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Abstract. A central aspect of HCONE-merge is the mapping of ontology 
concepts to a hidden intermediate ontology by uncovering the intended meaning 
of concepts. Such a mapping is realized by a semantic morphism from ontology 
concepts to WordNet senses. Extending methods that have already been 
proposed, this paper proposes an iterative algorithm for approximating the 
intended meanings of ontology concepts in a fully automated way. Results from 
numerous experiments are thoroughly described and conclusions are drawn.   

1   Introduction 

Ontologies have been realized as the key technology to shaping and exploiting 
information for the effective management of knowledge and for the evolution of the 
Semantic Web and its applications. Ontologies establish a common vocabulary for 
community members to interlink, combine, and communicate knowledge shaped 
through practice and interaction, binding the knowledge processes of creating, 
importing, capturing, retrieving, and using knowledge. However, it seems that there 
will always be more than one ontology even for the same domain [1]. In distributed 
settings, where different conceptualizations of the same domain exist, information 
services must effectively answer queries bridging the gaps between 
conceptualizations of the same domain. Towards this target, networks of semantically 
related information must be created at-request. Therefore, coordination (i.e. mapping, 
alignment, merging) of ontologies is a major challenge for bridging the gaps between 
agents (software and human) with different conceptualizations. 

There are many works towards the mapping/merging of ontologies (e.g. [2] [3] [4] 
[5] [6]). These works exploit linguistic, structural, domain knowledge and matching 
heuristics. Recent approaches aim to exploit all types of knowledge and further 
capture the intended meanings of terms by means of heuristic rules [2]. The HCONE-
merge approach to the merging of ontologies [7] [8] exploits linguistic, structural and 
semantic knowledge and gives much emphasis on “uncovering” the intended informal 
interpretations of concepts specified in an ontology. Linguistic and structural 
knowledge about ontologies is exploited by the Latent Semantics Indexing method 
(LSI) [9] for associating concepts to their informal, human-oriented intended 
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interpretations realized by WordNet senses. Using concepts’ intended interpretations, 
the proposed mapping/merging method translates formal concept definitions to a 
common vocabulary and merges the translated definitions by means of description 
logics’ reasoning services.  

The HCONE-merge approach, as it was originally proposed, requires humans to 
validate the interpretations suggested by LSI for every term in the ontology. Since 
this process is quite frustrating and error-prone, even for small ontologies, we 
contact research towards minimizing the required human involvement for mapping 
concepts to their intended interpretations. The ultimate achievement would be to 
fully automate the mapping of concepts to their intended interpretations, and 
consequently to fully automate merging. Towards this goal, we have developed 
techniques and heuristics for ontology mapping and merging that require varying 
degrees of human involvement [8].  Although we managed to achieve a high degree 
of precision, this has been gained with the cost of considerable human involvement 
in the process.  

Based on the HCONE method, the present paper proposes an iterative and 
automatic method for computing the mapping of concepts to their intended informal 
interpretations. This method requires no human involvement and, as experiments 
show, it converges to a set of mappings with high precision. 

Section 2 of the paper provides definitions of notions used throughout the paper. 
Section 3 gives an overview of the HCONE-merge method and of research towards 
automating the computation of the mapping of ontology concepts to their intended 
meaning. Section 4 describes the iterative approximation of intended interpretations 
and section 5 provides results of experiments contacted. Section 6 concludes the 
paper. 

2   Background Definitions 

An ontology is considered to be a pair O=(S, A), where S is the ontological signature 
describing the vocabulary (i.e. the terms that lexicalize concepts and relations 
between concepts) and A is a set of ontological axioms, restricting the intended 
interpretations of the terms included in the signature. In other words, A includes the 
formal definitions of concepts and relations that are lexicalized by natural language 
terms in S.  

Ontology mapping from ontology O1 = (S1, A1) to O2 = (S2, A2) is considered to be 

a morphism f:S1 S2 of ontological signatures such that A2 ⊨ f(A1), i.e. all 
interpretations that satisfy O2’s axioms also satisfy O1’s translated axioms [3] [12]. 
Consider for instance the ontologies depicted in Fig. 1: Given the morphism f such 
that f(Infrastructure)=Facility  and f(Transportation)=Transportation System, it is 

true that A2⊨{f(Transportation) ⊑ f(Infrastructure)}, therefore f is a mapping. Given 
the morphism f’, such that f’ (Infrastructure) =Transportation System and f’ 

(Transportation) = Transportation Means, it is not true that A2⊨ {f’ (Transportation) 
⊑ f’(Infrastructure)}, therefore f’ is not a mapping. 
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Fig. 1. Example Ontologies 

However, instead of a function, we may articulate a set of binary relations between 

the ontological signatures. Such relations can be the inclusion (⊑) and the equivalence 
(≡) relations. For instance, given the ontologies in Fig. 1, we can say that 

Transportation≡Transportation System, Installation≡Facility and Infrastructure ⊑ 
Facility.  Then we have indicated an alignment of the two ontologies and we can 
merge them. Based on the alignment, the merged ontology will be ontology O3 in Fig. 

1. It holds that A3⊨A2 and A3⊨A1. 
Looking at Fig. 1 in an other way, we can consider O3 to be part of a larger 

intermediary ontology and define the alignment of ontologies O1 and O2 by means of 
morphisms f1: S1  S3 and f2: S2  S3. Then, the merging of the two ontologies is the 
minimal union of ontological vocabularies and axioms with respect to the 
intermediate ontology where ontologies have been mapped.  

In the example of Fig.1, concepts Transportation-O1 and Transportation System-O2 
will be found to have the same intended meaning, and therefore will be considered 
equivalent. The merging of their formal definitions will eventually result to:  

Transportation System-O2 ⊑ Infrastructure-O1 ⊓ Facility-O2 

However, the description logics classification mechanism will consider the axiom 

Transportation System-O2 ⊑ Facility-O2 to be redundant (see Fig. 1). Therefore O3 

will eventually contain only the axiom Transportation System ⊑ Infrastructure. Doing 
so, the merged ontology contains only the minimal set of axioms resulting from 
source ontologies mapping. 

The ontologies merging problem (OMP) can be stated as follows: Given two 
ontologies find an alignment between these two ontologies, and then, get the minimal 
union of their (translated) vocabularies and axioms with respect to their alignment.  
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3   HCONE-Merge 

The HCONE-merge method finds a morphism between each of the two original 
ontologies and the so-called “hidden intermediate” ontology.  As it is shown in Fig. 2, 
where the overall method is depicted, WordNet plays the role of an “intermediate”. 
We consider that each sense in a WordNet synset describes a concept. WordNet 
senses are related among themselves via the inclusion (hyponym – hyperonym) 
relation. Terms that lexicalize the same concept (sense) are considered to be 
equivalent through the synonym relation. 

Ontology concepts are being mapped to WordNet senses. This mapping indicates 
the informal intended interpretations of concepts and it is specified by the semantic 
morphism (s-morphism, symbolized by fs). Using this mapping, HCONE-merge 
constructs the intermediate ontology that includes (a) a vocabulary with the 
lexicalizations of the specific senses of WordNet synsets corresponding to the 
ontologies’ concepts, and (b) axioms that are the translated axioms of the original 
ontologies. Having specified the mappings to the hidden intermediate ontology, the 
translated ontologies are merged following merging actions such as rename, merge, 
and classify. 

 

Fig. 2.The HCONE approach towards the OMP 

It must be noticed that we do not consider WordNet to include any intermediate 
ontology, as this would be very restrictive for the specification of the original 
ontologies (i.e. the method would work only for those ontologies that preserve the 
inclusion relations among WordNet senses). 

The computation of the semantic morphism is based on the lexical semantic 
indexing (LSI) method.  
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LSI [9] is a vector space technique for information retrieval and indexing. It 
assumes that there is an underlying latent semantic structure that it estimates using a 
matrix of term-document association data by means of statistical techniques. In our 
case the n×m space comprises the n more frequently occurred terms of the m WordNet 
senses the algorithm focuses on. Lexical Semantic Analysis (LSA) allows the 
arrangement of the semantic space to reflect the major associative patterns in the data. 
As a result, terms that did not actually appear in a sense may still end up close to the 
sense, if this is consistent with the major patterns of association in the data. Position 
in the space then serves as the new kind of semantic indexing.  

Given a query (which in our case corresponds to an ontology concept), retrieval 
aims to locate a point in space that is close to the sense that expresses the intended 
meaning of this concept. The query to the retrieval mechanism is constructed by the 
concept names and the associated senses of all concepts in the vicinity of the given 
concept. The steps of the algorithm for finding the semantic morphism are shown in 
Fig. 3. 

1. Choose a concept from the ontology. Let C be the concept name. 
2. Get all WordNet senses S1, S2, …Sm, lexicalized by C’, where C’ is a linguistic 

variation of C. These senses provide the focus of the algorithm for C. 
3. Get the hyperonyms and hyponyms of all C’ senses. 
4. Build the “semantic space”: An nXm matrix that comprises the n more 

frequently occurred terms in the vicinity of the m WordNet senses found in 
step 2.  

5. Build a query string using the terms in the vicinity of C. The query string is a 
sequence of digits, each digit taking value 0 if a term in the vicinity of C does 
not exist in the set of n, and 1 if a query term exists in the set of n. 

6. Find the ranked associations between C and C’ senses by running the Latent 
Semantics Analysis (LSA) function and consider the association with the 
highest grade. LSA uses the query terms for constructing the query string and 
computes a point in the semantic space constructed in step (4). 

Fig. 3. The algorithm for computing the s-morphism 

The semantic space is constructed by terms in the vicinity of the senses S1, S2,…Sm 
that are in focus of the algorithm for a concept C. Therefore, we have to decide what 
constitutes the vicinity of a sense for the calculation of the semantic space. In an 
analogous way we have to decide what constitutes the vicinity of an ontology concept 
for the calculation of the query string.  

Information that can be included in the semantic space includes: 

• The term C’ that corresponds to C. C’ is a lexical entry in WordNet 
• Terms that appear in C’ WordNet senses  
• Terms that constitute hyperonyms / hyponyms of each C’ sense. 
• Terms that appear in hyper(hyp)onyms of C’ senses  
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Information that can be included in the query for a concept C includes: 

• Concept’s C primitive super-concepts. 
• Concepts that are immediate super-concepts of C  
• Concepts that are immediate sub-concepts of C  
• Concepts that are related to C via domain specific relations 
• The most frequent terms in WordNet senses that have been associated with 

the concepts directly related to C via inclusion and equivalence relations.  

Formally, given an ontology concept C, the vicinity VC of  this concept includes a 
set of tuples (C’,S’), where C’ is the lexicalization of a concept directly related to C 
and S’ is the WordNet sense that has been associated with this concept, or “null” in 
case there is no associated sense.Therefore, given a concept C and its vicinity VC, the 
semantic morphism fs computes SC, which is the highest-ranked WordNet sense 
associated to C i.e. fs(C,Vc)=SC where VC={(Ci,Si)|Ci is in the vicinity of C,} and 
fs(Ci,Vi)=Si  where Vi is the vicinity of Ci. SC is assumed to express the intended 
interpretation of the concept specification.  

 Using the algorithm in Fig. 3 for the concepts in an ontology, each ontology 
concept is associated with a set of graded WordNet senses. For instance, the concept 
“facility” is associated with the five senses that WordNet assigns to the term 
“facility”. These senses range from “something created to provide a service” to “a 
room equipped with washing and toilet facilities”. The highest graded sense Sfacility 
expresses the intended interpretation of the concept “facility” in the context of the 
given ontology. 

 It must be emphasized that although LSI exploits structural information of 
ontologies and WordNet, it ends up with semantic associations between terms. The 
algorithm is based on assumptions that influence the associations produced [7]. 

Using the intended meanings of the formal concepts, HCONE-merge constructs an 
ontology On=(Sn, An), n=1,2, where, Sn includes the lexicalizations of the senses 
associated to the concepts of the ontology On=(Sn, An), n=1,2, and An contain the 
translated inclusion and equivalence relations between the corresponding concepts. 
The ontology On is considered to be part of the hidden intermediate ontology. The 
construction of the intermediate ontology (by mapping the concepts of both original 
ontologies to WordNet senses) together with the minimal set of translated axioms 
results in ontologies’ merging [7].  

Table 1. Comparison of the mapping methods for the HCONE-merge 

 Fully-
Automated  

User-
validated 

Semi-
Automated 

Percentage of concepts 
validated by the user  
(in the best case) 

0% ≤100% >0% 

“Correct” mappings 
produced 
(in the best case) 

80% 90% 90% 
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   System

Infrastructure

Transportation

   Installation

Given two ontologies O1 and O2 to be merged, and due to the crucial role of 
uncovering the intended meaning of concepts to the HCONE-merge method, we aim 
at automating the mapping of O1 and O2  to WordNet senses. 

The goal is to achieve high precision in mapping concepts to their intended 
meaning with minimum human intervention.  

Based on the algorithm for computing the s-morphism, we have shaped methods to 
ontology mapping, where human inspection and validation has been reduced down to 
the number of algorithm runs needed to correct the concept pairs whose associations 
produce inconsistencies with respect to the WordNet inclusion relations [8]. 

Table 1 compares the proposed methods [8] according to the amount of the 
automation they achieve and the “correct” mappings produced. The fully automated 
method requires the minimum number of user actions, but at the same time it achieves 
the lowest percentage of correct mappings. This is an iterative method that in each 
iteration re-computes concept mappings given the WordNet senses associated to the 
concepts during the last iteration. This approach is “unstable”, given that correct 
mappings computed during an iteration may result to non-correct mappings when re-
computed in the next iteration and so on. Therefore, this method does not guarantee to 
converge to a set of concept mappings.  

On the other hand, the user-based method achieves higher percentage of correct 
mappings, but the actions that are required by the user imply considerable effort, since 
the user has to validate the mapping of each ontology concept. It must be pointed that 
this case requires also a considerable number of additional algorithm runs, equal to 
the percentage of wrong mappings.  The semi-automated method however, in addition 
to the high percentage of correct mappings can significantly reduce the number of 
concepts that need validation by the user. However, in the worst case, where each 
concept is involved in at least one inconsistency, validation of all concepts is required. 

4   Approximating the Intended Interpretations Iteratively 

The semantic morphism can be considered as a similarity function between ontology 
concepts and WordNet senses. For the computation of this similarity, as already 
explained, the s-morphism takes into account the vicinity VC of each ontology concept 
C.  The vicinity includes the concepts directly related to C, together with their 
intended meaning, 

For instance, to compute the intended interpretation of the concept “Infrastructure” 
of the  ontology  depicted in Fig. 4, the algorithm has to take into account the intended 

 
 
 
 
 
 

Fig. 4. Example ontology 
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meanings of the concepts “Installation”, “System” and “Transportation”. However, to 
compute the intended meaning of “Installation”, the algorithm has to take into 
account the intended meaning of the concept “Infrastructure”. As it is pointed in [10], 
this recursive dependency requires non-standard computation means. This problem 
has been approached by Bisson [11] and Euzenat [10] as an equation system where 
the similarity values are the solutions. 

Given the ontology O1 in Fig. 4, the following system of equations has to be 
solved: 

1. fs(system,{(infrastructure, Sinfrastructure)})=Ssystem 

2. fs(installation,{(infrastructure, Sinfrastructure)})=Sinstallation 

3. fs(infrastructure,{(system,Ssystem),(installation,Sinstallation), 
  (transportation,Stransportation)}=Sinfrastructure 

4. fs(transportation,{(infrastructure, Sinfrastructure)})=Stransportation 

As it has been proposed in [10], given the recursive nature of these computations, 
we can still find the intended meaning of each concept through an iterative process 
that finds the most nearest reachable fixed point of a vector function. The iteration 
produces a sequence of vectors of tuples ((C1,S1)… (Cn,Sn)), where each vector is an 
even more precise approximation of each concept’s intended meaning. 

Given the above formalization, the algorithm proposed in [10] works as follows: 
The initial approximation is based on the lexicalization of each concept (i.e. on 0-
level contributors). The approximations at step (n+1) are computed using the 
vicinities computed in step n.  

Using a variation of the above algorithm, the intended meanings of concepts are 
computed iteratively as shown in Table 2: 

Table 2. The computation of the approximation 

Repeat the following process until there is no change in the intended meaning of any 
concept in the ontology. 

1. For each ontology concept C do the following: 
 1.1. For each concept in the vicinity V of C 

In case there is no meaning associated to this concept 
compute the initial approximation based on its lexicalization 

1.2. Repeat the following until there is no change in the approximation  
computed for the concept C 
1.2.1 Compute the mapping of C  

using the approximations of concepts in V 
1.2.2 Re-compute the approximations of concepts in V  

                                                               changing only the approximation of C 

The computation of the approximation of each concept’s meaning (i.e. the internal 
loop in 1.2. that computes the approximated meaning of a concept C based on the 
concepts in its vicinity) converges after two or three iterations. According to our 
experiments, independently of the size of the ontology, the algorithm finds a fixed 
point for the set of concepts in the ontology in the second iteration, improving the 
precision of the resulted mappings.  
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5   Results 

We have run experiments, using the proposed algorithm, with the ontologies shown in 
Fig. 5, Fig. 6, and Fig. 7.   

For instance, running the algorithm for the version of the Transportation ontology  
O1 in Fig. 5, we have observed the following results for the concept “car”: In the first 
approximation for this concept, given the initial approximations of all concepts in its 
vicinity, the algorithm computed the semantic morphism: 

fs(Car,{(MotorVehicle, SMotorVehicle), (Ambulance, SAmbulance), (Bus, Sbus)} 

The computation of this morphism returned the sense: 

Scar = car, auto, automobile, machine, motorcar -- 4-wheeled motor vehicle, 

In the second run for this concept, the algorithm found the same result, and 
therefore, this has been assumed to be concept’s “car” intended meaning, given the 
meanings of the concepts in its vicinity. Traversing the ontology for a second time 
and re-computing the semantic morphism for the concept “car”, given the new 
approximations of the concepts in its vicinity, the following results were returned for 
each iteration: 

S’car = cable car, car -- a conveyance for passengers or freight on a cable railway; 
S’car = car, auto, automobile, machine, motorcar -- 4-wheeled motor vehicle; 

 
Ο1 

Transportation 
19 concepts 

73% precision 

 

 
Ο2 

Transportation 
14 concepts 

78% precision 

Fig. 5. Ontologies O1, O2 
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The precision for “uncovering” concepts’ intended interpretation (in comparison to
the meaning given by the engineer that devised these ontologies) is shown under each
ontology snapshot. Concepts with incorrect mappings are shown within callouts
drawings, attached to each snapshot. 

 

 
Ο3 

Academia 
48 concepts 

75% precision 
 

 
Ο4 

Academia 
5 concepts 

60% precision 
 

 
Ο5 

Academia 
7 concepts 

57% precision 
 

Fig. 6. Ontologies O3, O4, O5 
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Fig. 7. Ontologies  O6, O7, O8 

The computation for this concept converged in the third run. So, even if the first 
sense S’car was different (and it is not the intended one) from the one found in the first 
iteration for the ontology, the algorithm converges again after two iterations to the 
intended concept meaning.  

 For the same ontology, similar results are given for the concepts “means”, 
“infrastructure”, and “craft”. The rest of the concepts do not change in the second 
iteration for the ontology. Therefore, the algorithm converges to a fixed point solution 
for the set of concepts in the second iteration for the ontology. 

 From the first experiments with ontologies O1, O2, and O3, an average precision of 
74% was concluded. However, we have been experimented with variations of these 
ontologies in order to investigate the behaviour of the algorithm in a controlled 
manner.  
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27 concepts 

96% precision 
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92% precision 
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29 concepts 

93% precision 
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The ontologies O4 and O5 include a small set of concepts for which the iterative 
algorithm did not converge to their intended meaning. For the ontology O4 these are 
the concepts “organization” and “school” and for the ontology O5 the same concepts 
in addition to the concept “college”. The rest 3 ontologies O6, O7 and O8 are 
variations of the ontology O3, and include a small percentage of concepts for which 
the algorithm did not compute their intended meaning (Fig. 7). 

 In more detail, the low precision achieved for the ontologies O4 and O5 is due to 
the failure of the algorithm to compute the correct mappings for the concepts 
“organization”, “school” and “college”.  These concepts have not been mapped to 
their correct senses for O3 as well. To explore the case that some concept mappings to 
WordNet cannot be “uncovered”, we have experimented with different variations of 
the O3 ontology. For instance, we have run experiments with variations of O3 that 
include concepts from ontologies O3, O4, and O5, which have been correctly mapped 
to WordNet, together with concepts whose computed intended meanings are not 
correct. Such a variation is the ontology O6. This includes the concept “person” of O3, 
whose mapping was not correct. The precision of mapping the ontology O6 to 
WordNet is 96%, due to the wrong mapping of the concept “person”.  

 The addition of the concept “school” – chosen from the set of concepts of O3 with 
wrong mappings - to ontology O6, results to the ontology O7. The precision of the 
algorithm for this ontology is 92% due to the wrong mappings of the concepts 
“person” and “school”.   

 Given that the sense SGraduate school computed for the concept “graduate school” in 
O3 is the correct one, we may add this concept in ontology O7 as a sub-concept of 
“school”. This has happened in ontology O8 where the vicinity of the concept 
“school” has been increased with the concept “graduate school”. Although the 
algorithm computes the correct mapping for the concept “graduate school” in this 
new ontology, the algorithm computes a non-intended meaning for the concept 
“school”.  

 The above experiments show that the performance of the algorithm can not be 
improved, even if the concepts in the vicinity of the ontology concepts with wrong 
mappings increase.  The same happens even when the “distant” concepts (not 
included in the vicinity) change. 

6   Conclusions 

Towards automating the HCONE-merge method for merging ontologies, this paper 
proposes a method for aligning the original ontologies with a hidden intermediate 
ontology in a fully automated way. Actually, the alignment is done by mapping 
ontology concepts to WordNet senses. These senses are supposed to express the 
human oriented informal intended meanings of ontology concepts. 

 The algorithm proposed is based on previous efforts to approximate similarities 
between concepts in an iterative way and, as it has been shown, produces mappings 
that are quite precise. Furthermore, the algorithm converges fast; in two or three 
iterations requiring no extensive computational time. 
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 The results provided from our case studies show that the algorithm behaves 
according to our intuitions and is stable: The computations it produces do not change 
in case the vicinity of a concept does not change radically and do not change even if 
the ontology, but not the vicinity of the concept, changes. Therefore, the computation 
for an ontology is not drastically affected by “distant” concepts.  This result agrees 
with the requirement on dependencies between concepts’ similarities within 
ontologies: The matching of a pair of concepts must depend on their local context and 
not to the entire ontology. However, concepts in the vicinity of a concept C must 
gather information from their own vicinity and further contribute such information to 
the computation of C’s intended meaning. 

 Problems arise from the stability of the algorithm even for these concepts whose 
mapping is not correct. Experiments so far have not shown the exact reason for this to 
happen. However, future work concerns the combination of different information 
sources, except WordNet, for computing the intended meaning of such concepts.  
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