5325–5327

    Article  CAS  Google Scholar 

  29. Colin JJ (1814) Ann Chim 91:252–272

    Google Scholar 

  30. Walsh R, Padgett CW, Metrangolo P, Resnati G, Hanks TW, Pennington WT (2001) Cryst Growth Des 1:165–175

    Article  CAS  Google Scholar 

  31. Lommerse JPM, Stone AJ, Taylor R, Allen FH (1996) J Am Chem Soc 118:3108–3116

    Article  CAS  Google Scholar 

  32. Metrangolo P, Resnati G, Pilati T, Biella S (2008) Struct Bond 126:105–136

    Article  CAS  Google Scholar 

  33. Valerio G, Raos G, Meille SV, Metrangolo P, Resnati G (2000) J Phys Chem A 104:1617–1620

    Article  CAS  Google Scholar 

  34. Aäckeroy CB, Baldrighi M, Desper J, Metrangolo P, Resnati G (2013) Chem Eur J 13:16240–16247

    Article  CAS  Google Scholar 

  35. Aäckeroy CB, Wijethunga CK, Desper J (2014) J Mol Struct 1072:20–27

    Article  CAS  Google Scholar 

  36. Le Questel JY, Laurence C, Graton J (2013) CrystEngComm 15:3212–3221

    Article  CAS  Google Scholar 

  37. Kapecki JA, Baldwin JE (1969) J Am Chem Soc 91:1120–1123

    Article  CAS  Google Scholar 

  38. Rosenfield RE Jr, Parthasarathy R, Dunitz JD (1977) J Am Chem Soc 99:4860–4862

    Article  CAS  Google Scholar 

  39. Guru Row TN, Parthasarathy R (1981) J Am Chem Soc 103:477–479

    Article  Google Scholar 

  40. Bleiholder C, Werz DB, Köppel H, Gleiter R (2006) J Am Chem Soc 128:2666–2674

    Article  CAS  Google Scholar 

  41. Murray JS, Lane P, Clark T, Politzer P (2007) J Mol Med 13:1033–1038

    Article  CAS  Google Scholar 

  42. Wang W, Ji B, Zhang YJ (2009) J Phys Chem A 113:8132–8135

    Article  CAS  Google Scholar 

  43. Metrangolo P, Resnati G (2012) Nat Chem 4:437–438

    Article  CAS  Google Scholar 

  44. Politzer P, Riley KE, Bulat FA, Murray JS (2012) Comput Theor Chem 998:2–8

    Article  CAS  Google Scholar 

  45. Bauza A, Quiñonero D, Deya PM, Frontera A (2013) CrystEngComm 15:3137–3144

    Article  CAS  Google Scholar 

  46. Hu NH, Liu W, Aoki K (2000) Bull Chem Soc Jpn 73:1043–1052

    Article  CAS  Google Scholar 

  47. Murray JS, Lane P, Politzer P (2007) Int J Quantum Chem 107:2286–2292

    Article  CAS  Google Scholar 

  48. Politzer P, Murray JS, Lane P (2007) Int J Quantum Chem 107:3046–3052

    Article  CAS  Google Scholar 

  49. Zahn S, Frank R, Hey-Hawkins E, Kirchner B (2011) Chem Eur J 17:6034–6038

    Article  CAS  Google Scholar 

  50. Li QZ, Li R, Liu XF, Li WZ, Cheng JB (2012) ChemPhysChem 13:1205–1212

    Article  CAS  Google Scholar 

  51. Adhikari U, Scheiner S (2012) Chem Phys Lett 532:31–35

    Article  CAS  Google Scholar 

  52. Scheiner S (2013) Acc Chem Res 46:280–288

    Article  CAS  Google Scholar 

  53. Setiawan D, Krafka E, Cremer D (2015) J Phys Chem A 119:1642–1656

    Article  CAS  Google Scholar 

  54. Nelyubina YV, Korlyukov AA, Lyssenko KA (2015) ChemPhysChem 16:676–681

    Article  CAS  Google Scholar 

  55. Bauzá A, Mooibroek TJ, Frontera A (2013) Angew Chem Int Ed 52:12317–12321

    Article  CAS  Google Scholar 

  56. Politzer P, Murray JS, Clark T (2013) Phys Chem Chem Phys 15:11178–11189

    Article  CAS  Google Scholar 

  57. Politzer P, Murray JS (2013) ChemPhysChem 14:278–294

    Article  CAS  Google Scholar 

  58. Politzer P, Murray JS, Lane P, Concha MC (2009) Int J Quantum Chem 109:3773–3780

    Article  CAS  Google Scholar 

  59. Murray JS, Lane P, Politzer P (2009) J Mol Model 15:723–729

    Article  CAS  Google Scholar 

  60. Grabowski SJ (2014) Phys Chem Chem Phys 16:1824–1834

    Article  CAS  Google Scholar 

  61. Merrit EA, Olofsson B (2009) Angew Chem Int Ed 48:9052–9070

    Article  CAS  Google Scholar 

  62. Rissanen K, Haukka M (2015) Halonium ions as halogen bond donors in the solid state [XL2]Y complexes. Top Curr Chem 358:77–90

    Article  CAS  Google Scholar 

  63. Politzer P, Murray JS, Metrangolo P, Resnati G. Manuscript in preparation

    Google Scholar 

  64. Alcock NW, Countyman RM (1977) J Chem Soc Dalton Trans 3:217–219

    Article  Google Scholar 

  65. Khotsyanova TL, Babushkina TA, Saatsazov VV, Tolstaya TP, Lisichkina IN, Semin GK (1976) Koord Chim 2:1567

    CAS  Google Scholar 

  66. Alcock NW, Countryman RM (1977) J Chem Soc Dalton Trans 217–219

    Google Scholar 

  67. Bykowski D, McDonald R, Tykwinski RR (2003) ARKIVOC 4:21–29

    Google Scholar 

  68. Zhiying H, Yuanzhu C, Jiaxi L, Huaxue J (1982) Chin J Struct Chem 1:77–79

    Google Scholar 

  69. Hinkle RJ, McDonald R (2003) Acta Crystallogr C58:117–121

    Google Scholar 

  70. Murray SJ, Muller-Bünz H, Ibrahim H (2012) Chem Commun 48:6268–6270

    Article  CAS  Google Scholar 

  71. Camps P, Gomez T, Lozano D, Calvet T, Font-Bardia M (2012) Molecules 17:8795–8803

    Article  CAS  Google Scholar 

  72. Bailly F, Barthen P, Frohn HJ, Kockerling M (2000) Z Anorg Allg Chem 626:2419–2427

    Google Scholar 

  73. Frohn HJ, Wenda A, Flörke U (2008) Z Anorg Allg Chem 634:764–770

    Article  CAS  Google Scholar 

  74. Frohn HJ, Wenda A, Flörke U (2010) Tetrahedron 66:5762–5767

    Article  CAS  Google Scholar 

  75. Lubriks D, Sokolovs I, Suna E (2012) J Am Chem Soc 134:15436–15442

    Article  CAS  Google Scholar 

  76. Suefuji T, Shiro M, Yamaguchi K, Ochiai M (2006) Heterocycles 67:391–397

    Article  CAS  Google Scholar 

  77. DesMarteau DD, Pennigton WT, Montanari V, Thomas BH (2003) J Fluor Chem 122:57–61

    Article  CAS  Google Scholar 

  78. Stang PJ, Chen K, Arif AM (1995) J Am Chem Soc 117:8793–8797

    Article  CAS  Google Scholar 

  79. Wu G, Zheng PJ, Zhu SZ, Chen QY (1991) Acta Crystallogr C47:1227–1230

    CAS  Google Scholar 

  80. Ochiai M, Suefuji T, Miyamoto K, Tada N, Goto S, Shiro M, Sakamoto S, Yamaguchi K (2003) J Am Chem Soc 126:769–776

    Article  CAS  Google Scholar 

  81. Williamson BL, Stang PJ, Arif AM (1993) J Am Chem Soc 115:2590–2597

    Article  CAS  Google Scholar 

  82. Schafer S, Wirth T (2010) Angew Chem Int Ed 49:2786–2789

    Article  CAS  Google Scholar 

  83. Dixon L, Carroll MA, Gregson TJ, Ellames GJ, Harrington RW, Clegg W (2013) Eur J Org Chem 12:2334–2345

    Article  CAS  Google Scholar 

  84. Stang PJ, Arif AM, Crittell CM (1990) Angew Chem Int Ed 29:287–288

    Article  Google Scholar 

  85. Justik MW, Protasiewicz JD, Updegraff JB (2009) Tetrahedron Lett 50:6072–6075

    Google Scholar 

  86. Brand JP, Chevalley C, Scepelliti R, Waser J (2012) Chem Eur J 18:5655–5666

    Article  CAS  Google Scholar 

  87. Lubriks D, Sokolovs I, Suna E (2011) Org Lett 13:4324–4327

    Article  CAS  Google Scholar 

  88. Zhdankin VV, Mayadanovych O, Herschbach J, McDonald R, Tykwinski RR (2002) J Am Chem Soc 124:11614–11615

    Article  CAS  Google Scholar 

  89. Koser GF, McConville DB, Rabah GA, Youngs WJ (1995) J Chem Crystallogr 25:857–862

    Article  CAS  Google Scholar 

  90. Ochiai M, Masaki Y, Shiro M (1991) J Org Chem 56:5511–5513

    Article  CAS  Google Scholar 

  91. Eisenberger P, Gischig S, Togni A (2006) Chem Eur J 12:2579–2586

    Article  CAS  Google Scholar 

  92. Niedermann K, Welch JM, Koller R, Cvengroŝ J, Santschi N, Battaglia P, Togni A (2010) Tetrahedron 66:5753–5761

    Article  CAS  Google Scholar 

  93. Yusubov MS, Yusubova RY, Nemykin VN, Zhdankin VV (2013) J Org Chem 78:3767–3773

    Article  CAS  Google Scholar 

  94. Moss RA, Bracken K, Emge TJ (1995) J Org Chem 60:7739–7746

    Article  CAS  Google Scholar 

  95. Kieltsch I, Eisenberger P, Togni A (2007) Angew Chem Int Ed 5:754–757

    Article  CAS  Google Scholar 

  96. Niederman K, Welch JM, Koller R, Cvengroš J, Santschi N, Battaglia P, Togni A (2010) Tetrahedron 66:5753–5761

    Article  CAS  Google Scholar 

  97. Blake AJ, Novak A, Davies M, Robinson RI, Woodward S (2009) Synth Commun 39:1065–1075

    Article  CAS  Google Scholar 

  98. Eisenberg P, Gischig S, Togni A (2006) Chem Eur J 12:2579–2586

    Article  CAS  Google Scholar 

  99. Zhdankin VV, Krasutsky AP, Kuehl CJ, Simonsen AJ, Woodward JK, Mismash B, Boltz JT (1996) J Am Chem Soc 118:5192–5197

    Article  CAS  Google Scholar 

  100. Legault CY, Prévost J (2012) Acta Crystallogr E68:1238

    Google Scholar 

  101. Geary GC, Hope EG, Singh K, Stuart AM (2013) Chem Commun 49:9263–9265

    Article  CAS  Google Scholar 

  102. Zhdankin VV, Khuel CJ, Arif AM, Stang PJ (1996) Mendeleev Commun 6:50–51

    Article  Google Scholar 

  103. Frohn J, Hirschberg ME, Boese R, Blaser D, Florke U (2008) Z Anorg Allg Chem 634:2539–2550

    Article  CAS  Google Scholar 

  104. Bess DB, Martin JC (1983) J Org Chem 48:4155–4156

    Article  Google Scholar 

  105. Cui LQ, Dong ZL, Liu K, Zhang C (2011) Org Lett 13:6488–6491

    Article  CAS  Google Scholar 

  106. Dess DB, Wilson SR, Martin JC (1993) J Am Chem Soc 115:2488–2495

    Article  CAS  Google Scholar 

  107. Stevenson PJ, Treacy AB, Nieuwenhuyzen M (1997) J Chem Soc Perk Trans 2:589–592

    Article  Google Scholar 

  108. O’Hair RAJ, Williams CM, Clark T (2010) J Mol Model 16:559–565

    Article  CAS  Google Scholar 

  109. Wang W (2011) J Phys Chem A 115:9294–9299

    Article  CAS  Google Scholar 

  110. Cheng N, Bi F, Liu Y, Zhang C, Liu C (2014) New J Chem 38:1256–1263

    Article  CAS  Google Scholar 

  111. Moriarty RM, Vaid RK (1990) Synthesis 6:431–447

    Article  Google Scholar 

  112. Stang PJ, Wingert H, Arif AM (1987) J Am Chem Soc 109:7235–7236

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pierangelo Metrangolo or Giuseppe Resnati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Catalano, L., Cavallo, G., Metrangolo, P., Resnati, G., Terraneo, G. (2016). Halogen Bonding in Hypervalent Iodine Compounds. In: Wirth, T. (eds) Hypervalent Iodine Chemistry. Topics in Current Chemistry, vol 373. Springer, Cham. https://doi.org/10.1007/128_2015_666

Download citation

Publish with us

Policies and ethics