Adaptive Surface Modeling Using a Quadtree of Quadratic Finite Elements

  • G. P. Nikishkov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3515)


This article presents special quadrilateral quadratic refinement elements, which provide geometry and field continuity across T-junctions where two elements are connected to one side of a larger quadrilateral. The main idea in element refinement is to place one or more nodes outside the element area and to modify element shape functions in order to maintain continuity at refinement edges. Special refinement elements allow one to adaptively refine a mesh in such a way that it fits a quadtree data structure. An algorithm of surface modeling starts with a coarse mesh of quadratic quadrilateral elements. Adaptive mesh refinement is done in an iterative manner. At each iteration, the finite element equation system is solved to provide nodal locations with minimization of global approximation error. Elements with excessive local errors are split into four new elements. The mesh refinement iteration process is terminated when no element splits occur. The created mesh of quadratic quadrilaterals can be used directly in finite element analysis.


Surface Modeling Adaptive Mesh Subdivision Scheme Quadrilateral Element Element Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Duchineau, M., et al.: ROAMing terrain: real-time optimally adapting meshes. In: Procs of the IEEE Visualization, vol. 97, pp. 81–88 (1997)Google Scholar
  2. 2.
    Pajarola, R.: Large scale terrain visualization using the restricted quadtree triangulation. In: Procs of the IEEE Visualization, vol. 98, pp. 19–24 (1998)Google Scholar
  3. 3.
    Grosso, R., Lurig, C., Ertl, T.: The multilevel finite element method for adaptive mesh optimization and vizualization of volume data. In: Procs of the IEEE Visualization, vol. 97, pp. 387–395 (1997)Google Scholar
  4. 4.
    Bathe, K.-J.: Finite Element Procedures. Prentice-Hall, Englewood Cliffs (1996)Google Scholar
  5. 5.
    Frey, P.J., George, P.-L.: Mesh Generation. Application to Finite Elements. Hermes (2000)Google Scholar
  6. 6.
    Zorin, D., Schröder, P.: Subdivision for modeling and animation. In: SIGGRAPH 2000 Course Notes (2000)Google Scholar
  7. 7.
    Kobbelt, L.P.: A subdivision scheme for smooth interpolation of quad-mesh data. In: Procs of EUROGRAPHICS 1998, Tutorial (1998)Google Scholar
  8. 8.
    Fortin, M., Tanguy, P.: A non-standard mesh refinement procedure through node labelling. Int. J. Numer. Meth. Eng. 20, 1361–1365 (1984)zbMATHCrossRefGoogle Scholar
  9. 9.
    Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-splines and T-NURCCs. ACM Trans. on Graphics 22, 477–484 (2003)CrossRefGoogle Scholar
  10. 10.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry. Algorithms and Applications. Springer, Heidelberg (2000)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • G. P. Nikishkov
    • 1
  1. 1.University of AizuAizu-WakamatsuJapan

Personalised recommendations