Advertisement

Extending HCONE-Merge by Approximating the Intended Meaning of Ontology Concepts Iteratively

  • George A. Vouros
  • Konstantinos Kotis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3532)

Abstract

A central aspect of HCONE-merge is the mapping of ontology concepts to a hidden intermediate ontology by uncovering the intended meaning of concepts. Such a mapping is realized by a semantic morphism from ontology concepts to WordNet senses. Extending methods that have already been proposed, this paper proposes an iterative algorithm for approximating the intended meanings of ontology concepts in a fully automated way. Results from numerous experiments are thoroughly described and conclusions are drawn.

Keywords

Wrong Mapping Latent Semantic Analysis Semantic Space Intended Meaning Lexical Semantic Indexing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Uschold, M., Gruninger, M.: Creating Semantically Integrated Communities on the World Wide Web. Invited Talk. In: Semantic Web Workshop, WWW 2002 Conference (May 2002)Google Scholar
  2. 2.
    Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S–Match: An Algorithm and Implementation of Semantic Matching. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 61–75. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: the state of the art. The Knowledge Engineering Review 18(1), 1–31 (2003)CrossRefGoogle Scholar
  4. 4.
    Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with Cupid. VLDB Journal, 49–58 (2001)Google Scholar
  5. 5.
    Doan, A., Madhavan, J., Domingos, P., Halvey, A.: Learning to map between ontologies on the semantic web. In: Proc. of WWW 2002, 11th International WWW Conf., Hawaii (2002)Google Scholar
  6. 6.
    Noy, N., Musen, M.: A.M.: PROMPT: Algorithm and tool for automated ontology merging and alignment. In: Proceedings of 7th National Conference on AI, Austin (2000)Google Scholar
  7. 7.
    Kotis, K., Vouros, G.A.: HCONE-Merge approach to ontology merging. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 137–151. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Kotis, K., Vouros, G.A., Stergiou, K.: Capturing Semantics towards Automatic Coordination of Domain Ontologies. In: Bussler, C.J., Fensel, D. (eds.) AIMSA 2004. LNCS (LNAI), vol. 3192, pp. 22–32. Springer, Heidelberg (2004) (to appear)CrossRefGoogle Scholar
  9. 9.
    Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by Latent Semantic Analysis. Journal of the American Society of Information Science (1990)Google Scholar
  10. 10.
    Euzenat, J., Valtchev, P.: Similarity-based ontology alignment in OWL-Lite. In: de Mantaras, R.L., Saitta, L. (eds.) Proc. 16th european conference on artificial intelligence (ECAI), Valencia (ES), pp. 333–337 (2004)Google Scholar
  11. 11.
    Bisson, G.: Learning in FOLwith similarity measure. In: Proc. 10th American AAAI conference, San-jose, CA US (1992)Google Scholar
  12. 12.
    Ghidini, C., Giunchiglia, F.: A semantics for abstraction. In: Proceedings of the 16th European conference on Artificial Intelligence (ECAI 2004), Valencia, August 22-27 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • George A. Vouros
    • 1
  • Konstantinos Kotis
    • 1
  1. 1.Department of Information & Communications Systems EngineeringUniversity of the AegeanKarlovassi, SamosGreece

Personalised recommendations