Skip to main content

Bearing Similarity Measures for Self-organizing Feature Maps

  • Conference paper
Intelligent Data Engineering and Automated Learning - IDEAL 2005 (IDEAL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3578))

Abstract

The neural representation of space in rats has inspired many navigation systems for robots. In particular, Self-Organizing (Feature) Maps (SOM) are often used to give a sense of location to robots by mapping sensor information to a low-dimensional grid. For example, a robot equipped with a panoramic camera can build a 2D SOM from vectors of landmark bearings. If there are four landmarks in the robot’s environment, then the 2D SOM is embedded in a 2D manifold lying in a 4D space. In general, the set of observable sensor vectors form a low-dimensional Riemannian manifold in a high-dimensional space. In a landmark bearing sensor space, the manifold can have a large curvature in some regions (when the robot is near a landmark for example), making the Eulidian distance a very poor approximation of the Riemannian metric. In this paper, we present and compare three methods for measuring the similarity between vectors of landmark bearings. We also discuss a method to equip SOM with a good approximation of the Riemannian metric. Although we illustrate the techniques with a landmark bearing problem, our approach is applicable to other types of data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Costa, A., Kantor, G., Choset, H.: Bearing-only landmark initialization with unknown data association. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1764–1770 (2004)

    Google Scholar 

  2. Nehmzow, U.: Map Building Through Self-Organisation for Robot Navigation. In: Demiris, J., Wyatt, J.C. (eds.) EWLR 1999. LNCS (LNAI), vol. 1812, p. 1. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Gerecke, U., Sharkey, N.E., Sharkey, A.J.C.: Common evidence vectors for self-organized ensemble localization. Neurocomputing 55, 499–519 (2003)

    Article  Google Scholar 

  4. Smith, R., Self, M., Cheeseman, P.: Estimating uncertain spatial relationships in robotics. Automous robot vehicles, 167–193 (1990)

    Google Scholar 

  5. Dissanayake, G., Clark, S., Newman, P., Durrant-Whyte, H., Csorba, M.: Estimating uncertain spatial relationships in robotics. IEEE Transactions on Robotics and Automation 17, 229–241 (2001)

    Article  Google Scholar 

  6. Negenborn, R.: Robot Localization and Kalman Filters. PhD thesis, Utrecht University (2003)

    Google Scholar 

  7. Bailey, T.: Constrained initialisation for bearing-only slam. In: Robotics and Automation IEEE International Conference, vol. 2, pp. 1966–1971 (2003)

    Google Scholar 

  8. Montemerlo, M., Thrun, S.: Fastslam 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges. In: Proceedings of the International Joint Conference on Artifiical Intelligence (2003)

    Google Scholar 

  9. Thrun, S.: Particle filters in robotics. In: Proceedings of the 17th Annual Conference on Uncertainty in AI, UAI (2002)

    Google Scholar 

  10. Fox, D.: Adapting the sample size in particle filters through kid-sampling. The International Journal of Robotics Research 22, 985–1003 (2003)

    Article  Google Scholar 

  11. Borenstein, J., Everett, H.R., Feng, L.: Navigating mobile robots: systems and techniques. Wellesley, Massachusetts (1996)

    MATH  Google Scholar 

  12. Garcia-Alegre, M., Garcia-Perez, A.R.L., Martinez, L., Guinea, R., Pozo-Ruz, D.: An autonomous robot in agriculture tasks. In: 3ECPA-3 European Conf. On Precision Agriculture, France, pp. 25–30 (2001)

    Google Scholar 

  13. Hanek, R., Schmitt, T.: Vision-based localization and data fusion in a system of cooperating mobile robots. In: Proceedings of Intelligent Robots and Systems (2000)

    Google Scholar 

  14. Rizzi, A., Cassinis, R.: robot self-localization system based on omni-directional color images. In: Robotics and Autonomous Systems, vol. 34, pp. 23–38 (2001)

    Google Scholar 

  15. Yagi, Y., Fujimura, M., Yashida, M.: Route representation for mobile robot navigation by omnidirectional route panorama transformation. In: Proceeding of the IEEE International Conference on Robotics and Automation, Leuven, Belgium (1998)

    Google Scholar 

  16. Delahoche, L., Pegard, C., Marhic, B., Vasseur, P.: A navigation system based on an omni-directional vision sensor. In: Int. Conf. on Intelligent Robotics and Systems, pp. 718–724 (1997)

    Google Scholar 

  17. de Leon, A.R., Carriere, K.C.: A generalized mahalanobis distance for mixed data. Journal of Multivariate Analysis 92, 174–185 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Wang, C.C.: Simultaneous Localization, Mapping and Moving Object Tracking. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (2004)

    Google Scholar 

  19. Lisien, B., Morales, D., Silver, D., Kantor, G., Rekleitis, I., Choset, H.: Hierarchical simultaneous localization and mapping. In: Intelligent Robots and Systems, vol. 1, pp. 448–453 (2003)

    Google Scholar 

  20. Saul, L.K., Roweis, S.T.: Think globally, fit locally: Unsupervised learning of low dimensional manifolds. Journal of Machine Learning Research 4, 119–155 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Keeratipranon, N., Maire, F. (2005). Bearing Similarity Measures for Self-organizing Feature Maps. In: Gallagher, M., Hogan, J.P., Maire, F. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2005. IDEAL 2005. Lecture Notes in Computer Science, vol 3578. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11508069_38

Download citation

  • DOI: https://doi.org/10.1007/11508069_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26972-4

  • Online ISBN: 978-3-540-31693-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics