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Abstract. This article presents special quadrilateral quadratic refine-
ment elements, which provide geometry and field continuity across T-
junctions where two elements are connected to one side of a larger quadri-
lateral. The main idea in element refinement is to place one or more
nodes outside the element area and to modify element shape functions
in order to maintain continuity at refinement edges. Special refinement
elements allow one to adaptively refine a mesh in such a way that it fits
a quadtree data structure. An algorithm of surface modeling starts with
a coarse mesh of quadratic quadrilateral elements. Adaptive mesh refine-
ment is done in an iterative manner. At each iteration, the finite element
equation system is solved to provide nodal locations with minimization
of global approximation error. Elements with excessive local errors are
split into four new elements. The mesh refinement iteration process is
terminated when no element splits occur. The created mesh of quadratic
quadrilaterals can be used directly in finite element analysis.

1 Introduction

Surface modeling is important for many fields of activity ranged from industrial
CAD to animation in computer art. This paper is focussed on surface modeling
for engineering applications, which use finite element analysis. The basic objec-
tive of this type of surface modeling can be stated as follows: generate a surface
mesh that approximates a surface with specified accuracy and that can be used
for finite element analysis.

Specified accuracy of surface approximation can be achieved with the use
of adaptive algorithms. Adaptive mesh optimization algorithms for surface ap-
proximation have been considered in [1, 2, 3]. Duchineau et al. [1] presented an
adaptive algorithm for constructing triangular meshes with guaranteed error
bounds. Parajola [2] constructed restricted quadtrees for storing blocks of trian-
gles in quadtree leafs. Minimization of global approximation error was done by
Grosso et al. [3] using solution of a variational problem. However, the authors
of these publications employed triangular elements. While triangular elements
can be used in the finite element analysis, quadrilateral elements are preferable
because of their better properties for solution of variational problems [4]. It is
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known that quadrilaterals with quadratic interpolating functions are more ef-
ficient than linear quadrilateral elements. Generation of a topologically regular
quadrilateral mesh by a mapping technique is relatively easy [5]. However, per-
forming local mesh refinement for a quadrilateral mesh is considered a difficult
task [6]. For example, a subdivision scheme for quadrilateral meshes proposed
by Kobbelt [7] produces regular meshes with some singular vertices.

A natural process of local refinement for quadrilateral meshes is subdivision
of one quadrilateral element into four smaller quadrilaterals. However, so-called
”T-junctions” where two elements are connected to one side of a larger element
are created after such subdivisions. Such meshes cannot be employed in visual-
ization and modeling because of geometrical and functional discontinuity across
T-junctions. Forting and Tanguy [8] considered connection of two Lagrangian
9-node elements to one side of the same type larger element. Displacement com-
patibility was enforced by introduction of additional constraints in the global
finite element equation system. This provides convergence of the finite element
solution but the finite element mesh remains geometrically incompatible. Seder-
berg et al. [9] dealt with T-junction meshes using a generalization of B-splines,
which they call T-splines.

The main contribution of this article is an introduction of special quadrilateral
refinement elements, which provide continuity across element T-junctions. In
refinement elements, one or more midside nodes are placed outside the element
area and element shape functions are modified in order to maintain continuity at
refinement edges. Shape functions for refinement elements are derived in Section
2. In Section 3, a finite element procedure for surface modeling with global error
minimization is presented. Section 4 describes an iterative algorithm for adaptive
surface approximation, which produces a quadtree of quadratic quadrilaterals
with guaranteed local approximation error. In Section 5, an example of surface
modeling is given.

2 Refinement Quadrilaterals

An isoparametric quadratic quadrilateral element [4] with eight nodes is depicted
in Fig. 1,a. Any field (including coordinates) specified at element nodes is inter-
polated inside the element with the use of shape functions Ni, which are defined
in local coordinates ξ, η (−1 ≤ ξ, η ≤ 1):

u(ξ, η) =
∑

Ni(ξ, η)ui ,

Ni =
1
2
(1 − ξ2)(1 + ηηi) , i = 2, 6 ,

Ni =
1
2
(1 + ξξi)(1 − η2) , i = 4, 8 ,

Ni =
1
4
(1 + ξξi)(1 + ηηi) − 1

2
(Ni−1 + Ni+1) i = 1, 3, 5, 7 ,

(1)

where u(ξ, η) is a field value at some point inside the element; ui are field values
at element nodes; ξi and ηi are values of the local coordinates ξ and η at the
node i.
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Fig. 1. a) Quadratic isoparametric quadrilateral element; b) Mesh refinement 1:2; c)
Configuration of special elements

Using ordinary quadrilateral elements it is difficult to make mesh refinement.
We present here special refinement elements that allow T-junctions as shown in
Fig. 1,b. In special refinement elements, some midside nodes are moved outside
the element area in order to provide geometry and field continuity. An idea of
mesh refinement with special elements is illustrated in Fig. 1,c. Mesh T-junction
is created using two refinement elements s1 and s2, which have nodes located
outside of the element area.

Shape functions in the refinement element should provide continuity across T-
junction. In order to have continuity along the element edge p−n−m (Fig. 1,c)
the field value at point ξ = 0 in the special element s1 should be equal to
the field value at point ρ = −0.5 in the conventional neighboring element c:
u(ξ = 0) = u(ρ = −0.5). Using interpolation (1), a compatibility equation can
be written as:

u(ξ = 0) = u(ρ = −0.5) =
3
8
up +

3
4
un − 1

8
um . (2)

It is possible to demonstrate that the compatibility equation can be satisfied if
the shape functions Ni in the refinement element are modified as follows:

N ′
p = Np +

3
8
Nm , N ′

m = −1
8
Nm , N ′

n = Nn +
3
4
Nm . (3)

Interpolation of a field, which is equal to 1 just at one corner node of the conven-
tional element, is shown in Fig. 2,a. Same field interpolation in the refinement
element is depicted in Fig. 2,b. Refinement elements preserve quadratic inter-
polation for both geometry and field modeling.

a b

Fig. 2. Corner shape function in an ordinary quadratic quadrilateral (a) and in a
refinement element
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Fig. 3. Typical configurations of special refinement elements

Configurations of special refinement elements useful for quadtree mesh sub-
division are shown in Fig. 3. If a special element contains two outside nodes as
shown in Fig. 3 on the right, then modification (3) is applied twice using nodes
m1 and m2:

N ′
p = Np +

3
8
(Nm1 + Nm2) , N ′

m1
= −1

8
Nm1 , N ′

n1
= Nn1 +

3
4
Nm1 ,

N ′
m2

= −1
8
Nm2 , N ′

n2
= Nn2 +

3
4
Nm2 .

(4)

3 Global Error Minimization

Global error minimization of surface approximation can be done with the use
of the variational approach to functional minimization. It is assumed that a
surface that should be approximated is defined explicitly or by a point cloud.
An element approximation error Ee for a surface segment covered by element e
can be defined as:

Ee =
∫

Ae

(f − u)2dA =
∫

Ae

(f −
∑

Niui)2dA , (5)

where f is the specified surface height; u is the height approximated by the
eth element; ui are nodal values of u; Ni are the shape functions and Ae is
the element area. Element error can serve as a local error indicator for mesh
refinement. Global approximation error is the sum of element errors:

E =
∫

A

(f − u)2dA =
∑

e

Ee =
∑

e

∫

Ae

(f −
∑

Niui)2dA . (6)

Minimization of the global error functional E results in the following global finite
element equation system:

KU = R, ke
ij =

∫

Ae

NiNjdA, re
i =

∫

Ae

NifdA , (7)

where K is a global ”stiffness” matrix; U is a vector of nodal height values and R
is a right-hand side vector. The global matrix K and the right-hand side vector
R are composed of element ”stiffness” matrices ke and element vectors re using
element connectivity information.
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Iterative methods can be efficiently used for solution of the finite element
equation system (7) since good initial approximation for the solution vector U
is available in the beginning of each refinement step.

4 Surface Modeling Algorithm

Surface modeling starts with a coarse mesh consisting of usual quadrilaterals.
If the approximation domain is a quadrilateral area then it is possible to em-
ploy just one quadratic quadrilateral element in the beginning. According to the
adaptive mesh refinement procedure, refinements are carried out for elements
where an error indicator (5) is greater than a specified error tolerance.

The quadrilateral element that should be refined, is replaced by four quadri-
laterals. Some or all of these new quadrilaterals are special refinement elements.
Examples of one element refinement for the case of regular element surrounding
and for the case of a partially refined mesh are shown in Fig. 4

Fig. 4. Examples of 1:4 element refinement for the case of regular element surrounding
and for the case of a partially refined mesh

Mesh data after any number of 1:4 element refinements is stored in a quadtree
data structure. If to adopt that a quadtree root can be depicted as a square then
each quadtree node corresponds to a smaller square. Internal nodes have exactly
four children. Leafs (nodes without children) represent actual elements, which
can be usual elements or special refinement elements. After splitting elements
with excessive errors, the refined mesh can contain places where one element
have a connection to more than two elements. This makes impossible to provide
continuity across element boundaries. A quadtree where large squares can be
adjacent to more than two smaller squares at any edge is called unbalanced [10].
Quadtree balancing is performed by additional element subdivisions. For any
balanced quadtree, the geometry and field continuity can be ensured by using
refinement elements with outside nodes.

An adaptive algorithm of surface modeling is organized as an iterative pro-
cedure. During each iteration, first, the finite element equation system (7) is
assembled and solved. The height surface values are obtained for all mesh nodes.
Then local element errors Ee (5) are estimated and 1:4 splits of elements with
excessive errors are performed. The element quadtree is balanced at the end of
each iteration. Mesh refinement process is terminated if no splits occur during
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current iteration. Pseudo code of the surface modeling algorithm is presented
below.

Initialize Quadtree Q
do

Assemble and solve equation (7)
Number of splits s= 0
for Element e=1 to Number of Elements

Compute approximation error Ee (5) for Element e
if Ee > Error Tolerance then

s = s + 1
Split Element e into four elements
Put new elements into Quadtree Q

end if
end for
if s > 0 balance Quadtree Q

while s > 0 .

The algorithm of surface modeling has been implemented in Java. Surface is
visualized using Java 3D.

5 Example

The proposed algorithmof adaptive surface modeling with a quadtree of quadratic
quadrilaterals is demonstrated on the approximation of the following surface de-
fined on a square domain:

f = 0.5e−0.16(x2+y2) sin(2x) cos(2y), −5 ≤ x ≤ 5, −5 ≤ y ≤ 5 .

The height range for the above height function is [−0.5, 0.5] and the size in height
direction is 1. The following error measure is used for mesh refinement:

Ēe =

√
1

Ae

∫

Ae

(f − u)2dA ,

where f is the specified surface height; u is the height approximation and Ae is
the element area. This error measure Ēe is the modified element error (5): Ee is
divided by the element area and the square root is taken. The error indicator Ēe

is measured in length units and can be treated as some averaged absolute error
over an element.

Results of surface approximation by quadtrees of quadratic quadrilateral ele-
ments are presented in Figures 5 and 6. Fig. 5 shows element quadtrees for error
tolerance values 0.0005 (6 iterations) and 0.0001 (7 iterations). Visualization of
the approximated surface (error tolerance 0.0005) with the use of Java 3D is
presented in Fig. 6.
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Error = 0.0005 Error = 0.0001

Fig. 5. Quadtrees of quadratic quadrilaterals characterized by different height approx-
imation errors

Fig. 6. Visualization of a surface approximated by quadratic quadrilaterals

6 Conclusion and Future Work

We have introduced special quadratic quadrilateral elements for adaptive surface
modeling. Two special quadrilateral elements can be connected to one ordinary
edge of a quadrilateral quadratic element. The special refinement elements are
created by placement of one or two midside nodes outside the element area
and by modification of element shape functions. The modified shape functions
maintain geometry and field continuity across element T-junctions. It is worth
noting that the refinement elements do not differ from standard quadratic finite
elements and can be incorporated into existing finite element codes.
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Ordinary and special quadratic quadrilateral elements are used for surface
approximation. Global approximation error is minimized by solution of a varia-
tional problem using the finite element method. A local element error indicator
is utilized for adaptive mesh refinement. Elements with excessive local errors are
subdivided into four elements each. At any refinement stage the element mesh
is topologically equivalent to a quadtree. The quadtree data structure is used
to store element data and to navigate through the mesh. Quadtree balancing
is performed after each mesh refinement step in order to provide conforming
connections of special and ordinary elements.

The proposed algorithm of surface modeling with a quadtree of quadratic
quadrilaterals is demonstrated on the surface height approximation for a square
domain. A surface mesh produced by the algorithm can be directly used in finite
element analysis, where quadrilateral elements are considered more suitable than
triangles.

Quadrilateral refinement elements can be employed for general surface mod-
eling and for problems of the ”surface on surface” type. For general surface
modeling, a coarse starting mesh of quadrilateral elements topologically consis-
tent with the modeled surface is created. Quadtree subdivisions are performed
inside each element of the starting mesh. Mesh balancing should include bal-
ancing of quadtrees inside each starting element and balancing elements on the
interelement boundaries of the starting mesh. Future research will follow this
direction.
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